
Photos placed in horizontal position  
with even amount of white space 

 between photos and header 

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP 

Concurrent	
  Mul,-­‐physics	
  Capaci,es	
  in	
  Laboratory	
  of	
  
Computa,onal	
  Mechanics	
  	
  

Steve	
  Sun,	
  Jakob	
  T.	
  Os,en,	
  James	
  W.	
  Foulk	
  III	
  	
  

SAND2012-8949P



Mo,va,ons	
  

2	
  

q Hydrogen	
  Transport	
  
q  Understand	
  interac,on	
  between	
  

hydrogen	
  gas	
  and	
  host	
  material,	
  
in	
  par,cular	
  hydrogen	
  enhanced	
  
fracture,	
  embriIlement.	
  	
  

q  Cri,cal	
  for	
  hydrogen	
  economy,	
  
especially	
  for	
  developing	
  code	
  
and	
  standards,	
  life-­‐cycle	
  
design..etc.	
  	
  

q Poromechanics	
  	
  
q  Understand	
  interac,on	
  between	
  

mechanical	
  and	
  hydraulic	
  
coupling	
  mechanism	
  of	
  solid-­‐
fluid	
  mixture.	
  	
  

q  Keys	
  for	
  CO2	
  sequestra,on,	
  oil	
  
recovery,	
  geotechnical	
  
earthquake	
  engineering,	
  bone	
  
replacement,	
  soO	
  ,ssue	
  
modeling…etc.	
  



Overview	
  of	
  Mul,physics	
  Problems	
  in	
  Laboratory	
  of	
  
Computa,onal	
  Mechanics	
  

§  Monolithic,	
  implicit	
  mul,physics	
  capabili,es	
  currently	
  
available	
  in	
  LCM:	
  	
  
1.  Finite	
  deforma,on	
  thermo-­‐mechanics	
  (diffusion+	
  deforma,on)	
  
2.  Finite	
  deforma,on	
  fully	
  coupled	
  hydrogen	
  transport	
  (advec,on-­‐

diffusion	
  +	
  deforma,on)	
  
3.  Finite	
  deforma,on	
  poromechanics	
  (diffusion	
  +	
  deforma,on)	
  	
  
4.  Finite	
  deforma,on	
  thermoporoplas,city	
  (2	
  diffusion	
  +	
  deforma,on)	
  

§  Purpose:	
  	
  
§  Analyze	
  and	
  faithfully	
  replicate	
  physical	
  processes	
  which	
  occur	
  

simultaneously	
  interac,ng	
  with	
  each	
  others.	
  	
  

§  Challenge:	
  
§  Addi,onal	
  physics	
  requires	
  addi,onal	
  equa,on	
  +	
  DOFs	
  which	
  may	
  or	
  

may	
  not	
  have	
  the	
  same	
  mathema,cal	
  proper,es	
  of	
  the	
  displacement	
  
field	
  (e.g	
  inf-­‐sup	
  condi,on).	
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Hydrogen	
  Transport	
  



Stabilized hydrogen diffusion-deformation K-field problem 
for low diffusive materials   

Balance of Linear Momentum 

Hydrogen Transport Theorem 

Concentration Sensitive Yield Function 

W.C. Sun and J.E. Andrade

The matrix form reads,
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�
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�
F ext
u
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(4.9)

Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

5 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (5.1)

f(τ , z, CT ) = ||dev[τ ]−
�

2

3
[σY (CT ) +Kα ≤ 0 (5.2)

5.1 Type II zero-energy mode

5.2 Capturing diffuse instability in finite element simulation

5.3 Diffuse Bifurcation under Extreme Drainage Condition

5.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

5.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

6 Discussion

TO BE CONTINUNE ...

6.1 Pointwise vs. Global Instabilities

6.1.1 Instability related to Numerical deficits

7 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used
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Plastic strain coupling  
term 

L2 Projection of Hydrostatic Stress 

W.C. Sun

The matrix form reads,
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5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (6.1)

f(τ , z, CT ) = ||dev[τ ]||−
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2

3
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Challenges	
  on	
  Implementa,on	
  of	
  Hydrogen	
  
Transport	
  Problem	
  

1.  Numerical	
  instability	
  may	
  occur	
  if	
  (1)	
  ,me	
  step	
  is	
  too	
  small	
  and/or	
  (2)	
  
diffusivity	
  is	
  too	
  small	
  (i.e.	
  stainless	
  steel)	
  and	
  (3)	
  boundary	
  layer	
  due	
  to	
  
the	
  advec,on	
  term	
  is	
  thinner	
  than	
  the	
  side	
  length	
  of	
  the	
  finite	
  element.	
  	
  

2.  Hydrogen	
  transport	
  problem	
  is	
  highly	
  nonlinear,	
  thus	
  require	
  a	
  	
  
consistent	
  lineariza,on	
  to	
  implicitly	
  solve	
  for	
  solu,ons	
  (i.e.,	
  NUMEROUS	
  
manual,	
  mechanical	
  deriva,ons	
  EACH	
  ,me	
  the	
  problem	
  is	
  amended).	
  

	
  
3.  Volmetric	
  Locking,	
  which	
  may	
  occur	
  under	
  perfectly	
  plas,c	
  response	
  /	
  

isochoric	
  deforma,on..etc.	
  	
  



Example	
   Moving to 21-6-9 

 WB = 9.65E3 J/mol 

 DL = 2.2E-16 m2/s 

  VM = 7.116E-6 m3/mol 

 VH = 2.0E-6 m3/mol 

T = 300 K 
 

R  = 8.314 J/(mol K) 
 Q = 53.9E3 J/mol 
 D0 = 5.4E-7 m2/s 

 KT = 47.9  

Somerday et al, Met Trans, 2009 Say we want to find the 
linearized D* (i.e., the first 
order 
term in the Taylor expansion).  
D* depends on the trapped 
solvent, temperature, lattice 
concentration—but trapped 
solvent also depends on 
equivalent plastic strain and 
hence, displacement, yield 
stress…etc.  
 
How do we derive consistent 
linearization with respect to all 
the dependent variables ?  
 
Notice that we need to restart 
the entire process if we make 
any changes…. 
 
 

Moving to 21-6-9 

 WB = 9.65E3 J/mol 

 DL = 2.2E-16 m2/s 

  VM = 7.116E-6 m3/mol 

 VH = 2.0E-6 m3/mol 

T = 300 K 
 

R  = 8.314 J/(mol K) 
 Q = 53.9E3 J/mol 
 D0 = 5.4E-7 m2/s 

 KT = 47.9  

Somerday et al, Met Trans, 2009 



Implementa,on	
  of	
  Hydrogen	
  Diffusion-­‐Mechanics	
  Problem	
  
with	
  automa,c	
  differen,a,on	
  

•  Gather coordinates, displacement and lattice 
concentration fields 

•  Interpolate fields and gradients to integration points 
•  Chain together Evaluators to compute Momentum 

and Conservation of Hydrogen Residuals 
•  Scatter back to the global system of equations 

Blue = Hydrogen Transport 
Red = Solid Mechanics (J2 Plasticity) 
Purple = coupled terms 



Combined	
  F-­‐bar	
  formula,on	
  

8 WaiChing Sun et al.

Ĥ (un+1, p
f
n+1,η)

=

�

B
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Bn+1 −Bn

∆t
(log Jn+1 +

p
f
n+1

Ks
) dV

+

�

B

ψBn+1
log Jn+1 − log Jn

∆t
dV

+

�

B

ψ
1

Mn+1

p
f
n+1 − p

f
n

∆t
dV

−
�

B

∇X
ψ ·Qn+1 dV

−
�

∂BQ

ψQn+1 dΓ (48)

3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
�1− α

VBe

�

Be

log J(X) dV+α log J(X)
�

(54)

where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.
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reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require
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conventional interpolated deformation gradient
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Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.

Isochoric-volumetric split 
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reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-
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in the example section.

Replacing volumetric split with 
assumed term 

Classical Combined F-bar approach 
W.C. Sun
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J = JeJpJC ; JC = 1 + λ(C − Co) (6.8)

7 Automatic Differentiation Tool
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3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[14; 28; 47; 52]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of the deforma-

tion gradient F is formulated as,

F = F vol · F iso (49)

where

F vol = J
1/3I ; F iso = J

−1/3F (50)

An assumed strain formulation replaces the in-

terpolated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (51)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[28] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (52)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant

error, since the addition operation is not valid for

the multiplicative group of which the deformation

gradient belongs.

In order to provide the essential volumetric

relaxation while maintaining stability, we intro-

duce a simple combined/standard F-bar element

by recourse to exponential/logarithmic mapping,

�F = �J1/3
J
−1/3F (53)

where

�J(X) = exp
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VBe
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log J(X) dV+α log J(X)
�

(54)

where α ∈ [0, 1]. The combined formulation may

reduce to fully standard or F-bar formulation by

adjusting α as in [28]. Furthermore, it can be

easily shown that (53) is identical to the mid-point

assumed deformation gradient formulation in [14]

if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid

of the element.

Notice that this formulation does not require

modification other than consistently replacing the

conventional interpolated deformation gradient

with the modified counterpart in (53).

Remark 2 The method to select α is at present

unclear. While assumed deformation gradient may

lead to spurious mode for certain single-phase solid

mechanics problem as demonstrated in [9], non-

zero α is not required in the solutions presented

in the example section.
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ηhdΩ)(ph − 1
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5 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (5.1)

f(τ , z, CT ) = ||dev[τ ]||−
�

2

3
[σY (CT ) +Kα ≤ 0 (5.2)

The transport equation reads

D∗ĊL −∇X ·DL∇X CL +∇X · VH

RT
CLDL∇X SH + θT

dNT

d�p
�̇p = 0 (5.3)

5.1 Type II zero-energy mode

5.2 Capturing diffuse instability in finite element simulation

5.3 Diffuse Bifurcation under Extreme Drainage Condition

5.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

5.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

6 Discussion

TO BE CONTINUNE ...
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Plastic strain nonlinear 
coupling  

term 

Hydrogen diffusion  
term 

Advection coupling   
term 

 transient  
term 

Hydrogen Transport Theorem 

•  Spurious oscillations may occur when 
•   D* is large, which means local rate of change dominates 
•  The mesh size h is large (relative to the advection and diffusion length scale) 
•   The time step is small (relative to the advection and diffusion time scale). 
•  Notice that Peclet number measures whether advection of diffusion is more important, but did not 

tell much about the transient term!  
 

•  Examples of stabilization scheme 

•  Petrov-Galerkin/streamline upwind method (Hughes, 1978, Johnson, 1984) 
•  Space-time finite incremental calculus method (Onate and Manzan 2000) 
•  SUPG with adaptive stabilization parameters (Tezduyar 2003)  
•  Spurious oscillations at layers diminishing method (Volker and Schmeyer, 2008). 
•  Artificial diffusivity (Onate and Manzan, 2000).   
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•  add stabilization term to penalize the deficiency  

No stabilization  

With stabilization  

11	
  10/15/12	
  

Stable result 

Standard Implicit Galerkin Formulation  

Spurious oscillated result 

Stabilized Implicit Gakerlin Formulation 

•  For transient problem, stability criteria must be satisfied for the 
pair of time step and element size h used in simulations. γ is the 
parameter for backward Euler time integrator (Harari, 2004).   

 

•  Meanwhile, stability of the steady solution can be predicted by the 
Peclet number. If Pe is less than 1 and D*/DL is reasonably close 
to h^2/dt 
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8.1 Pointwise vs. Global Instabilities

8.1.1 Instability related to Numerical deficits

9 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used

in a finite element simulations and distinguished material driven instabilities from numerical

instabilities caused by improper use of basis functions. A technique is proposed to measure

the material sustainability.
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D∗ĊL −∇X ·DL∇X CL +∇X · VH

RT
CLDL∇X SH + θT

dNT

d�p
�̇p = 0 (6.3)

�

B
Na(σh −Nbσb) dV = 0 (6.4)

12

W.C. Sun

The matrix form reads,
�

0 0
Bpu Ktran

pp

� �
u̇
ṗ
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Conclusion	
  
§  We	
  have	
  implemented	
  a	
  fully	
  implicit	
  hydrogen	
  transport	
  model	
  in	
  the	
  

Laboratory	
  of	
  Computa,onal	
  Mechanics	
  package	
  with	
  the	
  following	
  
desirable	
  features	
  
§  Open-­‐source,	
  open	
  for	
  collabora,ons.	
  	
  
§  Capacity	
  to	
  conduct	
  fully	
  coupled,	
  fully	
  implicit	
  simula,ons	
  with	
  

stabiliza,on	
  scheme.	
  	
  	
  
§  Automa,c	
  differen,a,on,	
  which	
  makes	
  it	
  fast	
  and	
  easy	
  to	
  make	
  

amendment	
  to	
  exis,ng	
  model	
  and	
  eliminate	
  chance	
  of	
  making	
  error	
  
in	
  deriva,on	
  

§  Stabiliza,on	
  scheme	
  available	
  to	
  handle	
  material	
  with	
  extremely	
  low	
  
diffusivity,	
  thin	
  boundary	
  layer…etc.	
  

§  A	
  L2	
  projec,on	
  scheme	
  to	
  obtain	
  a	
  C0-­‐con,nuous	
  stress	
  gradient	
  
term	
  that	
  enables	
  the	
  advec,on	
  term	
  to	
  be	
  correctly	
  modeled	
  
without	
  introducing	
  errors	
  during	
  the	
  extrapola,on	
  process.	
  	
  

13	
  



Poromechanics	
  



Pore-scale Calculation 

Meso-Scale homogenization 

X-ray CT Image 

Level set scheme to 
obtain signed distance function, 
iso-surface and mesh 

Up-scaling hydraulic 
and mechanical 
parameters by solving 
inverse problem 

Finite Element models 
incorporating Spatial 
Variability and length 
scale   

Field-scale Boundary Value Problem 
 9 

 

 

 
 

 

 
Fig.3.Spatial distribution of rotation in free-rotation grain assembly at vertical strain = 5, 10, 
15, 20%. Color indicates rotation (radian) of individual grains.  
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same trajectories. Therefore, if a control mass of
solid particles is defined in a solid phase material
configuration, then the volume occupied by the
same control mass of solid particles may contain
pore-fluid which does not belong to the solid phase
material configuration. However, since the consti-
tutive response of the solid skeleton must be mod-
eled in a well defined and measurable control mass
at a continuum level [10], the finite strain porome-
chanics problem is formulated on the trajectory of
the solid constituent only. The pore-fluid motion
is accounted indirectly by modeling the relative
motion between the fluid flow and the solid skele-
ton through constitutive models such as Darcy’s
law. For brevity, we drop the designation of the
solid phase s, such that x = ϕs(X, t) = ϕ(X, t).
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ṗ

�
+

�
Kuu Bup

0 Kst
pp

� �
u
p

�
=

�
F ext
u

F ext
p

�
(4.8)

�
Kuu Bup

Bpu Kst
ppδt+Ktran

pp

� �
un+1

pn+1

�
=

�
F ext
u

F ext
p +Bpuun −Ktran

pp pn

�
(4.9)

Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)

6 Hydrogen transport

The balance of linear momentum reads

∇X ·P (F , z, CT ) = 0 (6.1)

f(τ , z, CT ) = ||dev[τ ]||−
�

2

3
[σY (CT ) +Kα ≤ 0 (6.2)

The transport equation reads
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Fig. 1 Trajectories of the solid and fluid constituents
ϕs = ϕ and ϕf . The motion ϕ conserves all the mass of
the solid constituent, while the fluid may enter or leave
the body of the solid constituent. Figure reproduced
from [35].

2.2 Balance of Linear Momentum

Provided that a macroscopic representation of the
solid-fluid interaction in porous media is valid, the
total Cauchy stress of the porous media is the sum
of the solid and fluid phase macroscopic Cauchy
stress if the meniscus effect is neglected, i.e.,

σ = σs + σf = φsσs + φfσf (3)

where σs and σf are the intrinsic partial stress
defined in the volume of the solid grains V s and

pores V f respectively. The total stress is volume
averaged stress defined in the volume V = V s+V f ,
assuming that homogenization is valid. Since pore-
fluid does not provide any shear resistance, the
fluid phase Cauchy stress is isotropic and holds
the following relation with the macroscopic pore
pressure pf , i.e.,

pfI = −σf ; pf = −1

3
tr(σf ); pf = − 1

3φf
tr(φfσf )

(4)

On the other hand, the Cauchy stress of the solid
phase comes from the deformation of the solid
skeleton (i.e., the effective stress σ� ) and the stress
exerted on the skeleton due to the compression of
the fluid (i.e., K/Kspf ),

σs = σ� +
K

Ks
pfI (5)

This definition is from [31], which assumes that the
non-uniform localization of stress at grain scale,
grain crushing and damage are all insignificant
to the skeleton (cf. [41] p.8-11). By substituting
(4) and (5) into (3), the total Cauchy stress now
reads,

σ = σ� − (1− K

Ks
)pfI (6)

Here we use the total first Piola-Kirchhoff stress P
as the stress measure for the total Lagrangian for-
mulation. The total first Piola-Kirchhoff stress is
obtained through the Piola transformation [6; 32].
For elastic porous media, the total first Piola-
Kirchhoff stress can be determined from the de-
formation gradient F and the pore pressure pf ,
i.e.,

P (F , pf ) = P �(F )− J(1− K

Ks
)pfF−T (7)

where J is the determinant of the deformation
gradient F . Notice that the effective first Piola-
Kirchhoff stress does not depend on the pore pres-
sure pf . On the other hand, if the constitutive
response is path-dependent, then we assume that
the following relation holds,

P (F , z, pf ) = P �(F , z)− J(1− K

Ks
)pfF−T (8)

where z is a set of internal variables. Notice that
the effective first Piola-Kirchhoff stress defined
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in (8) is decoupled from the pore-fluid response.
Hence, this assumption enables us to use any
single-phase stress integration algorithm to obtain
the effective first Piola-Kirchhoff stress. By apply-
ing the standard mixture theory and neglecting
the inertial force , the balance of linear momentum
reads,

∇X ·P s + JρsG+H
s = 0 (9)

∇X ·P f + JρfG+H
f = 0 (10)

where ρα = φαρα is the intrinsic or apparent
density of the α phase. G is the vector of gravity
acceleration. As pointed out in [22], Hs and H

f

are the interactive body force per unit reference
volume exerted on their corresponding phases due
to drag, lift, virtual mass effect, history effects
and the relative spinning (Magnus effect) which
balances out internally, i.e., Hs +H

f = 0. As a
result, combining (9) and (10) yields,

∇X ·P + J(ρs + ρf )G = 0 (11)

or equivalently,

∇x·σ + (ρs + ρf )G = 0 (12)

where (11) and (12) are related by the Piola trans-
formation ∇X ·P = J ∇x·σ.

2.3 Balance of Mass

Here we derive a generalized balance of mass equa-
tion in which the compressibility of both the solid
and pore-fluid constituents are considered. While
this generalized derivation for compressible con-
stituents has been recently considered in [14], our
new contribution here is that the infinitesimal ver-
sion of this formulation is fully consistent with the
classical small strain balance law in [4; 31; 41], and
can also be consistently reduced to the finite strain
formulation in [1] when solid constituent becomes
incompressible and the finite strain formulation in
[7; 32] when the porous media is fully saturated
and composed of incompressible constituents.

Recall that we define the material time deriva-
tive based on the motion of the solid skeleton.
In the absence of mass exchange among all con-
stituents, the balance of mass for the pore-fluid
onstituent reads,

Dρf

Dt
= −∇X ·W (13)

where W and w are the Lagrangian and Eulerian
relative mass flow vectors defined as [11], i.e.

w = φfρf (v
f − v) ; W = JF−1 ·w (14)

Assuming isothermal conditions, the material time
derivative of the pore-fluid density can be parti-
tioned through following identity,

Dρf

Dt
= φf Dρf

Dt
+ ρf

Dφf

Dt
(15)

Notice that the material time derivatives can be
further simplified as,

Dρf

Dt
= ρf

D

Dt
log

� ρf
ρf0

�
+ ρf

Dφf

Dt
(16)

where log(ρf/ρf0) is the infinitesimal change of
the pore-fluid density. By assuming that the pore-
fluid is barotropic, the first term of (16) reads,

φf

�
ρf

D

Dt
log

� ρf
ρf0

��
=

φfρf
Kf

Dpf

Dt
(17)

which is obtained by applying the barotropic as-
sumption, as pointed out in [1],

Kf = ρf
dpf

dρf
= constant ⇒ ρf

ρf0
= exp

�
pf

Kf

�

(18)

On the other hand, the second term takes into
account the volumetric change of pore space for
a fixed pore-fluid density, which comes from the
skeleton volumetric change and the volume changes
caused by the compression or extension of the solid
grains. Assuming that change of porosity at an
infinitesimal time is small, the change of porosity
can be written as (cf. [24]),

Dφf

Dt
=

D

Dt

�
B log J +

B − φf

Ks
pf

�
(19)

where log J = log(detF ) = tr � and � is the Eu-
lerian logarithm strain tensor. B is the Biot’s
coefficient defined as [31],

B = 1− K

Ks
(20)
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Applying the chain rule and through some algebra,

we obtain the following expression,

Dφf

Dt
=

Ks

Ks + pf

�
DB

Dt
(log J +

pf

Ks
)

�

+
Ks

Ks + pf

�
B

J

DJ

Dt
+

B − φf

Ks

Dpf

Dt

�
(21)

For simplicity, we may consider only the case

where pf << Ks such that,

Dφf

Dt
=

DB

Dt
(log J +

pf

Ks
)+

B

J

DJ

Dt
+

B − φf

Ks

Dpf

Dt
(22)

The material time derivative of the apparent pore-

fluid density reads,

Dρf

Dt
= ρf

�
DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt

�

(23)

where M is the Biot’s modulus defined as [31],

M =
KsKf

Kf (B − φf ) +Ksφf
(24)

Finally, for completeness of presentation, we as-

sume that the flow inside the porous media is

sufficiently slow such that Darcy’s law is valid. In

this case, Darcy’s flow can be used as constitu-

tive model to relate relative flow vector with pore

pressure. In the current configuration, the balance

of linear momentum if the fluid phase may be

written as,

−∇x pf + ρfG− k−1 ·w = ρfaf
(25)

where k is the permeability tensor divided by the

viscosity, af is the acceleration of the fluid con-

stituent. Rearranging (25), the Eulerian relative

flow vector w reads,

1

ρf
w = k ·

�
−∇x pf + ρf (G− af )

�
(26)

Assume that the inertial force is negligible, af = 0.

By applying Piola transformation of the relative

flow vector and pulling back the permeability

tensor, Darcy’s law can be expressed in the La-

grangian configuration. The relative flow vector

therefore reads,

1

ρf
W = K · (−∇X pf + ρfF

T ·G) (27)

where K = JF−1 · k · F -T
. Combining (13), (23)

and (27), we obtain the strong form of the balance

of mass equation,

DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt
+∇X ·Q = 0

(28)

where Q = (1/ρf )W . Notice that if both con-

stituents are incompressible, then B = 1 and

1/M = 0. Applying the Piola transform, (28) re-

duces to the form identical to the one in [6],

∇x·v +∇x· q = 0 (29)

where q = (1/ρf )w.

Remark 1 Armero derived a quadratic potential

to characterize the reversible response of the sat-

urated pore space by assuming that the change

of fluid constent is small in [2]. In a special case

where Biot’s coefficient remains unchanged, (28)

is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized varia-

tional form required for the equal-order displacement-

pressure paired finite element model with assumed

deformation gradient. We first define the standard

weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed

deformation gradient suitable for the poromechan-

ics problem. To prevent spurious modes due to the

usage of equal-order interpolation and assumed

deformation gradient, we introduce a stabilization

mechanism into the weighted-residual statement

of the momentum and mass balance equation. A

simple scheme for choosing the stabilization pa-

rameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual state-

ment suitable for a total Lagrangian scheme. We

first specify the appropriate boundary and ini-

tial conditions. Following the standard line, we

consider a domain B whose boundary ∂B is the

Effective Stress Concept 
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same trajectories. Therefore, if a control mass of
solid particles is defined in a solid phase material
configuration, then the volume occupied by the
same control mass of solid particles may contain
pore-fluid which does not belong to the solid phase
material configuration. However, since the consti-
tutive response of the solid skeleton must be mod-
eled in a well defined and measurable control mass
at a continuum level [10], the finite strain porome-
chanics problem is formulated on the trajectory of
the solid constituent only. The pore-fluid motion
is accounted indirectly by modeling the relative
motion between the fluid flow and the solid skele-
ton through constitutive models such as Darcy’s
law. For brevity, we drop the designation of the
solid phase s, such that x = ϕs(X, t) = ϕ(X, t).
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ṗ

�
+

�
Kuu Bup

0 Kst
pp

� �
u
p

�
=

�
F ext
u

F ext
p

�
(4.8)

�
Kuu Bup

Bpu Kst
ppδt+Ktran

pp

� �
un+1

pn+1

�
=

�
F ext
u

F ext
p +Bpuun −Ktran

pp pn

�
(4.9)

Stabilization term
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5 Deformation Mapping

x = ϕ(Xs, t) (5.1)

Xs = ϕ−1(x, t) (5.2)

x = ϕf (Xf , t) (5.3)

y = ϕf (Y f , t) (5.4)
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�

2

3
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The transport equation reads
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Fig. 1 Trajectories of the solid and fluid constituents
ϕs = ϕ and ϕf . The motion ϕ conserves all the mass of
the solid constituent, while the fluid may enter or leave
the body of the solid constituent. Figure reproduced
from [35].

2.2 Balance of Linear Momentum

Provided that a macroscopic representation of the
solid-fluid interaction in porous media is valid, the
total Cauchy stress of the porous media is the sum
of the solid and fluid phase macroscopic Cauchy
stress if the meniscus effect is neglected, i.e.,

σ = σs + σf = φsσs + φfσf (3)

where σs and σf are the intrinsic partial stress
defined in the volume of the solid grains V s and

pores V f respectively. The total stress is volume
averaged stress defined in the volume V = V s+V f ,
assuming that homogenization is valid. Since pore-
fluid does not provide any shear resistance, the
fluid phase Cauchy stress is isotropic and holds
the following relation with the macroscopic pore
pressure pf , i.e.,

pfI = −σf ; pf = −1

3
tr(σf ); pf = − 1

3φf
tr(φfσf )

(4)

On the other hand, the Cauchy stress of the solid
phase comes from the deformation of the solid
skeleton (i.e., the effective stress σ� ) and the stress
exerted on the skeleton due to the compression of
the fluid (i.e., K/Kspf ),

σs = σ� +
K

Ks
pfI (5)

This definition is from [31], which assumes that the
non-uniform localization of stress at grain scale,
grain crushing and damage are all insignificant
to the skeleton (cf. [41] p.8-11). By substituting
(4) and (5) into (3), the total Cauchy stress now
reads,

σ = σ� − (1− K

Ks
)pfI (6)

Here we use the total first Piola-Kirchhoff stress P
as the stress measure for the total Lagrangian for-
mulation. The total first Piola-Kirchhoff stress is
obtained through the Piola transformation [6; 32].
For elastic porous media, the total first Piola-
Kirchhoff stress can be determined from the de-
formation gradient F and the pore pressure pf ,
i.e.,

P (F , pf ) = P �(F )− J(1− K

Ks
)pfF−T (7)

where J is the determinant of the deformation
gradient F . Notice that the effective first Piola-
Kirchhoff stress does not depend on the pore pres-
sure pf . On the other hand, if the constitutive
response is path-dependent, then we assume that
the following relation holds,

P (F , z, pf ) = P �(F , z)− J(1− K

Ks
)pfF−T (8)

where z is a set of internal variables. Notice that
the effective first Piola-Kirchhoff stress defined
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Applying the chain rule and through some algebra,

we obtain the following expression,
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�
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+

B − φf

Ks

Dpf

Dt

�
(21)

For simplicity, we may consider only the case

where pf << Ks such that,

Dφf

Dt
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DB

Dt
(log J +

pf

Ks
)+

B

J

DJ

Dt
+

B − φf

Ks

Dpf

Dt
(22)

The material time derivative of the apparent pore-

fluid density reads,

Dρf

Dt
= ρf

�
DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt

�

(23)

where M is the Biot’s modulus defined as [31],

M =
KsKf

Kf (B − φf ) +Ksφf
(24)

Finally, for completeness of presentation, we as-

sume that the flow inside the porous media is

sufficiently slow such that Darcy’s law is valid. In

this case, Darcy’s flow can be used as constitu-

tive model to relate relative flow vector with pore

pressure. In the current configuration, the balance

of linear momentum if the fluid phase may be

written as,

−∇x pf + ρfG− k−1 ·w = ρfaf
(25)

where k is the permeability tensor divided by the

viscosity, af is the acceleration of the fluid con-

stituent. Rearranging (25), the Eulerian relative

flow vector w reads,

1

ρf
w = k ·

�
−∇x pf + ρf (G− af )

�
(26)

Assume that the inertial force is negligible, af = 0.

By applying Piola transformation of the relative

flow vector and pulling back the permeability

tensor, Darcy’s law can be expressed in the La-

grangian configuration. The relative flow vector

therefore reads,

1

ρf
W = K · (−∇X pf + ρfF

T ·G) (27)

where K = JF−1 · k · F -T
. Combining (13), (23)

and (27), we obtain the strong form of the balance

of mass equation,

DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt
+∇X ·Q = 0

(28)

where Q = (1/ρf )W . Notice that if both con-

stituents are incompressible, then B = 1 and

1/M = 0. Applying the Piola transform, (28) re-

duces to the form identical to the one in [6],

∇x·v +∇x· q = 0 (29)

where q = (1/ρf )w.

Remark 1 Armero derived a quadratic potential

to characterize the reversible response of the sat-

urated pore space by assuming that the change

of fluid constent is small in [2]. In a special case

where Biot’s coefficient remains unchanged, (28)

is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized varia-

tional form required for the equal-order displacement-

pressure paired finite element model with assumed

deformation gradient. We first define the standard

weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed

deformation gradient suitable for the poromechan-

ics problem. To prevent spurious modes due to the

usage of equal-order interpolation and assumed

deformation gradient, we introduce a stabilization

mechanism into the weighted-residual statement

of the momentum and mass balance equation. A

simple scheme for choosing the stabilization pa-

rameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual state-

ment suitable for a total Lagrangian scheme. We

first specify the appropriate boundary and ini-

tial conditions. Following the standard line, we

consider a domain B whose boundary ∂B is the

Darcy’s Law 
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Fig. 5 Permeability of the fully saturated specimen at
the steady state. The undeformed mesh is plotted in
white.
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Fig. 6 Dimensionless traction response obtained via
stabilized finite element method and analytical solution
at the top of the fully saturated specimen .(γ/Lo =
1%, 5%, 7.5%, 10% and to = 30.0)

global L2 projection is performed to map integra-
tion point data to the nodes and then use basis
functions of the finite element to interpolate the
scalar permeability field. Interested readers is re-
ferred to [26] for detail.

5.2 Bending of a Slender Poroelastic Beam

We simulate the beam bending problem in [46]
for three reasons – (1) to compare the finite ele-
ment simulations against the analytical solution
when an assumed deformation gradient is used,
(2) to check whether the stabilization schemes are
capable of eliminating spurious oscillation modes
in multi-dimensional problems, and (3) to verify
whether volumetric locking can be overcome by
the assumed deformation gradient formulation.

Consider a long and slender beam composed
of poroelastic material is subjected to a three-
point bending load where fluid is drained through
the top, bottom and lateral surfaces, as shown in
Figure 7.

Fig. 7 Bending of poroelastic beam: (a) dimensions of
the 3D model; (b) three-point bending scheme; and (c)
longitudinal section. Figure reproduced from [46].

By assuming that the shear and transverse
stress are both small, Scherer, Prevost and Wang
[46] show that the small strain load relaxation
function can be approximated by

P (τu)

Pu
=

1 + ν

1 + νu
+

νu − ν

1 + νu
S1(τu)S2(

c

a
, τu) (84)

where Pu is the initial load required to hold the
deflection at the undrained limit and P is the
applied load requires to hold the same deflection
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all equations. Validation and verification of each equation by itself
is thus possible with the same implementation, which reduces the
likelihood of bugs and increases code reusability.

Different formulations are used for solving the individual equa-
tions: The momentum and the energy equations (Eqs. (1) and (12))
are solved using standard Galerkin while the pressure equation
(Eq. (4)) is solved using stabilized Galerkin (see Preisig and Prévost,
2010). For the saturation equation, which is a transport equation, a
more sophisticated approach is needed in order to avoid the typical
instabilities that usually occur when standard Galerkin is used. The
finite volume method with one-point upwinding is known to avoid
such instabilities, and a vertex-centered implementation avoids a
cumbersome and inaccurate remapping of values from cell cen-
ters to nodes (for an error analysis of cell-to-node projections the
reader is referred to Goumiri and Prévost, 2010). The saturation
equation is solved in a different stagger than the other equations
since its coupling with pressure, geomechanics and energy is weak.
Tests showed that performing multiple iterations between the two
staggers only marginally affect the results. In general only a single
iteration was performed. All simulations were completed using the
DYNAFLOW numerical code (Prévost, 1981).

4. Coupled geomechanics: one-way coupling, iterative
coupling and full coupling

A lot of literature is devoted to the question as to whether for
a specific situation the poromechanics equations (geomechanics
and fluid flow) have to be solved using a fully coupled method, or if
approximate one-way coupling could model the situation satisfac-
torily. One-way coupling generally refers to the common practice in
reservoir simulation to first solve the fluid flow problem assuming
a simplified mechanical behavior of the reservoir, and then solve
the geomechanical problem using the updated pore fluid pressures.
When solving the fluid flow problem the mechanical behavior is
approximated by uniaxial consolidation, that is, the term b∇ · v

∼
s

is approximated by cmṗf , where the uniaxial rock compressibility
cm = b2/(Ks + 4/3!s) is derived from one-dimensional consolidation.
No feedback from geomechanics to fluid flow is present and there-
fore no iterations are necessary. Lewis et al. (1991) discuss what
situations permit this simplified treatment and come to the con-
clusion that one-way coupling should almost always be avoided.

Another method consists in iteratively coupling pressure and
geomechanics by first solving the pressure equation while keep-
ing the displacement constant, before solving the momentum
equation while keeping the fluid pressure constant. This has to
be repeated until some convergence criterion has been satisfied
(Settari and Walters, 1999). Explicit coupling is a special case of iter-
ative coupling where only one iteration is performed. In this case,
information from geomechanics is fed into the fluid flow equation
at the next time step only.

Remark 1. It is important to note that full coupling can be done in
multiple ways, using direct solvers, staggered schemes or iterative
solvers (see Prévost, 1997). When done correctly all these meth-
ods should recover the correct coupled behavior, since the same
coupled system of equations is solved. Iterative coupling, on the
other hand, refers to the consecutive solution of separate systems
of equations. Iterative coupling is generally done when, for exam-
ple, different numerical codes and/or different grids are used for
fluid flow and geomechanics.

It can easily be verified whether a numerical scheme correctly
models the coupling by solving the Mandel problem (Mandel,
1953): A layer of width 2L is compressed vertically. The top and bot-
tom boundaries are fully impermeable, while the lateral boundaries
drain (pf = 0 imposed at x = ± L). The distributed load applied to the

Fig. 1. Mandel problem: a vertical load of q is applied to a porous medium through
a  rigid, horizontal plate.

top surface is q = − 2. The fluid is incompressible ("u = 0.5), the Pois-
son’s ratio of the solid matrix is taken as "s = 0. The initial pressure
due to the load q is pf,0 = − 1/3(1 + "u)q = 1. All material parameters
are non-dimensionalized such that the diffusivity coefficient equals
1:

cv = k
!f

M
Ks + 4

3 !s

Ks + b2M + 4
3 !s

(19)

For Kf, Ks $ Ks M tends to infinity and cv simplifies to cv = k/!f (Ks +
4/3!s).

Symmetry allows modeling of only half of the width (see Fig. 1).
The top surface is rigid; all its nodes therefore have the same vertical
displacement. The horizontal displacements are unconstrained on
the top, right and bottom boundaries.

An analytical solution, developed by Mandel (1953),  is given in
Coussy (2004):

pf (x, tnd)
pf,0

= 2
∞∑

n=1

cos(˛nx/L) − cos(˛n)
˛n − sin(˛n) cos(˛n)

sin(˛n) exp
(
−˛2

ntnd

)
(20)

where the tnd = t(cv/L2) is the dimensionless time. ˛n is determined
from the equation:

tan ˛n

˛n
= 1 − "s

1 − "u
(21)

Fig. 2 shows the evolution of the pore pressure at the symmetry
line. While the result of the fully coupled simulation closely match
the analytical solution, the result from one-way coupling fails to
capture the so-called Mandel–Cryer effect, viz. the temporary rise
in pore pressure in early times. The results using iterative coupling
with 10, 20 and 50 iterations at every time step are also shown.

Fig. 2. Full coupling vs. one-way coupling and iterative coupling: normalized pres-
sure at symmetry line as a function of non-dimensional time.
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Inf-sup Condition (not satisfied) 
 
 
 
 
Weaker Inf-sup Condition (still satisfied) 

Pressure Projection Stabilization 
 
•  add stabilization term to penalize the deficiency in the 

displacement-pore pressure approximation pair.   
•  We use a adaptive scheme to turn on/off stabilization such that 

no excess diffusion is introduced. 

Recall that a stable and accurate approximation of the saddle point required the pair of
V h
p and Vu

h satisfies the discrete inf-sup condition, i.e.,

sup
uh∈Vu

h,uh �=0

�
ph ∇x·uh dΩ

||uh||1
≥ γ||ph||0, ∀ph ∈ V h

p (3.43)

where γ is a positive constant independent of the mesh size. Bochev, Dohrmann and Gun-
zburger pointed out that, while an equal order pair V h

p and Vu
h does not satisfy (3.43), it

does satisfy a weaker bound [7] ,

sup
uh∈Vu

h,uh �=0

�
ph ∇x·uh dΩ

||uh||1
≥ γ1||ph||0 − γ2h||∇x ph||0, ∀ph ∈ V h

p (3.44)

where γ1 and γ2 are both positive constant independent of the mesh size.
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The matrix form reads,

�
0 0

Bpu Ktran
pp

� �
u̇
ṗ

�
+

�
Kuu Bup

0 Kst
pp

� �
u
p

�
=

�
F ext
u

F ext
p

�
(4.8)

�
Kuu Bup

Bpu Kst
ppδt+Ktran

pp

� �
un+1

pn+1

�
=

�
F ext
u

F ext
p +Bpuun −Ktran

pp pn

�
(4.9)

Stabilization term

Rstab =

�

Ω
[τ(ηh − 1

VΩ

�

Ω
ηhdΩ)(ph − 1

VΩ

�

Ω
phdΩ)] dΩ (4.10)

4.1 Type II zero-energy mode

4.2 Capturing diffuse instability in finite element simulation

4.3 Diffuse Bifurcation under Extreme Drainage Condition

4.3.1 Fluttering mode of Porous Media

TO BE CONTINUE ....

4.4 Numerical Example: Surface Rumpling of Slope

Remark 1. Due to the finite precision of arithmetic operation in computer, the set of eigen-

values computed are never exactly zero. Thus, theoretical specking, computer simulation

involving material approaching diffuse bifurcation should still be able to converge to unique

solution. The finite precision of arithmetic operation also introduces similar impact on the

fluttering mode, as it ceases the possibility for exact pair of complex conjugate eigenvalues in

computer unless symbolic operation is carried out.

5 Discussion

TO BE CONTINUNE ...

5.1 Pointwise vs. Global Instabilities

5.1.1 Instability related to Numerical deficits

6 Conclusion

We have presented conditions that lead to material instabilities of porous media under

drained and undrained conditions. We have also highlighted how these conditions could be used

in a finite element simulations and distinguished material driven instabilities from numerical

instabilities caused by improper use of basis functions. A technique is proposed to measure

the material sustainability.
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the effective first Piola-Kirchhoff stress. By apply-
ing the standard mixture theory and neglecting
the inertial force , the balance of linear momentum
reads,

∇X ·P s + JρsG+H
s = 0 (9)

∇X ·P f + JρfG+H
f = 0 (10)

where ρα = φαρα is the intrinsic or apparent
density of the α phase. G is the vector of gravity
acceleration. As pointed out in [22], Hs and H

f

are the interactive body force per unit reference
volume exerted on their corresponding phases due
to drag, lift, virtual mass effect, history effects
and the relative spinning (Magnus effect) which
balances out internally, i.e., Hs +H

f = 0. As a
result, combining (9) and (10) yields,

∇X ·P + J(ρs + ρf )G = 0 (11)

or equivalently,

∇x·σ + (ρs + ρf )G = 0 (12)

where (11) and (12) are related by the Piola trans-
formation ∇X ·P = J ∇x·σ.

2.3 Balance of Mass

Here we derive a generalized balance of mass equa-
tion in which the compressibility of both the solid
and pore-fluid constituents are considered. While
this generalized derivation for compressible con-
stituents has been recently considered in [14], our
new contribution here is that the infinitesimal ver-
sion of this formulation is fully consistent with the
classical small strain balance law in [4; 31; 42], and
can also be consistently reduced to the finite strain
formulation in [1] when solid constituent becomes
incompressible and the finite strain formulation in
[7; 32] when the porous media is fully saturated
and composed of incompressible constituents.

Recall that we define the material time deriva-
tive based on the motion of the solid skeleton.
In the absence of mass exchange among all con-
stituents, the balance of mass for the pore-fluid
onstituent reads,

Dρf

Dt
= −∇X ·W (13)

where W and w are the Lagrangian and Eulerian
relative mass flow vectors defined as [11], i.e.

w = φfρf (v
f − v) ; W = JF−1 ·w (14)

Assuming isothermal conditions, the material time
derivative of the pore-fluid density can be parti-
tioned through following identity,

Dρf

Dt
= φf Dρf

Dt
+ ρf

Dφf

Dt
(15)

Notice that the material time derivatives can be
further simplified as,

Dρf

Dt
= ρf

D

Dt
log

� ρf
ρf0

�
+ ρf

Dφf

Dt
(16)

where log(ρf/ρf0) is the infinitesimal change of
the pore-fluid density. By assuming that the pore-
fluid is barotropic, the first term of (16) reads,

φf

�
ρf

D

Dt
log

� ρf
ρf0

��
=

φfρf
Kf

Dpf

Dt
(17)

which is obtained by applying the barotropic as-
sumption, as pointed out in [1],

Kf = ρf
dpf

dρf
= constant ⇒ ρf

ρf0
= exp

�
pf

Kf

�

(18)

On the other hand, the second term takes into
account the volumetric change of pore space for
a fixed pore-fluid density, which comes from the
skeleton volumetric change and the volume changes
caused by the compression or extension of the solid
grains. Assuming that change of porosity at an
infinitesimal time is small, the change of porosity
can be written as (cf. [24]),

Dφf

Dt
=

D

Dt

�
B log J +

B − φf

Ks
pf

�
(19)

where log J = log(detF ) = tr � and � is the Eu-
lerian logarithm strain tensor. B is the Biot’s
coefficient defined as [31],

B = 1− K

Ks
(20)
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Applying the chain rule and through some algebra,

we obtain the following expression,

Dφf

Dt
=

Ks

Ks + pf

�
DB

Dt
(log J +

pf

Ks
)

�

+
Ks

Ks + pf

�
B

J

DJ

Dt
+

B − φf

Ks

Dpf

Dt

�
(21)

For simplicity, we may consider only the case

where pf << Ks such that,

Dφf

Dt
=

DB

Dt
(log J +

pf

Ks
)+

B

J

DJ

Dt
+

B − φf

Ks

Dpf

Dt
(22)

The material time derivative of the apparent pore-

fluid density reads,

Dρf

Dt
= ρf

�
DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt

�

(23)

where M is the Biot’s modulus defined as [31],

M =
KsKf

Kf (B − φf ) +Ksφf
(24)

Finally, for completeness of presentation, we as-

sume that the flow inside the porous media is

sufficiently slow such that Darcy’s law is valid. In

this case, Darcy’s flow can be used as constitu-

tive model to relate relative flow vector with pore

pressure. In the current configuration, the balance

of linear momentum if the fluid phase may be

written as,

−∇x pf + ρfG− k−1 ·w = ρfaf
(25)

where k is the permeability tensor divided by the

viscosity, af is the acceleration of the fluid con-

stituent. Rearranging (25), the Eulerian relative

flow vector w reads,

1

ρf
w = k ·

�
−∇x pf + ρf (G− af )

�
(26)

Assume that the inertial force is negligible, af = 0.

By applying Piola transformation of the relative

flow vector and pulling back the permeability

tensor, Darcy’s law can be expressed in the La-

grangian configuration. The relative flow vector

therefore reads,

1

ρf
W = K · (−∇X pf + ρfF

T ·G) (27)

where K = JF−1 · k · F -T
. Combining (13), (23)

and (27), we obtain the strong form of the balance

of mass equation,

DB

Dt
(log J+

pf

Ks
)+

B

J

DJ

Dt
+

1

M

Dpf

Dt
+∇X ·Q = 0

(28)

where Q = (1/ρf )W . Notice that if both con-

stituents are incompressible, then B = 1 and

1/M = 0. Applying the Piola transform, (28) re-

duces to the form identical to the one in [6],

∇x·v +∇x· q = 0 (29)

where q = (1/ρf )w.

Remark 1 Armero derived a quadratic potential

to characterize the reversible response of the sat-

urated pore space by assuming that the change

of fluid constent is small in [2]. In a special case

where Biot’s coefficient remains unchanged, (28)

is identical to Equation (3.36) of [2].

3 Stabilized Variational Formulation

In this section, we consider the stabilized varia-

tional form required for the equal-order displacement-

pressure paired finite element model with assumed

deformation gradient. We first define the standard

weak form of the poromechanics problem based on

the balance law derived in Section 2. By applying

a multiplicative split, we introduce the assumed

deformation gradient suitable for the poromechan-

ics problem. To prevent spurious modes due to the

usage of equal-order interpolation and assumed

deformation gradient, we introduce a stabilization

mechanism into the weighted-residual statement

of the momentum and mass balance equation. A

simple scheme for choosing the stabilization pa-

rameters is also presented.

3.1 Galerkin Form

Our objective is to derive a weighted-residual state-

ment suitable for a total Lagrangian scheme. We

first specify the appropriate boundary and ini-

tial conditions. Following the standard line, we

consider a domain B whose boundary ∂B is the

Regularization Energy 
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inequality onto the second term in (55), which

leads to
�

K∈Ω

h
2
K ||∇X

p
h||0,K =

�

K∈Ω

C||∇X(ph −Πp
h)||0,K

≤
�

K∈Ω

C||ph −Πp
h||0,K (57)

where C is a positive constant independent of the

element mesh size, Π is a L
2 projection opera-

tor, Πp
h is the L

2 projection onto the piecewise

constant. Applying (57) on (55) leads to,

sup
uh∈Vu

h

�
B p

h ∇X ·uh
dV

||uh||1

+
�

K∈Ω

γ3||ph −Πp
h||0,K

≥ sup
uh∈Vu

h

�
B p

h ∇X ·uh
dV

||uh||1

+ γ4

�
�

K∈Ω

h
2
K ||∇X

p
h||0,K

� 1
2

≥ γ5||ph||0, ∀ph ∈ V
h
p (58)

where γ3, γ4 and γ5 are positive constant indepen-

dent of the element mesh size. As shown (58), the

inf-sup deficiency is bounded by the the norm of

the difference between the pore pressure field and

its L
2 projection. The corresponding stabilization

term is therefore to add this difference back to the

continuity equation, which leads to the pressure

projection stabilization scheme in [39], i.e.

R
stab(ψ, pfτ ) =

�

K∈Ω

�

K
(ψ−Πψ)

γ

M
(pfτ −Πp

f
τ )dV

(59)

where we introduce Biot’s modulus M to make the

stabilization parameter γ dimensionless. Notice

that the stabilized formulations from (56) and (59)

resembles the penalty method in which gradient of

pore pressure is regularized by applying the first

Gateaux variation of the following penalty energy

functional at time step τ .

W
pen(pfτ ) =

1

2

�

K∈Ω

�

K
(pfτ−Πp

f
τ )

γ

M
(pfτ−Πp

f
τ )dV

(60)

W
pen(pfτ ) =

1

2

�

K∈Ω

hK

�

K
∇X

p
f
τ · βK∇X

p
f
τdV

(61)

where R
stab is the virtual volumetric deformation

corresponding to the penalty energy that filters

out spurious oscillation mode at time τ . Finally,

applying the stabilized formulation in the tempo-

ral discrete variational equation formulation (45)

yields,

Ĝ(un+1, p
f
n+1,η) = Ĥ

�(un+1, p
f
n+1,ψ) = 0 (62)

where

Ĥ
�(un+1, p

f
n+1,ψ) = Ĥ(un+1, p

f
n+1,ψ)

+ R
stab(ψ, pfn+1 − p

f
n) (63)

In summary, the above derivation proves the exis-

tence of a stabilization parameter which ensures

that the solution satisfies the weaker inf-sup con-

dition, but does not specify the stabilization pa-

rameter.

3.4.2 Stabilization Parameter Estimation

While (58) proves that spurious modes can be

eliminated for a sufficiently large stabilization pa-

rameter, it does not give information on how large

the stabilization parameter should be. While one

may assign a very large value to stabilize the so-

lution, doing so may over-diffuse the solution and

lead to unphysical results.

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-

rameter for multi-dimensional large deformation

poromechanics problems, we estimate the sta-

bilization parameter based on a simplified one-

dimension diffusion problem. As [15] points out,

this represents a uniform d-dimensional mesh aligned

with the direction of the growth and decay of the

solution.

Our starting point of this analysis is the lin-

earized perturbation equation from Rice [23], where

an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional

poromechanics governing, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (64)

where c is the diffusivity. If the elastic response

of the solid skeleton and the permeability are

both isotropic and the plastic response is of the
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where R
stab is the virtual volumetric deformation

corresponding to the penalty energy that filters

out spurious oscillation mode at time τ . Finally,

applying the stabilized formulation in the tempo-

ral discrete variational equation formulation (45)

yields,

Ĝ(un+1, p
f
n+1,η) = Ĥ

�(un+1, p
f
n+1,ψ) = 0 (62)

where

Ĥ
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+ R
stab(ψ, pfn+1 − p

f
n) (63)

In summary, the above derivation proves the exis-

tence of a stabilization parameter which ensures

that the solution satisfies the weaker inf-sup con-

dition, but does not specify the stabilization pa-

rameter.

3.4.2 Stabilization Parameter Estimation

While (58) proves that spurious modes can be

eliminated for a sufficiently large stabilization pa-

rameter, it does not give information on how large

the stabilization parameter should be. While one

may assign a very large value to stabilize the so-

lution, doing so may over-diffuse the solution and

lead to unphysical results.

Since it is difficult to directly determine, a
priori, the optimal value of the stabilization pa-

rameter for multi-dimensional large deformation

poromechanics problems, we estimate the sta-

bilization parameter based on a simplified one-

dimension diffusion problem. As [15] points out,

this represents a uniform d-dimensional mesh aligned

with the direction of the growth and decay of the

solution.

Our starting point of this analysis is the lin-

earized perturbation equation from Rice [23], where

an infinitesimal perturbation of pore pressure p̂

satisfies the linearization of the one dimensional

poromechanics governing, written as

c
∂
2
p̂

∂x2
=

∂p̂

∂t
, (64)

where c is the diffusivity. If the elastic response

of the solid skeleton and the permeability are

both isotropic and the plastic response is of the
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Drucker-Prager type, then the diffusivity c can be
expressed as,

c =
k

µ

M
�
H

H + νβM � ;M
� =

M(K + 4G/3)

K + 4G/3 +B2M
(65)

where H, ν and β are the hardening modulus,
dilatancy factor and the frictional parameter de-
termined from the constitutive model. For brevity,
the derivation of (64) will not be repeated here.
Interested readers please refer to [23; 24; 27] for
details.

Equations taking the form of (64) can be dis-
cretized in time and that leads to a modified
Helmholtz operator in space [15], which reads,

p̂n+1 + ϑc∆t
∂
2

∂x2
p̂n+1 = p̂n − (1− ϑ)c∆t

∂
2

∂x2
p̂n

(66)

where ϑ ∈ [0, 1] is the scalar parameter of the gen-
eralized trapezoid rule. Without introducing any
boundary conditions, (66) has an exact solution
that reads,

p̂(x) = exp(±x/

√
ϑc∆t) (67)

Notice that the finite element approximate growth
and decay rate of the solution can be determined
by assuming that xA = Ah such that,

p̂A = exp(±(h/(
√
ϑc∆t)h)A (68)

where
√
ϑc∆t)h is the approximate growth/decay

rate of the finite element solution. Obviously the
finite element solution may exhibit spurious oscil-
lation if

√
ϑc∆t)h is complex valued, as pointed

out in [15]. To determine the range of the stabi-
lization parameters that prevent

√
ϑc∆t)h being

complex valued, we consider a simple case in which
piecewise-linear finite elements are of uniform size
h. As a result, we may construct a three-node
stencil via the standard Galerkin method, i.e.,

− p̂A−1 + 2p̂A − p̂A−1

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (69)

Next, we add the stabilization terms defined in
(56) and (59) into (66). By assembling the effective
stiffness matrices of the L2 projection stabilization
term, we obtain,

−p̂A−1 +2p̂A − p̂A−1

+ h2

12ϑc∆t [(2− γ)p̂A−1

+(8 + 2γ)p̂A + (2− γ)p̂A+1] = 0 (70)

where γ is the stabilization parameter for the
pressure projection term. On the other hand, the
pore pressure gradient stabilized three node pencil
reads,

(1 + βkh) (−p̂A−1 + 2p̂A − p̂A−1)

+
h
2

6ϑc∆t
(p̂A−1 + 4p̂A + p̂A+1) = 0 (71)

where β is the stabilization parameter for the
gradient stabilization term. By comparing (70)
and (71), one may show that the L

2 projection
stabilization and gradient stabilization can become
identical to each other in the one-dimensional case
by setting

β = γ
hk

12ϑc∆t
(72)

Hence, once the bound of stability parameter γ is
defined, the bound of β is also known via (72). To
compute the stability bound for the L

2 projection
stabilization, we first apply (68) into (70), which
leads to

cosh
h

(
√
ϑc∆t)h

=
1 + h

2
/ϑc∆t)(4 + γ)/6

1− h2/ϑc∆t)(2− γ)/12
(73)

The approximate growth/decay rate does not con-
tain an imaginary part if the hyperbolic cosine
function is positive valued. Provided that γ and β

are both positive, the stabilization parameter that
eliminate spurious oscillation can be determined
from the denominator in the R.H.S of (73) ,

γ > 2− 12
ϑc∆t

h2
> 0 (74)

which is equivalent to the following relation for
the 1D case,

β >
hk

6ϑc∆t
− 1

h
k > 0 (75)

In our implementation, we employ the L
2 projec-

tion scheme and define γ as

γ = (2− 6
ϑc∆t

h2
)
�1
2
+

1

2
tanh(2− 12

ϑc∆t

h2
)
�

(76)

Notice that the term 1/2 + tanh(2 − 12ϑc∆t
h2 )/2

approaches zero if diffusivity is high and equal to 1
if diffusivity is low. This treatment is to limit over-
diffusion caused by usage of stabilization term as
mentioned in [39].

Harari’s analysis 

Weighted F-bar 
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Ĥ (un+1, p
f
n+1,η)

=

�

B

ψ
Bn+1 −Bn

∆t
(log Jn+1 +

p
f
n+1

Ks
) dV

+

�

B

ψBn+1
log Jn+1 − log Jn

∆t
dV

+

�

B

ψ
1

Mn+1

p
f
n+1 − p

f
n

∆t
dV

−
�

B

∇X
ψ ·Qn+1 dV

−
�

∂BQ

ψQn+1 dΓ (47)

3.3 Enhanced Deformation Gradient for

Volumetric Locking

In this section, we derive an assumed deformation

gradient definition for the case when the solid

skeleton matrix becomes incompressible. A simple

stabilization mechanism is provided.

The assumed deformation gradient method is

often used to avoid over-constraining associated

with equal-order interpolations of the volumetric

and isochoric parts of the deformation gradient

[12; 30; 35; 40]. The key to avoid this problem is to

replace the interpolated volumetric deformation

field J = detF with a reduced order volumetric

field J such that fewer volumetric constraints oc-

cur when incompressibility limit is approached.

The resultant assumed deformation gradient is

therefore composed of the modified volumetric

deformation field and the original interpolated

isochoric deformation gradient.

Recall that the kinematic split of deformation

gradient F is formulated as,

F = F vol · F iso (48)

where

F vol = J
1/3I ; F iso = J

−1/3F (49)

An assumed strain formulation replace the inter-

polated volumetric split F vol = J
1/3I with an

modified definition F vol = J̄
1/3I such that

F = J̄
1/3F iso = J̄

1/3
J
−1/3F (50)

However, the usage of assumed deformation gra-

dient may lead to numerical instabilities when

the stiffness from the assumed deformation gra-

dient is too low. As a result, Moran et al. (1990)

[30] suggested replacing the assumed deformation

gradient F of a linear interpolation between the

original and the assumed deformation gradient,

i.e.,

�F = αF − (1− α)F . (51)

where α is a stabilization parameter in which α =
0 leads to the pure F-bar formulation and α = 1
leads to the standard formulation. The idea is

to stiffen the element by increasing α whenever

numerical instability is encountered. Recent work

by Mota et al. (2012), however, has demonstrated

that linear interpolation may lead to significant
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if α = 0 and the volume averaging of log J(X) is

computed via one-point quadrature at the centroid
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Fig. 14 Isosurface of pore pressure field of the circular
elasto-plastic footing at time = 0.005 seconds obtained
from the standard F-bar (top) and stabilized F-bar
scheme (bottom), low hydraulic conductivity case, with
k/µ = 8.333× 10−21 m2/Pa s

the stabilized F-bar and standard formulation. In
this case, we notice that the stabilization scheme
is able to eliminate the pore pressure oscillation,
as the sharp pore pressure gradient diffuses over
time. This is because the diffusion process may
smoothen the pore pressure profile over time, pro-
vided that the hydraulic conductivity tensor is
symmetric and positive definite.

Figure 16 compares the equivalent plastic strain
at time = 20000 seconds. At this instant, consider-
able plastic strain has developed inside a localized
zone. We found no discrepancy exists in the me-
chanical responses between the standard and sta-
bilized formualtion at 20000 seconds. This result
shows that the stabilization scheme does not in-

Fig. 15 Contour of pore pressure field of the circu-
lar elasto-plastic footing at time = 20000 seconds ob-
tained from the standard F-bar(top) and stabilized F-
bar scheme (bottom), low hydraulic conductivity case,
with k/µ = 8.333× 10−21 m2/Pa s

troduce any artificial behavior except filtering out
the oscillation pattern due to lack of H1 stability.

Figure 17 presents the pore pressure time his-
tories at the center (top) and tip (bottom) of the
circular footing. While the two pore pressure time
histories obtained from the stabilized and stan-
dard F-bar schemes match quite well at the center,
they differ at the tip where the oscillation takes
place as shown in Figures 14 and 15. This find-
ing is consistent with [22], in which the author
proves that the standard Galerkin method tends
to under-diffuse solutions in the presence of sharp
gradient, but may perform well in the absence of
it.

Notice that pore pressure at the tip of the
footing predicted by the standard scheme tends
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Fig. 18 Time-histories of equivalent plastic strain and
tip of the circular footing (bottom), low hydraulic con-
ductivity case, with k/µ = 8.333 × 10−21 m2/Pa s
.

6 Conclusion

In this work, we propose the usage of an adaptively
stabilized scheme on a assumed deformation gra-
dient poromechanics formulation to deliver stable,
locking-free numerical solutions. By using equal-
order integration, we establish monolithically cou-
pled poromechanics finite element models with
less degrees of freedom, fewer integration points,
and simpler data structures, but without the ne-
cessity to design complex splitting I/O algorithms
required for sequential coupling schemes [23].

We show that the L2 projection scheme pro-
posed in [51] can be re-casted as an penalty energy
formulation in which spurious pore pressure modes
are filtered out by the penalty energy functional.
Using this as our starting point, we apply Harari’s
condition [18] to adaptively estimate the optimal
value for the stabilization parameter. Thus, no
tuning and additional input is required from the
user. By applying an assumed deformation gradi-
ent to the formulation, we improve the element
performance of the stabilized formulation when
locking may occur.

Numerical examples have demonstrated that
the formulation with stabilized scheme and as-
sumed deformation gradient is robust and leads
to high-quality, locking free solutions. In particu-
lar, the introduction of an assumed deformation
gradient does not exhibit a negative impact on
the stability of the solutions. Numerical studies

Fig. 19 Contour of pore pressure field of the circular
elasto-plastic footing at time = 20000 seconda obtained
from standard F-bar(top) and stabilized F-bar scheme
(bottom), high hydraulic conductivity case, with k/µ =
8.333× 10−11 m2/Pa s

indicate that problems with fine mesh, high diffu-
sivity and large time step, but without sharp pore
pressure gradient, tend to deliver more stable solu-
tions. Meanwhile, problems with coarse mesh, low
diffusivity and small time step, but without sharp
pore pressure gradients, tend to exhibit spurious
modes a unless stabilization scheme is used.

It is worthwhile to point out that the imple-
mentation of this formulation is significantly sim-
plified via template programming and in particu-
lar, the usage of automatic differentiation.

Since both locking and instabilities are com-
monly encountered in engineering applications for
porous media, the stable and locking-free features
demonstrated in this formulation are highly de-
sirable. Future work will include further analysis

Low diffusivity case High diffusivity case 

In low diffusivity case, 
the stabilization 

scheme is able to 
eliminate spurious 

oscillation. 

In high diffusivity case, 
the stabilization 

scheme does not 
introduce extra 

diffusivity that cause 
error.   

Without Stabilization 

With Stabilization 
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Pore pressure equivalent plastic strain 

1.  Hot liquid is injected into a elasto-plastic porous medium 
2.  Pore-fluid diffusion and heat diffusion occur at different rate 
3.  Porous medium expands even though no mechanical load is applied.  

Temperature 



Conclusion	
  

§  A	
  fully	
  coupled,	
  finite	
  deforma,on,	
  stabiliza,on	
  
poromechanics	
  finite	
  element	
  model	
  is	
  implemented.	
  

§  This	
  model	
  preserve	
  Mandel-­‐Cryer	
  effect,	
  and	
  is	
  able	
  to	
  
eliminate	
  spurious	
  oscilla,on	
  due	
  to	
  the	
  lack	
  of	
  inf-­‐sup	
  
condi,on.	
  	
  

§  Thermo-­‐poro-­‐plas,city	
  model	
  is	
  extended	
  and	
  tested.	
  	
  
§  Unsaturated	
  flow	
  and	
  fully	
  coupled	
  thermo-­‐poroelasi,cty	
  will	
  

be	
  further	
  tested	
  via	
  analy,cal	
  solu,ons.	
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