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=  Suppression schemes are equivalent

= [Limitations of error suppression
= leakage into correctable space is bad, so need exponential suppression
= Necessary to use many-body couplings (EGP)

m  Stabilizer active error correction

= Extensions of active error correction to adiabatic computation

= Timescale argument

= Protected Hamiltonian




Effects of noise in AQC T

= We consider an instance of two qubit quadratic, unconstrained binary
optimization (QUBO) as an example

Hauso(t) =(o} +02)(1 = s(t) + (o} — 0% + 5L02)s(t) + Hy (¢)

= Single qubit noise causes excitations from ground state

Hy(t) = Z n(t)ai
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Error detecting codes in AQC

= We can encode the system with stabilizer code
= [[N,N-2,2]] error detecting stabilizer code

- N N
= Two stabilizer generators: S = {0;@ ,(7;@ }

= |Logical operators: Xj — (7;;0%“ Zj = Jg—i_laé\f
= Encoded problem: HQUBO(t) :(Xl + X2)(1 — S(t))
H, (1) = Y n(t)o T =2+ 2122)s(Y)
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D. Gottesman, Ph.D. Thesis
D. Lidar. Towards Fault Tolerant Adiabatic Quantum Computation, PRL Vol. 100, 16 (2008) 4
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Suppressing errors

= Cannot correct errors due to diabatic transitions: {dH S] —0
dt’

= Can suppress single qubit errors due to noise:

= Quantum error suppression (QES):
Addition of stabilizers to Hamiltonian penalizes errors

S. Jordan, et al., Error-correcting codes for adiabatic
quantum computation, PRA 74, 052322 (2006)
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= Dynamical decoupling (DD): D. Lidar, Towards fault tolerant adiabatic quantum computation,
Control pulses refocus errors ~ PRL, 100, 160506 (2008)
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DD and QES relationship T g

= The encoded system with control is,

H = HQUBQ (t) -+ Z i (t)()‘i + control

Hqes = S(c5N +027)
control =

Upp = (02N xo2N)  atfrequency Q

Move to interaction picture with respect to control

H, ot (t) — HQUBO (t)

SqrWav (2t) Z; DD
+Y ni(t) xS exp( S 20Q8;8)Z; QES
) {Sj,Zi}zo

In rotating frame, both QES and DD result in periodic modulation of noise.
=  Sum in QES is taken over stabilizers, S, which anticommute with error, Z

Effective noise rate is similar in both cases.

= Fermi Golden Rule results in roughly equal leakage from the ground state.
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Simulations
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= Simulations of two-qubit QUBO problem showing equivalent performance
of DD and QEC - Calculated by Monte Carlo with 1/f noise

= |ncrease in performance
with time because more
adiabatic

= Long-time decrease due
to accumulation of error

= Encoding without
correction doubles
likelihood of error ”

= QESand DD perform
nearly equally well ["\

tr (pgs p(t))

=  Squiggly lines because of
poorly converged Monte Carlo
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What if an error does happen?

Coherent evolution (by logical Hamiltonian) leads to mixing of states.

Hamiltonian and error operator don’t commute, so E; |\1;> is not an
eigenstate. This state then evolves under the action of the logical
Hamiltonian before it is corrected.

@) = E;E; [¥) E;U()E; V) # [P)

Another way to see this problem:

A low weight physical error gets “dressed” by the (always on) logical Hamiltonian and
gets converted into a high-weight uncorrectable error
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Limitations of error suppression in AQC

= Error suppression must be so strong that state is in code space (not
correctible space, as in circuit model QC) with high probability.

= For EGP implementation of error suppression, require high-weight (many-
body) terms to enforce energy penalties.




What about adding error correction?
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= A continuous form of error correction is appealing for AQC — meshes
better with the adiabatic philosophy.

= Stabilizer Hamiltonians, Hamiltonians composed entirely of stabilizer
elements, naturally fit into a continuous error correction framework
because:

Local error operators promote the ground state to excited energy eigenstates (logical
Hamiltonian = 0 in this case).

Hence these errors can be reversed (corrected) by another application of a local
operator.

We can cool the system by embedding it in a cold reservoir that couples locally and
linearly to the system.

As long as the temperature of this reservoir can be maintained below the noise
temperature, the system will be protected (error correction will overcome noisy
fluctuations).

NOTE: The localized cooling implementation of error correction is effective because of
the local structure of stabilizer Hamiltonian excitations.
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= This works well for quantum memories, but when logical evolution is
added to the Hamiltonian (e.g. encoded AQC), the locality of excitations is
broken — the whole Hamiltonian is no longer a stabilizer Hamiltonian.

= Logical Hamiltonian also introduces extra energy splitting — may be
difficult to reach resonance without large bath.

= Related to this picture:
Coherent evolution (by logical Hamiltonian) leads to mixing of states.
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“Solution” 1: Timescales

= We want the error correction procedure to be effective
= Between error correction steps, the state must not evolve out of the correctable space

h
| |Hlogica1 | |

= But the TOTAL time that the system runs is proportional to the norm of the logical
Hamiltonian (increase norm, decrease run time), implying that no matter the norm, you
will always require the same number of error correction steps.

= Equivalent to demanding that

T L

= |f the error correction steps are driven by coupling to a bath, then the coupling should
be such that
Jr om

R 2
= This ensures a complete step is completed in time T
= |f this is fast enough, the resonance issue may be taken care of by lifetime
broadening of the resonance line.
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“Solution”2 : Protected Hamiltonians

= |tis possible to rewrite the logical Hamiltonian in an error protected way,
so that the erred states are eigenstates

Hywot) = Y E;PyH(t) Py E;

=  Where the code- spacg projectors are defined as:

1
}%:I121+S }:moo ) (n;0,0, ...
J
= Asimple calculation shows that [Hpro(t), Ej] =0

* Logical Hamiltonian induces no evolution on erred states.

= This is not a reasonable thing to do physically, because the projectors are
many-body operators. Could be useful mathematically. Also
demonstrates that there are (at least 2) Hamiltonians which can effect the
same evolution on the code space. Are there more practical ones?
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