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Variational Multiscale Method (VMM)

Previous work on VMM towards localization

VMM was originally proposed by Hughes and coworkers [Hughes et al. 1998]
Garikipati and Hughes applied VMM to analyze small-strain localization
problem, in one and two dimensions [Garikipati and Hughes 1998, Garikipati
and Hughes 2000]

u=u-+u

Hund and Ramm applied VMM to small-strain localized phenomena, where
focus lies on the analysis of locality constrains. [Hund and Ramm 2007]

Key points of this work

Finite deformation region: two-scale decomposition of deformation fields
Potential energy functional and variational principles

Completely general, independent of specific constitutive models

Use FEM to discretize and solve both scales

Issues to address: locality constraint, non-local regularization



Kinematics and Deformation Mapping

Two scale deformation mapping Decomposition of deformation mapping
X = S_O(X)’ €Tr = Sol(X) 0= (X))

Total deformation mapping
p(X) = ¢'(¢(X))

Introduce fine scale field
d=x—-—X

;o B LX)
= ¢ (¢(X)) — (X)
Additive decomposition Multiplicative decomposition
of deformation mapping  of deformation gradient
= ¢ + 0 F_@_:B@_X_F,F
0X 0X

Small strain contourpart [Garikipati and Hughes 1998, Garikipati and Hughes 2000]

u=1u-+u



Global vs. locally supported fine scale domain

globally supported fine scale fields locally supported fine scale fields

coarse scale
discretization

fine scale
discretization

outer boundary of total === T’
fine scale domain interior boundary
between fine scale
sub-regions
Boundary condition: 5=0 on dB’ 5=0 ondB’



Constraints on fine scale problem

* Locality assumption generates additional interior locally supported fine scale fields
boundaries I between fine scale sub-regions.
Different options are being explored in this work

1. Homogeneous boundary condition with § = (
e Commonly used in VMM
* Less numerical efforts
* Rough approximation

1. Continuity boundary condition with [6] = 0
1) Constraint by penalty method
2) Constraint by point-wise Lagrange multiplier
3) Constraint by Lagrange multiplier in weak sense

e e

fine scale sub-
region [

» Alternative option is globally constrained fine scale problem. |
However, the formulation is not stable, need stabilization e boundary

technique between fine scale
) sub-regions




The potential energy formulation

Two-Field Functional p=p+90
1@, 0] :/ W(F, Z) dV—/ RB-godV—/ T ds
B B or B

where W(F,Z) Stored strain energy function

For equilibrium, the first variations of the total potential energy mush vanish

Coarse scale:

Dl[go,d]-&p:/ P(F,Z):DF-écpdV—/ RB -0 dV — T 0pdS =0

B B or B

Fine scale:

DI@,6]- 06 = P(F,Z):DF-éédV—/ RB-55dV—/ T -06dS =0
B’ / 61’*3/

* Asingle stored strain energy function is assumed, i.e., essentially the
same systems of PDEs are assumed to describe the physics at all scales.

* Fisthe total deformation gradient, therefore, coarse and fine scales
equations are coupled.

 FEM will be used to discretize both scales.

* Locality constraint will introduce additional energy term.



Enforcing locality constrains

In the Lagrange method, additional energy is introduced into the system.
The potential energy becomes three-field, A is the Lagrange multiplier

I[g‘o,&,A]z/W(F,Z)dV%—E/A-[[(S]] dSi— RB - dV — T - dS
B Jreo . JB or B

The same variation principle is applied, and the resulting residual equations are
written as

R:/P-GradégodV—/RB-&pdV— T -0pdS =0
B B dr B

Within each coarse element [ :

R = P - Graddo dV—/

RB-55dVi/ A-60dS=0
B’

/ /

RA:/ SA - [6] dS =0

* R’is the residual for Lagrange multiplier d.o.f.
* Coarse scale residual is unchanged, while fine scale residual includes additional term.
* [6] = &' — &7, where I and J associate with two sides of the interior boundary



Finite Element Discretization

Introduce finite element discretization Remarks:

Nlnode

Coarse scale: P = Z N.o, * Different interpolation functions may be
a=1

chosen for three-fields
Npode * Inf-sup condition governs the selection of

Fine scale: 5 = Z A0, possible interpolation functions (under
- investigation).

Lagrange nl
multiplier: A= Z Pala
i=1

Discrete form of governing equations

Ra:/P-GradNadV—/RBNadV— TN, dS =0
B B or B
Within each coarse element [ :
R;: P - Grad A\, dV—/ RBM\, dV =+ No@, Ao dS =0
B/ / F/
R? = [ N,(A\Lél —N\167) dS =0

]_"/



Linearization of Governing Equations

the discrete linearized system of equations for the variational multsicale
problem can be written as

K,Ap,+ > Hi;Aé3=-R,

I=1
=1

for the ith IV : HAL A8, — HAIAS! = —R

The linearized terms will be

K :/B Grad N, : C(F) : Grad N, dV HZ;B — Grad N, : C(F) : Grad A\g dV
i B’ i
ws= [ Gradda:C(F):GradXs &V H,,— [ Grad, : C(F): Grad Ny v
: B’ :
l . . ! Hga — ¢A>\O‘ dS
The system of equations are coupled inthat: | =7 1 e
* Fisthe total deformation gradient
* The projection matrix H contains the fourth-order elasticity tensor

interpolation functions from both scales

C:=0P/OF = 0*°W/O0F0F



Iterative solution procedure

I=1

Update coarse ) )
. P Static condensation to
incremental .. .
. L eliminate fine scale
fields within each ,

fields

coarse element

'n,]_—\/

H oy A@) + Kl5A8 + > |[+HARAAG | = ~R,,
=1

for the ith TV : HA AsL — HY A67 = — RS



1D Example: Foulk’s Singular Bar (2008)
A=aVX

w(0) = 0 E—E w(L) =@
ﬁ————— "
L’(B’)I
| L(B) !

Area proportional to square root of length

Strong singularity at the left end of bar

Fine scale resolutions are desirable around left end (region L)
Constitutive model:

elasticity without damage, hyper-elasticity with damage
Conforming meshes



Elasticity without damage (analytical solution by Jay Foulk)

load-displacement displacement profile
0.061 0.1y
005' "'1“ 008'
0.04 =
5 % 0.06/
‘;33 0.03 S
= $0.04"
0.02] .. = analytical
s ! —S-coarse
0.01" e’ analytical B82y —*—fine
',.." - - -multiscale - - -total(multiscale)
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o stress profile Position (nodes)
1.5} e 4 coarse elements are used to
obtain the solution
2 1 * Multiscale computation matches
& well with analytical solution
analytical
—©-coarse
—fine
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Hyper-elasticity with damage,(0) = 0

Material model:

Total strain-energy function W(C’, g) — (1 — €)W0(C)

Effective strain energy Wy (C) = Wvolw) Wdev< )
where the volumetric and deviatoric parts are given by
Wyel(g) = Z[exp@@) 120 WV(e) = g[tr(exp(z) — 3]
where
1
=5 log(C), € = dev(e), 0 = tr(e)

Damage evolution: simple exponential law

E(a) = €|l — exp(a/T)] at) = max|[Wy(s)], s € [0,1]

C=F'F



Hyper-elasticity with damage

gX 10* load-displacement 5.5 displacement profile
benchmark oL
77| == =multiscale '_,-" .
6 : 0.15-
5 : 5 __
g4 : 8 o1
[45] *-r 1 = 4=
EC F3 ! ) |
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1 damage profile * Benchmark solution by full-single scale
computation
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Hyper-elasticity with damage: mesh-dependent responses

Keep coarse scale fixed, refine fine scale Keep fine scale element fixed, vary coarse scale
20X 1Qnesh-ratio 5X 10" mesh-ratio
—Lc/lf=2 —Lc/Lf =200
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solution needs regularization!



Non-local variational regularization

Discrete Statement of Equilibrium,
Internal Variables and Conjugate Forces:

/ P-Grad N, dV — / 00BN, dV — / TN, dS = 0,
B B or B

—1
Y =\ ( / Aads dv) f \sY dV.
B B
B —1
Z =\, (/ Ao (ﬂ/) f \sZ dV.
B B

Unit Interpolation, Regularized Variables:

vy _ ! /de,
ol(D) Jp |

(
_ _ | - 1
A = 1, Mg =1 > Z vol(D)/DZ A%
.) :_/ dV|
(#)

Mota.et al. 2011

-

-

vol
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Load, N

Regularization through non-local variational approach

Foulk’s Singular Bar (2008) with hyper-elastic damage model

Classical mesh-dependent Solutions converge with
behavior without regularization

regularization
x 10* x 10°
Mesh ratio

15 Mesh ratio

15

101 072 |
o ||-mes |
o
©
o]
\ -
5 5
': \
1 ! 1 /
0 N I | -l _————— - e e———— L — | 0 1 1 1 L |
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Displacement,m

Displacement,m



Concluding remarks and future work

* Finite-deformation variational multiscale framework is proposed
* The formulation is potential-energy based and is independent of constitutive law
* FEM is used for discretizing both fine and coarse fields
» Additional field (Lagrange multiplier) is introduced to enforce constraint
* Solution is regularized by non-local variational approach
Future work for FY13
 Stabilization of the methods
* Expand to dynamic problems

* Expand to multi-dimensional problems (implementation in LCM)



