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• VMM was originally proposed by Hughes and coworkers [Hughes et al. 1998]
• Garikipati and Hughes applied VMM to analyze small-strain localization 

problem, in one and two dimensions [Garikipati and Hughes 1998, Garikipati
and Hughes 2000]

• Hund and Ramm applied VMM to small-strain localized phenomena, where 
focus lies on the analysis of locality constrains. [Hund and Ramm 2007]

Variational Multiscale Method (VMM)

Previous work on VMM towards localization

Key points of this work

• Finite deformation region: two-scale decomposition of deformation fields
• Potential energy functional and variational principles
• Completely general, independent of specific constitutive models
• Use FEM to discretize and solve both scales
• Issues to address: locality constraint, non-local regularization



Kinematics and Deformation Mapping
Two scale deformation mapping

Total deformation mapping

Introduce fine scale field

Additive decomposition
of deformation mapping

Small strain contourpart [Garikipati and Hughes 1998, Garikipati and Hughes 2000]

Multiplicative decomposition 
of deformation gradient
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Decomposition of deformation mapping



Global vs. locally supported fine scale domain

Boundary condition: 



Constraints on fine scale problem

1. Homogeneous boundary condition with
• Commonly used in VMM
• Less numerical efforts
• Rough approximation

1. Continuity boundary condition with 
1) Constraint by penalty method
2) Constraint by point-wise Lagrange multiplier
3) Constraint by Lagrange multiplier in weak sense 

• Locality assumption generates additional interior 
boundaries Γ’ between fine scale sub-regions. 
Different options are being explored in this work

• Alternative option is globally constrained fine scale problem.
However, the formulation is not stable, need stabilization 
technique.



The potential energy formulation
Two-Field Functional

where Stored strain energy function

• A single stored strain energy function is assumed, i.e., essentially the 
same systems of PDEs are assumed to describe the physics at all scales.

• F is the total deformation gradient, therefore, coarse and fine scales 
equations are coupled.

• FEM will be used to discretize both scales.
• Locality constraint will introduce additional energy term. 

For equilibrium, the first variations of the total potential energy mush vanish

Coarse scale:

Fine scale:



Enforcing locality constrains
In the Lagrange method, additional energy is introduced into the system. 
The potential energy becomes three-field, Λ is the Lagrange multiplier

The same variation principle is applied, and the resulting residual equations are 
written as

• RΛ is the residual for Lagrange multiplier d.o.f.
• Coarse scale residual is unchanged, while fine scale residual includes additional term.
• , where I and J associate with two sides of the interior boundary 



Finite Element Discretization
Introduce finite element discretization

Coarse scale:

Fine scale:

Discrete form of governing equations

Lagrange 
multiplier:

• Different interpolation functions may be 
chosen for three-fields

• Inf-sup condition governs the selection of 
possible interpolation functions (under 
investigation).

Remarks:



Linearization of Governing Equations
the discrete linearized system of equations for the variational multsicale
problem can be written as

the fourth-order elasticity tensor

The linearized terms will be

The system of equations are coupled in that:
• F is the total deformation gradient
• The projection matrix H contains 

interpolation functions from both scales



Static condensation to 
eliminate fine scale 
fields

Update coarse 
incremental 
fields within each 
coarse element

Iterative solution procedure



1D Example: Foulk’s Singular Bar (2008)

• Area proportional to square root of length
• Strong singularity at the left end of bar
• Fine scale resolutions are desirable around left end (region L’)
• Constitutive model: 

elasticity without damage, hyper-elasticity with damage
• Conforming meshes



Elasticity without damage (analytical solution by Jay Foulk)

load-displacement displacement profile

stress profile

• 4 coarse elements are used to 
obtain the solution

• Multiscale computation matches 
well with analytical solution



Hyper-elasticity with damage

Total strain-energy function

Effective strain energy

Damage evolution: simple exponential law

where the volumetric and deviatoric parts are given by

where

Material model:



load-displacement

Hyper-elasticity with damage

displacement profile

damage profile • Benchmark solution by full-single scale 
computation

• Material properties



Keep coarse scale fixed, refine fine scale Keep fine scale element fixed, vary coarse scale

solution needs regularization!

mesh-ratio mesh-ratio

Hyper-elasticity with damage: mesh-dependent responses



Mota.et al. 2011

Non-local variational regularization



Solutions converge with 
regularization
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Classical mesh-dependent 
behavior without regularization

Regularization through non-local variational approach

Foulk’s Singular Bar (2008) with hyper-elastic damage model



Concluding remarks and future work

• Finite-deformation variational multiscale framework is proposed

• The formulation is potential-energy based and is independent of constitutive law

• FEM is used for discretizing both fine and coarse fields

• Additional field (Lagrange multiplier) is introduced to enforce constraint

• Solution is regularized by non-local variational approach

Future work for FY13

• Stabilization of the methods

• Expand to dynamic problems

• Expand to multi-dimensional problems (implementation in LCM)


