

A Finite Deformation Variational Multiscale Framework for Modeling Strain Localization

Qiushi Chen, Alejandro Mota

Mechanics of Materials
Sandia National Laboratories, Livermore CA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Variational Multiscale Method (VMM)

Previous work on VMM towards localization

- VMM was originally proposed by Hughes and coworkers [[Hughes et al. 1998](#)]
- Garikipati and Hughes applied VMM to analyze small-strain localization problem, in one and two dimensions [[Garikipati and Hughes 1998](#), [Garikipati and Hughes 2000](#)]
$$u = \bar{u} + u'$$
- Hund and Ramm applied VMM to small-strain localized phenomena, where focus lies on the analysis of locality constraints. [[Hund and Ramm 2007](#)]

Key points of this work

- Finite deformation region: two-scale decomposition of deformation fields
- Potential energy functional and variational principles
- Completely general, independent of specific constitutive models
- Use FEM to discretize and solve both scales
- Issues to address: locality constraint, non-local regularization

Kinematics and Deformation Mapping

Two scale deformation mapping

$$\bar{\mathbf{X}} = \bar{\varphi}(\mathbf{X}), \quad \mathbf{x} = \varphi'(\bar{\mathbf{X}})$$

Total deformation mapping

$$\varphi(\mathbf{X}) = \varphi'(\bar{\varphi}(\mathbf{X}))$$

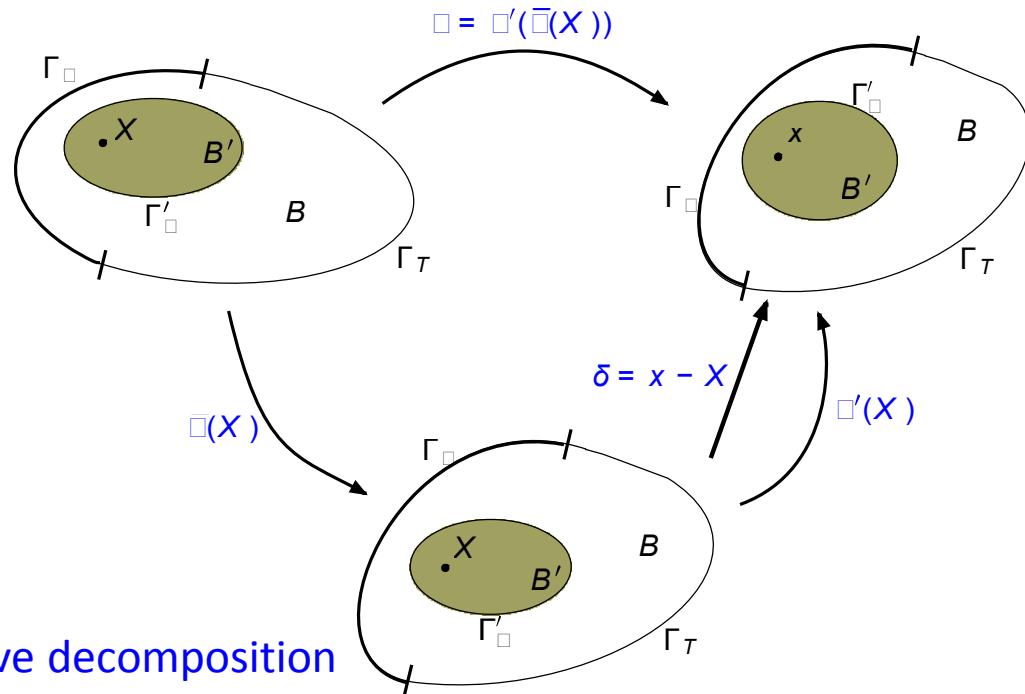
Introduce fine scale field

$$\begin{aligned}\delta &= \mathbf{x} - \bar{\mathbf{X}} \\ &= \varphi'(\bar{\varphi}(\mathbf{X})) - \bar{\varphi}(\mathbf{X})\end{aligned}$$

Additive decomposition
of deformation mapping

$$\varphi = \underbrace{\bar{\varphi}}_{\text{coarse}} + \underbrace{\delta}_{\text{fine}}$$

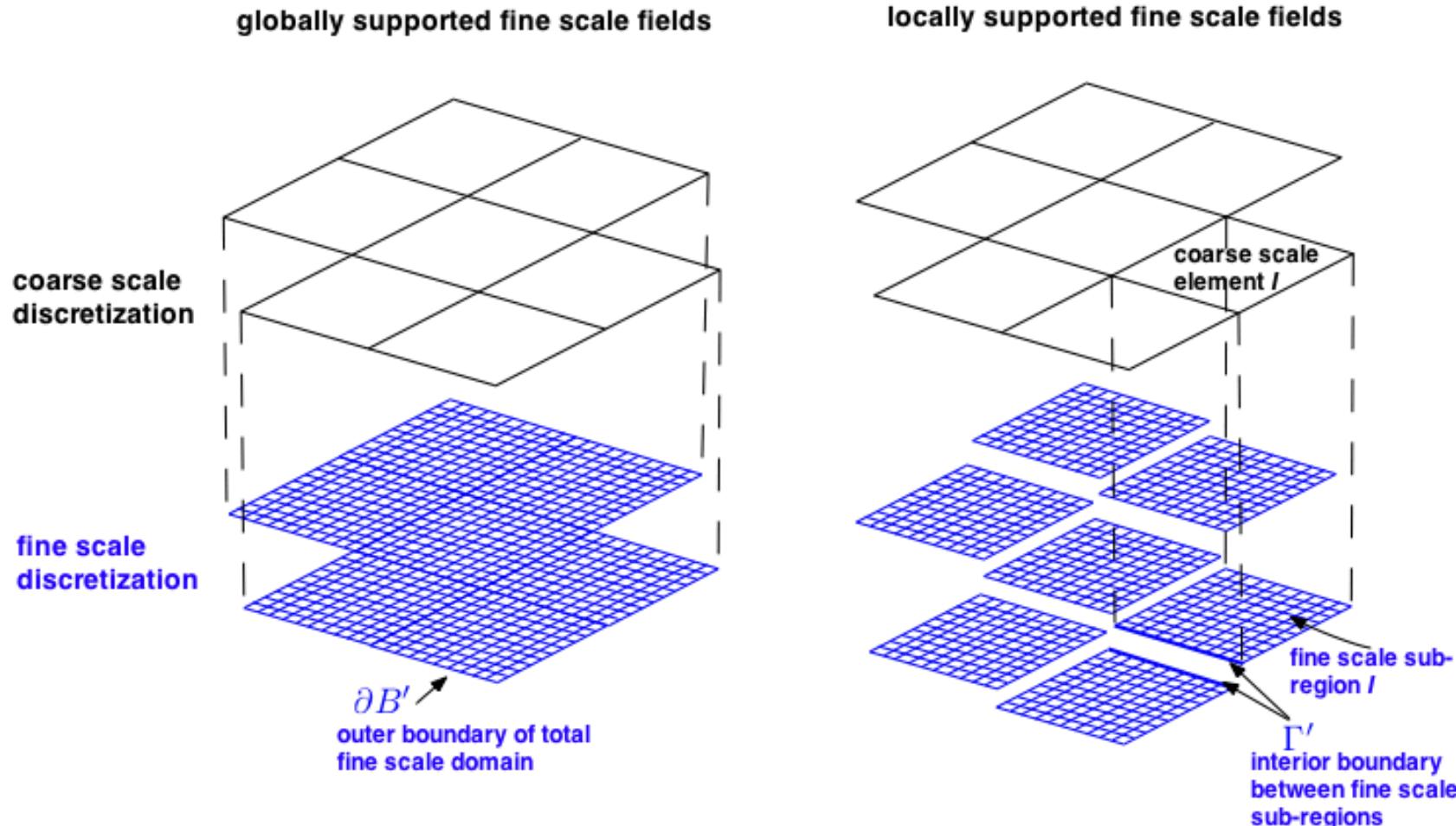
Decomposition of deformation mapping



Small strain contourpart [Garikipati and Hughes 1998, Garikipati and Hughes 2000]

$$\mathbf{u} = \bar{\mathbf{u}} + \mathbf{u}'$$

Global vs. locally supported fine scale domain



Boundary condition: $\delta = 0$ on $\partial B'$

$\delta = 0$ on $\partial B'$

$\delta = ?$ on Γ'

Constraints on fine scale problem

- Locality assumption generates additional interior boundaries Γ' between fine scale sub-regions.
Different options are being explored in this work

1. Homogeneous boundary condition with $\delta = 0$

- Commonly used in VMM
- Less numerical efforts
- Rough approximation

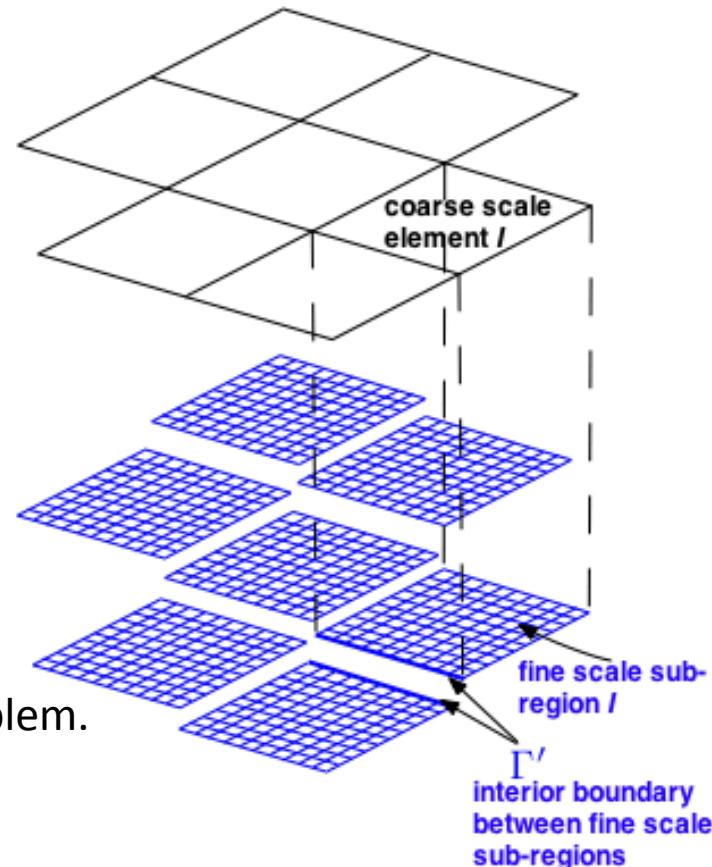
1. Continuity boundary condition with $\llbracket \delta \rrbracket = 0$

- 1) Constraint by penalty method
- 2) Constraint by point-wise Lagrange multiplier
- 3) Constraint by Lagrange multiplier in weak sense**

- Alternative option is globally constrained fine scale problem.

However, the formulation is not stable, need stabilization technique.

locally supported fine scale fields



The potential energy formulation

Two-Field Functional

$$\varphi = \bar{\varphi} + \delta$$

$$I[\bar{\varphi}, \delta] = \int_B W(\mathbf{F}, \mathbf{Z}) \, dV - \int_B \mathbf{R}\mathbf{B} \cdot \varphi \, dV - \int_{\partial_\Gamma B} \mathbf{T} \cdot \varphi \, dS$$

where $W(\mathbf{F}, \mathbf{Z})$ Stored strain energy function

For equilibrium, the first variations of the total potential energy must vanish

Coarse scale:

$$DI[\bar{\varphi}, \delta] \cdot \delta \bar{\varphi} = \int_B \mathbf{P}(\mathbf{F}, \mathbf{Z}) : D\mathbf{F} \cdot \delta \bar{\varphi} \, dV - \int_B \mathbf{R}\mathbf{B} \cdot \delta \bar{\varphi} \, dV - \int_{\partial_\Gamma B} \mathbf{T} \cdot \delta \bar{\varphi} \, dS = 0$$

Fine scale:

$$DI[\bar{\varphi}, \delta] \cdot \delta \delta = \int_{B'} \mathbf{P}(\mathbf{F}, \mathbf{Z}) : D\mathbf{F} \cdot \delta \delta \, dV - \int_{B'} \mathbf{R}\mathbf{B} \cdot \delta \delta \, dV - \int_{\partial_\Gamma B'} \mathbf{T} \cdot \delta \delta \, dS = 0$$

- A single stored strain energy function is assumed, i.e., essentially the same systems of PDEs are assumed to describe the physics at all scales.
- \mathbf{F} is the total deformation gradient, therefore, coarse and fine scales equations are coupled.
- FEM will be used to discretize both scales.
- Locality constraint will introduce additional energy term.

Enforcing locality constrains

In the Lagrange method, additional energy is introduced into the system. The potential energy becomes three-field, Λ is the Lagrange multiplier

$$I[\bar{\varphi}, \delta, \Lambda] = \int_B W(\mathbf{F}, \mathbf{Z}) dV + \boxed{\int_{\Gamma'} \Lambda \cdot [\delta] dS} - \int_B R\mathbf{B} \cdot \varphi dV - \int_{\partial_\Gamma B} \mathbf{T} \cdot \varphi dS$$

The same variation principle is applied, and the resulting residual equations are written as

$$\bar{\mathbf{R}} = \int_B \mathbf{P} \cdot \text{Grad } \delta \bar{\varphi} dV - \int_B R\mathbf{B} \cdot \delta \bar{\varphi} dV - \int_{\partial_\Gamma B} \mathbf{T} \cdot \delta \bar{\varphi} dS = 0$$

Within each coarse element I :

$$\begin{aligned} \mathbf{R}' &= \int_{B'} \mathbf{P} \cdot \text{Grad } \delta \delta dV - \int_{B'} R\mathbf{B} \cdot \delta \delta dV \pm \int_{\Gamma'} \Lambda \cdot \delta \delta dS = 0 \\ \mathbf{R}^\Lambda &= \int_{\Gamma'} \delta \Lambda \cdot [\delta] dS = 0 \end{aligned}$$

- \mathbf{R}^Λ is the residual for Lagrange multiplier d.o.f.
- Coarse scale residual is unchanged, while fine scale residual includes additional term.
- $[\delta] = \delta^I - \delta^J$, where I and J associate with two sides of the interior boundary

Finite Element Discretization

Introduce finite element discretization

Coarse scale: $\bar{\varphi} = \sum_{a=1}^{n_{node}} N_a \bar{\varphi}_a$

Fine scale: $\delta = \sum_{\alpha=1}^{n_{node}} \lambda_{\alpha} \delta_{\alpha}$

Lagrange multiplier: $\Lambda = \sum_{i=1}^{nl} \phi_A \Lambda_A$

Remarks:

- Different interpolation functions may be chosen for three-fields
- Inf-sup condition governs the selection of possible interpolation functions (under investigation).

Discrete form of governing equations

$$\bar{\mathbf{R}}_a = \int_B \mathbf{P} \cdot \text{Grad} N_a \, dV - \int_B \mathbf{R} \mathbf{B} N_a \, dV - \int_{\partial_B} \mathbf{T} N_a \, dS = \mathbf{0}$$

Within each coarse element I :

$$\mathbf{R}'_{\alpha} = \int_{B'} \mathbf{P} \cdot \text{Grad} \lambda_{\alpha} \, dV - \int_{B'} \mathbf{R} \mathbf{B} \lambda_{\alpha} \, dV \pm \int_{\Gamma'} N_a \phi_a \cdot \lambda_{\alpha} \, dS = \mathbf{0}$$

$$\mathbf{R}^{\phi}_a = \int_{\Gamma'} N_a (\lambda_{\alpha}^I \delta_{\alpha}^I - \lambda_{\alpha}^J \delta_{\alpha}^J) \, dS = 0$$

Linearization of Governing Equations

the discrete linearized system of equations for the variational multiscale problem can be written as

$$\bar{\mathbf{K}}_{ab} \Delta \bar{\varphi}_b + \sum_{I=1}^{\bar{n}} \mathbf{H}_{a\beta}^T \Delta \boldsymbol{\delta}_\beta = -\bar{\mathbf{R}}_a$$

$$\mathbf{H}_{\alpha b} \Delta \bar{\varphi}_b^I + \mathbf{K}'_{\alpha\beta} \Delta \boldsymbol{\delta}_\beta + \sum_{l=1}^{n_{\Gamma'}} \left[\pm \mathbf{H}_{\alpha B}^\Lambda \Delta \boldsymbol{\Lambda}_B^l \right] = -\mathbf{R}'_\alpha$$

$$\text{for the } l\text{th } \Gamma': \quad \mathbf{H}_{A\alpha}^{\Lambda I} \Delta \boldsymbol{\delta}_\alpha^I - \mathbf{H}_{A\alpha}^{\Lambda J} \Delta \boldsymbol{\delta}_\alpha^J = -\mathbf{R}_A^\Lambda$$

The linearized terms will be

$$\bar{\mathbf{K}}_{ab} = \int_B \text{Grad } N_a : \mathbb{C}(\mathbf{F}) : \text{Grad } N_b \ dV$$

$$\mathbf{K}'_{\alpha\beta} = \int_{B'} \text{Grad } \lambda_\alpha : \mathbb{C}(\mathbf{F}) : \text{Grad } \lambda_\beta \ dV$$

$$\int$$

The system of equations are coupled in that:

- \mathbf{F} is the total deformation gradient
- The projection matrix H contains interpolation functions from both scales

$$\mathbf{H}_{a\beta}^T = \int_{B'} \text{Grad } N_a : \mathbb{C}(\mathbf{F}) : \text{Grad } \lambda_\beta \ dV$$

$$\mathbf{H}_{\alpha b} = \int_{B'} \text{Grad } \lambda_\alpha : \mathbb{C}(\mathbf{F}) : \text{Grad } N_b \ dV$$

$$\mathbf{H}_{A\alpha}^\Lambda = \int_{\Gamma'} \phi_A \boldsymbol{\lambda}_\alpha \ dS$$

the fourth-order elasticity tensor

$$\mathbb{C} := \partial \mathbf{P} / \partial \mathbf{F} = \partial^2 W / \partial \mathbf{F} \partial \mathbf{F}$$

Iterative solution procedure

$$\bar{\mathbf{K}}_{ab} \Delta \bar{\boldsymbol{\varphi}}_b + \sum_{I=1}^{\bar{n}} \mathbf{H}_{a\beta}^T \Delta \boldsymbol{\delta}_\beta = -\bar{\mathbf{R}}_a$$

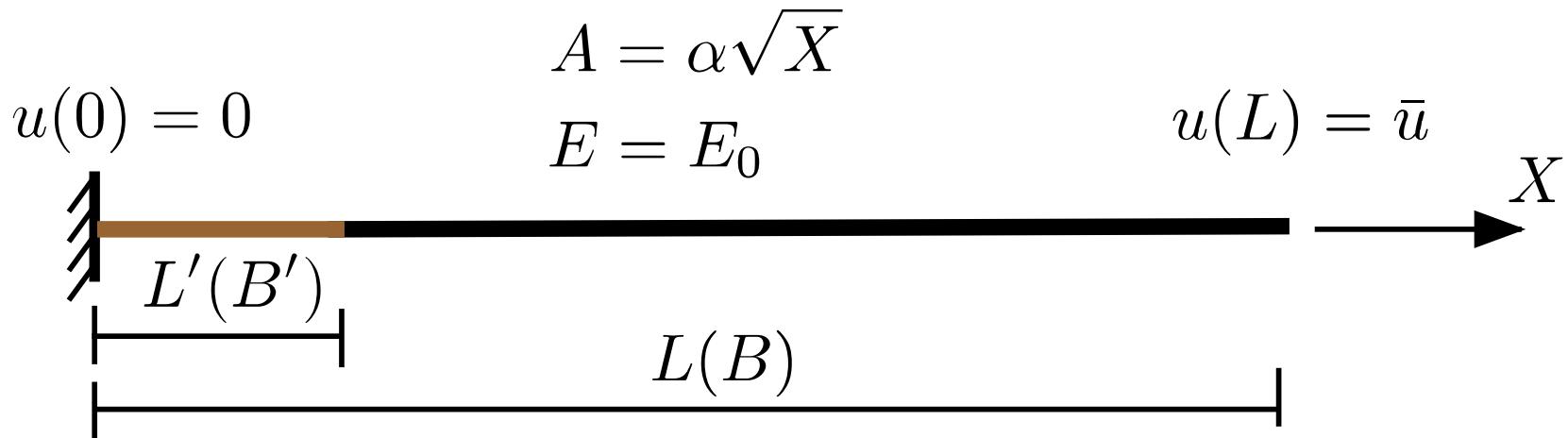
Update coarse
incremental
fields within each
coarse element

Static condensation to
eliminate fine scale
fields

$$\mathbf{H}_{\alpha b} \Delta \bar{\boldsymbol{\varphi}}_b^I + \mathbf{K}'_{\alpha\beta} \Delta \boldsymbol{\delta}_\beta + \sum_{l=1}^{n_{\Gamma'}} \left[\pm \mathbf{H}_{\alpha B}^\Lambda \Delta \boldsymbol{\Lambda}_B^l \right] = -\mathbf{R}'_\alpha$$

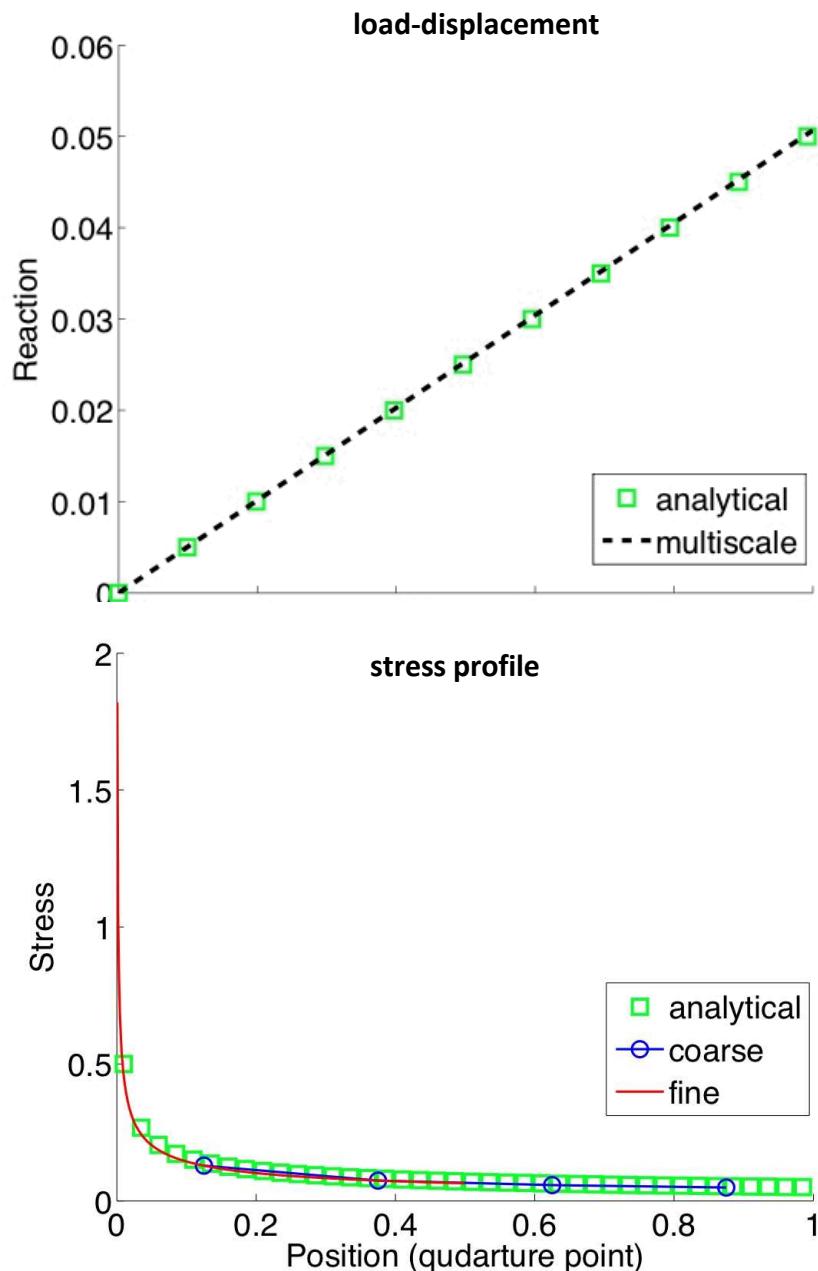
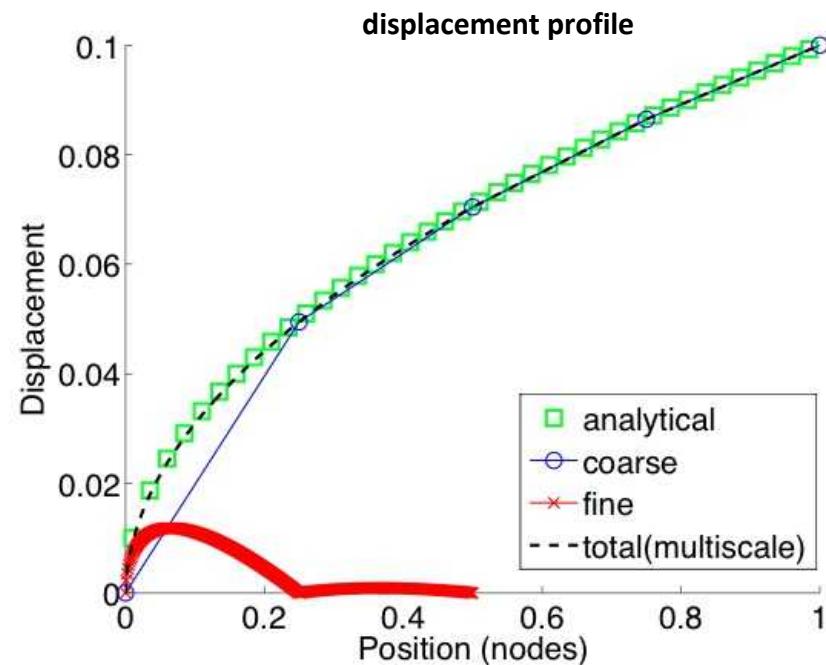
$$\text{for the } l\text{th } \Gamma' : \quad \mathbf{H}_{A\alpha}^{\Lambda I} \Delta \boldsymbol{\delta}_\alpha^I - \mathbf{H}_{A\alpha}^{\Lambda J} \Delta \boldsymbol{\delta}_\alpha^J = -\mathbf{R}_A^\Lambda$$

1D Example: Foulk's Singular Bar (2008)



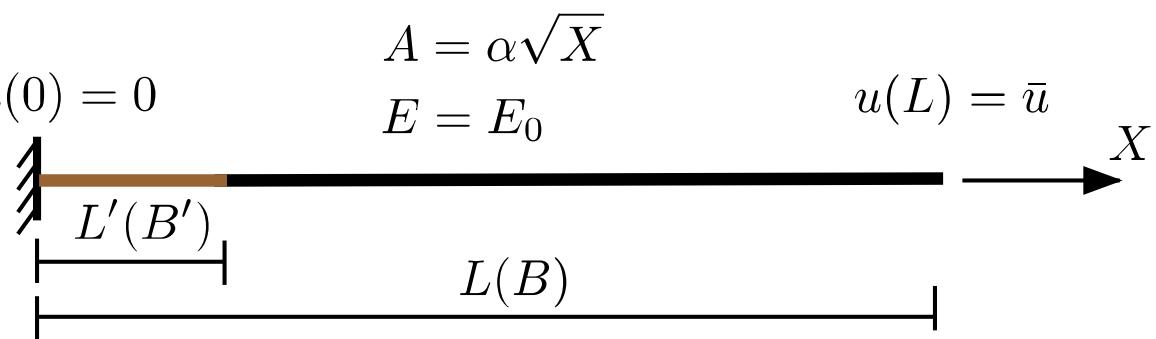
- Area proportional to square root of length
- Strong singularity at the left end of bar
- Fine scale resolutions are desirable around left end (region L')
- Constitutive model:
elasticity without damage, hyper-elasticity with damage
- Conforming meshes

Elasticity without damage (analytical solution by Jay Foulk)



- 4 coarse elements are used to obtain the solution
- Multiscale computation matches well with analytical solution

Hyper-elasticity with damage



Material model:

Total strain-energy function $W(\mathbf{C}, \xi) = (1 - \xi)W_0(\mathbf{C}) \quad \mathbf{C} = \mathbf{F}^T \mathbf{F}$

Effective strain energy $W_0(\mathbf{C}) = W_0^{\text{vol}}(\theta) + W_0^{\text{dev}}(\bar{\boldsymbol{\epsilon}})$

where the volumetric and deviatoric parts are given by

$$W_0^{\text{vol}}(\theta) = \frac{\kappa}{4}[\exp(2\theta) - 1 - 2\theta] \quad W_0^{\text{dev}}(\bar{\boldsymbol{\epsilon}}) = \frac{\mu}{2}[\text{tr}(\exp(\bar{\boldsymbol{\epsilon}})) - 3]$$

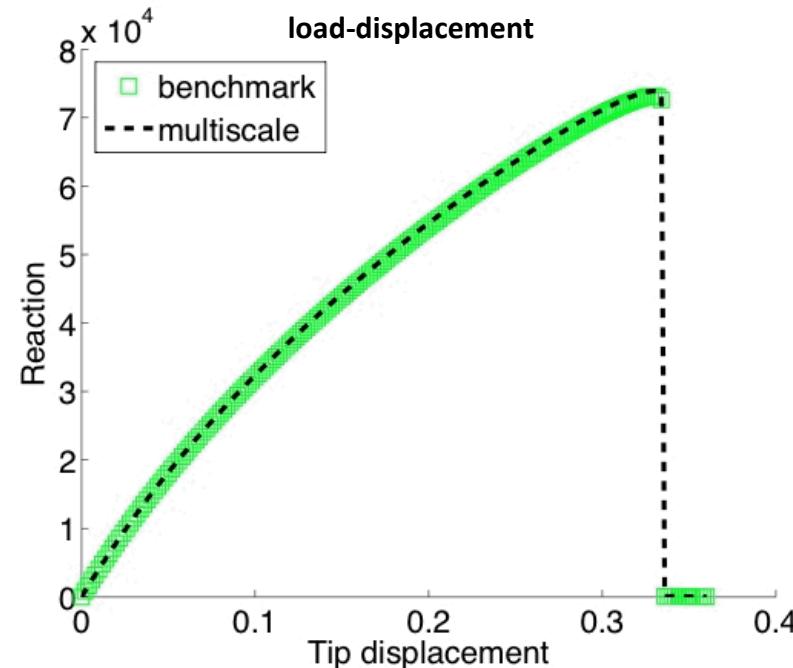
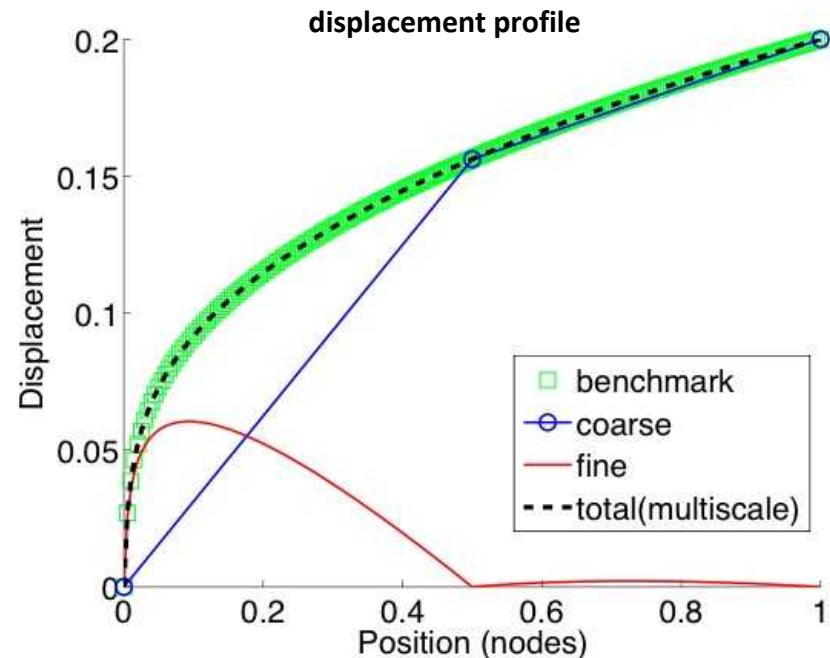
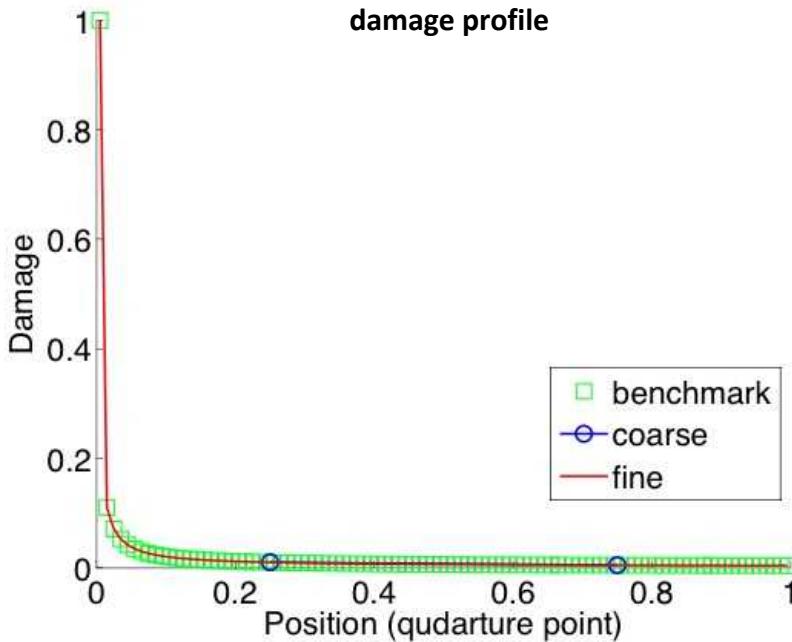
where

$$\boldsymbol{\epsilon} = \frac{1}{2} \log(\mathbf{C}), \quad \bar{\boldsymbol{\epsilon}} = \text{dev}(\boldsymbol{\epsilon}), \quad \theta = \text{tr}(\boldsymbol{\epsilon})$$

Damage evolution: simple exponential law

$$\xi(\alpha) = \xi_\infty[1 - \exp(-\alpha/\tau)] \quad \alpha(t) = \max[W_0(s)], \quad s \in [0, t]$$

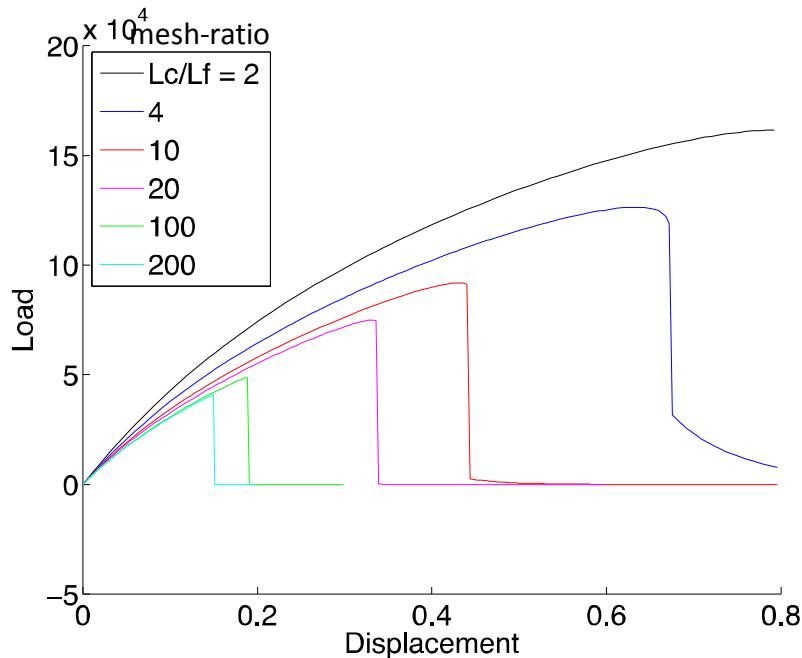
Hyper-elasticity with damage



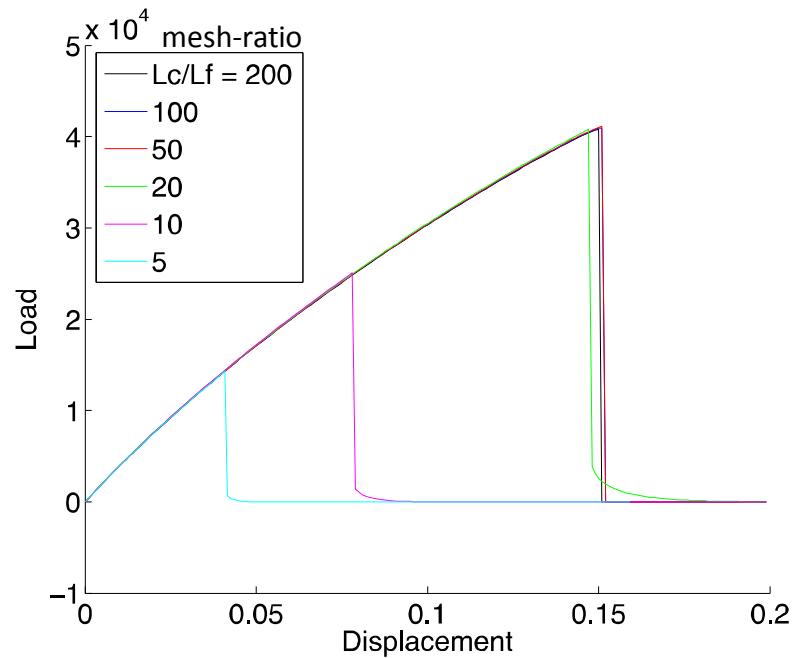
- Benchmark solution by full-single scale computation
- Material properties
 - $E = 200 \text{ GPa}$
 - $\nu = 0.25$
 - $\kappa = 133 \text{ GPa}$
 - $\mu = 67 \text{ GPa}$
 - $\xi_\infty = 1.0$
 - $\tau = 100 \text{ GJm}^{-3}$

Hyper-elasticity with damage: mesh-dependent responses

Keep coarse scale fixed, refine fine scale



Keep fine scale element fixed, vary coarse scale



solution needs regularization!

Non-local variational regularization

Discrete Statement of Equilibrium,
Internal Variables and Conjugate Forces:

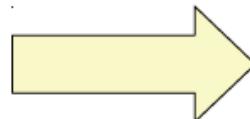
$$\int_B \mathbf{P} \cdot \text{Grad } N_a \ dV - \int_B \rho_0 \mathbf{B} N_a \ dV - \int_{\partial_T B} \mathbf{T} N_a \ dS = \mathbf{0},$$

$$\bar{\mathbf{Y}} = \lambda_\alpha \left(\int_B \lambda_\alpha \lambda_\beta \ dV \right)^{-1} \int_B \lambda_\beta \mathbf{Y} \ dV,$$

$$\bar{\mathbf{Z}} = \lambda_\alpha \left(\int_B \lambda_\alpha \lambda_\beta \ dV \right)^{-1} \int_B \lambda_\beta \mathbf{Z} \ dV,$$

Unit Interpolation, Regularized Variables:

$$\lambda_\alpha = 1, \ \lambda_\beta = 1$$



$$\bar{\mathbf{Y}} = \frac{1}{\text{vol}(D)} \int_D \mathbf{Y} \ dV,$$

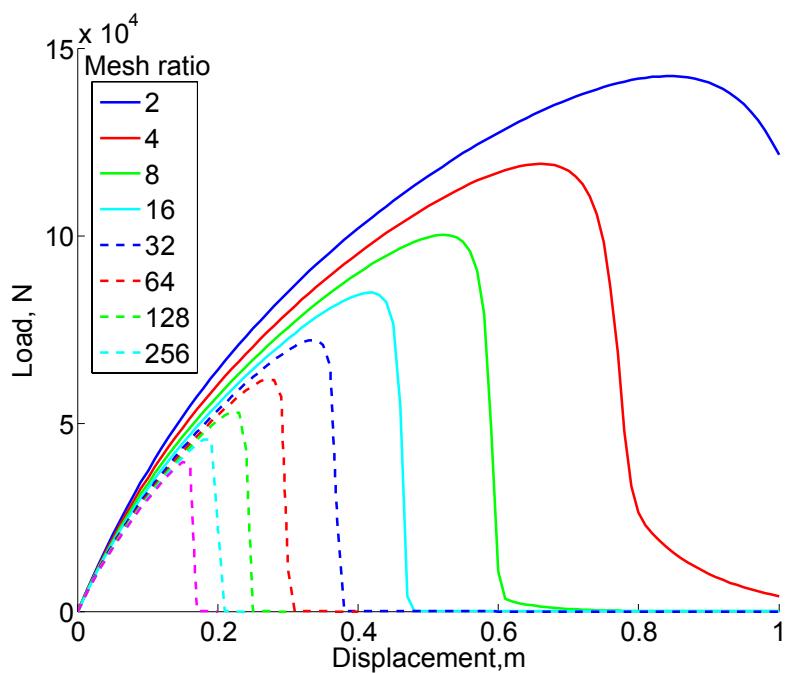
$$\bar{\mathbf{Z}} = \frac{1}{\text{vol}(D)} \int_D \mathbf{Z} \ dV,$$

$$\text{vol}(\bullet) := \int_{(\bullet)} \ dV,$$

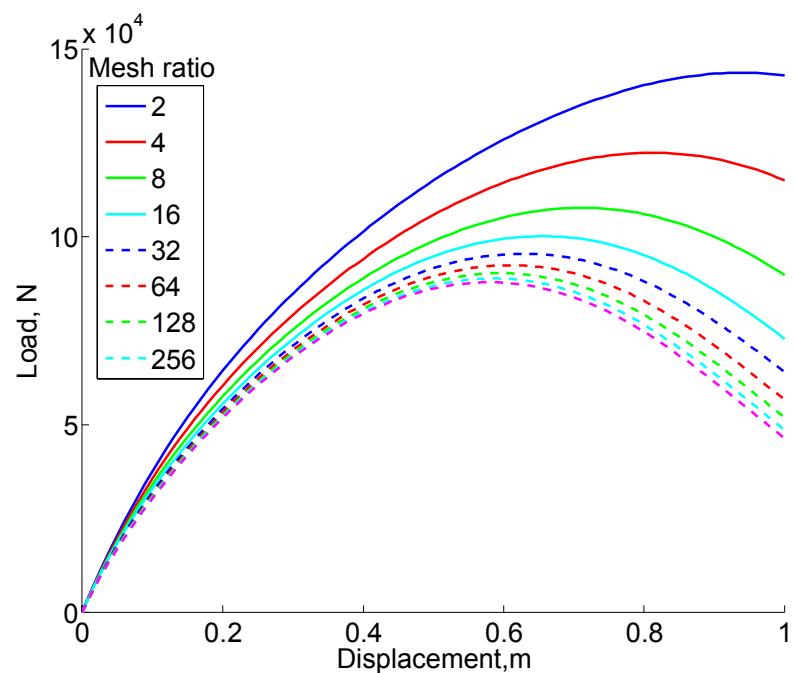
Regularization through non-local variational approach

Foulk's Singular Bar (2008) with hyper-elastic damage model

Classical mesh-dependent
behavior without regularization



Solutions converge with
regularization



Concluding remarks and future work

- Finite-deformation variational multiscale framework is proposed
- The formulation is potential-energy based and is independent of constitutive law
- FEM is used for discretizing both fine and coarse fields
- Additional field (Lagrange multiplier) is introduced to enforce constraint
- Solution is regularized by non-local variational approach

Future work for FY13

- Stabilization of the methods
- Expand to dynamic problems
- Expand to multi-dimensional problems (implementation in LCM)