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BCC Metals Show Tension/Compression Asymmetry 

Hull, Byron, and Noble, Canadian J. Phys. 45 (1967) 1091.	





… and Significant Temperature Dependence in Yield 

Violations of Schmid law 

Mo 

High lattice friction at low T 

Ambiguity of the operating slip system: {110}, {112}, {123} planes 

Ta 

Gröger et al., Acta Mat. (2008) Werner, Phys. Stat. Sol. (a) (1987) 



Screw Dislocation Core Structure is Important 

Screw dislocation cores are non-planar, 
leading to high lattice friction. 

Twinning / anti-twinning asymmetry 
is weak by comparison. 

Shear stress perpendicular to 
the core is important. 

Gröger, Bailey, an Vitek, Acta Mater. 56 (2008) 5401.	





Generalized Yield Law Incorporating Non-Schmid Effect 
Schmid law are frequently observed in the form of tension-compression asymmetry and orientation-

dependent yield stresses in single crystal testings (Christian, 1983; Leroy et al., 1970; Asaro and

Rice, 1977). In general, yield laws incorporating non-Schmid effect are constructed in an additive

form of Schmid and non-Schmid components as follows:

ταcr = Pα
tot : σ = Pα

s : σ +Pα
ns : σ (4)

Here, ταcr represents material’s inherent lattice resistance, Ptot is the total stress projection tensor

and Pns is the non-Schmid stress projection tensor. Note that the Schmid factor, M and Ps are

determined to be a purely geometric factor while Pα
tot and Pα

ns are not. The form in Equation (4)

is linear in stress and thus, Pα
tot can be represented as follows:

Pα
tot = Pα

s +Pα
ns (5)

It is generally accepted that non-Schmid stresses affect the yield behavior by influencing either

the complex dislocation core structure or the mobility of dislocations on alternate slip planes. For

example, based on atomistic studies, Paidar et al. (Paidar et al., 1984) described anomalous yield

behavior of L12 ordered alloys with the cross-slip of
1
2 [1̄01] screw dislocations and dissociation of

superpartials on the primary slip system (PPV theory). Qin and Bassani (Qin and Bassani, 1992a,b)

proposed yield criteria incorporating non-Schmid stress components based on PPV theory for FCC

and L12 as follows :

ταcr = ταs +Bταcb (FCC) (6)

ταcr = ταs +A|ταpe + kταse|+Bταcb (L12) (7)

Here, ταcb is the shear stress on the cross-slip plane in the direction of Burgers vector, ταpe

is the shear stress on the primary slip plane in the normal direction of the Burgers vector and

ταse is the shear stress on the secondary slip plane in the normal direction of the Burgers vector

on α-th slip system, respectively. A, B, and k are non-Schmid constants that determine the

4

Gröger’s yield law can be rewritten in terms of Pα
tot and Pα

ns as follows [17]:

Pα
tot =

1

2
(mα ⊗ nα

+ nα ⊗mα
) + a1m

α ⊗ nα
1 + a2t

α ⊗ nα
+ a3t

α
1 ⊗ nα

1 (10)

Pα
ns = a1m

α ⊗ nα
1 + a2t

α ⊗ nα
+ a3t

α
1 ⊗ nα

1 (11)

where tα = nα × mα
and tα1 = nα

1 × mα
. Here, the first term in Equation (11) represents the

contribution from the twinning-anti-twinning asymmetry, the second and third terms represent

contributions from shear stresses perpendicular to the primary and secondary slip plane, respec-

tively. The non-Schmid constants, a1, a2, and a3, represent the influence of these non-Schmid stress

components and are determined from fitting to the CRSS versus χ and CRSS versus τ calculated

from 0 K atomistic simulations. Best-fit non-Schmid parameters obtained for {110} slip were de-

termined to be a1=0.24, a2=0, and a3=0.35 for molybdenum and a1=0, a2=0.56, and a3=0.75 for

tungsten.

Although Gröger’s yield criterion is appealing for its simplicity and its ability to accept non-

Schmid constants and τcr from atomistic simulations, a more generalized yield criterion can be

considered using three orthogonal axes [16]:

Pα
tot = c0

1

2
(mα ⊗ nα

+ nα ⊗mα
) + c1t

α ⊗mα
+ c2t

α ⊗ nα
+ c3n

α ⊗ nα
+ c4t

α ⊗ tα + c5m
α ⊗mα

(12)

Here, c1, c2, c3, c4, and c5 are non-Schmid constants and similarly, Ptot can be decomposed into

Schmid and non-Schmid contributions as follows:

Pα
s = c0

1

2
(mα ⊗ nα

+ nα ⊗mα
) (13)

Pα
ns = c1t

α ⊗mα
+ c2t

α ⊗ nα
+ c3n

α ⊗ nα
+ c4t

α ⊗ tα + c5m
α ⊗mα

(14)

The stress tensor, σ, can be expressed as the sum of hydrostatic and deviatoric components.

If the yield function is assumed to be independent of the hydrostatic stress, the following relations
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: slip direction 

ordered alloys with the cross-slip of
1
2 [1̄01] screw dislocations and dissociation of superpartials on

the primary slip system (PPV theory). Qin and Bassani [4, 5] proposed yield criteria incorporating

non-Schmid stress components based on PPV theory for FCC metals and L12 alloys as follows:

ταcr = ταs +Bταcb (FCC) (7)

ταcr = ταs +A|ταpe + kταse|+Bταcb (L12) (8)

Here, ταcb is the shear stress on the cross-slip plane in the direction of the Burgers vector, ταpe is

the shear stress on the primary slip plane in the direction normal to the Burgers vector, and ταse is

the shear stress on the secondary slip plane in the direction normal to the Burgers vector on α-th

slip system, respectively. A, B, and k are non-Schmid constants that determine the orientation-

dependent yield stresses and tension-compression asymmetry [4]. In Equations (7) and (8), Bταcb

represents the effect of the cross-slip and A|ταpe+kταse| considers the effect of dislocation splitting on

the primary and secondary slip planes for L12 that accounts for tension-compression asymmetry.

Based on atomistic simulations of BCC materials, Ito and Vitek [10] showed that the mobility

of 1/2[111] screw dislocations depends on shear stresses both parallel and perpendicular to the

Burgers vector. Gröger et al. [12] developed a yield criterion that accounts for these non-Schmid

effects. Their yield law is based on twinning and anti-twinning of the nearest {112} plane and the

shear stresses perpendicular to {110} and {112} planes. The nearest {112} plane is characterized by

the angle, χα, that it makes with the corresponding {110} slip plane. For a negative χα, the {112}

plane is sheared in the twinning sense while for the positive χα, it is sheared in the anti-twinning

sense. Using three non-Schmid stress components, Gröger et al. [12] proposed a yield criteria of

the form:

ταcr = mα · σnα
+ a1m

α · σnα
1 + a2 (n

α ×mα
) · σnα

+ a3 (n
α
1 ×mα

) · σnα
1 (9)

where, a1, a2, and a3 are non-Schmid parameters; mα
and nα

are the slip direction and slip plane

normal of slip system α, respectively; and nα
1 is the unit vector normal to the {110} plane in the

zone of mα
that makes an angle of -60

◦
with the reference plane nα

.
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: slip plane normal 
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Table 1: Representation of various yield criteria incorporating non-Schmid effects into a generalized yield law.

Ref. Structure co c1 c2 c3 c4 c5

Qin and Bassanni (1992) FCC 1 +
√
3

3 B
√
6

3 B 0 0 0 0

Steinmann et al. (1998) FCC αsm αcm αmm 0 0 0

Qin and Bassanni (1992) L12 1 +
√
3

3 B
√
6

3 B −A− 7
9Ak 2

√
2

9 Ak − 2
√
2

9 Ak 0

Dao and Asaro (1993) L12 1 2η0
zs 2η0

mz 2η0
mm 2η0

zz 2η0
ss

Gröger et al. (2008) BCC 1 + 1
2a1

√
3
2 a1 −a2 + 1

2a3

√
3

4 a3 −
√

3
4 a3 0

Yalcinkaya et al. (2008) BCC 1 η2 η3 η4 η5 η1

can be obtained:

Pα
tot : I = tr (Pα

tot) = 0 (15)

This leads to c3 + c4 + c5 = 0, rendering one of the non-Schmid constants as dependent on the

others. Thus, Equation (14) can be rewritten as:

Pα
ns = c1t

α ⊗mα
+ c2t

α ⊗ nα
+ c3n

α ⊗ nα
+ c4t

α ⊗ tα − (c3 + c4)m
α ⊗mα

(16)

One advantage of representing the yield law in a generalized form is that the effect of each

shear stress component on the yield behavior can be represented and understood independently.

For example, in Gröger’s formulation, both a2, and a3 in Equation (10) include contributions from

stress component τtn (=t ·σn). In addition, a generalized formulation can reproduce any previous

yield criteria by representing co, c1, c2, c3, c4, and c5 in terms of the non-Schmid parameters from

the original formulations, as detailed in Table 1. Note that the widely-adopted yield criteria by

Qin and Bassani [4] and Gröger et al. [12] impose c3 = −c4 and do not consider the influence

of τmm(=m · σm) on yield. On the other hand, Yalcinkaya et al. [32] considered a generalized

formulation for BCC metals but their best-fit parameters do not satisfy volume conservation, and

in their simulation of molybdenum, contributions from both τtm(=t ·σm) and τtn(=t ·σn) on yield

are negelected.

In order to investigate how each non-Schmid shear stress component affects tension-compression

asymmetries and crystal-orientation-dependent yield stresses in single crystals, it is useful to plot

7

The resistance to slip on a slip system α: 

Representation of various yield criteria 
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Figure 4: Crystal orientations (a) Ferriss et al. [62] and (b) Byron [63].

Table 2: Best-fit non-Schmid constants and τcr (MPa) from tantalum single crystal experiments. σA and σNA

represent standard deviation between measured and predicted yield stress (MPa) for an associative and non-associative
flow, respectively.

Test Temp. (K) c1 c2 c3 c4 τcr σA σNA

Tension [62] 77 -0.35 0.12 -0.79 0.53 383 75.3 27.4
Tension + Compression [63] 77 0.32 0.48 -0.05 0.34 337 92.1 74.4

Tension [62] 300 -1.18 0.70 0.12 0.08 57 10.9 7.7
Tension [63] 298 0.15 -0.13 -0.07 0.04 76 6.0 4.7

The yield stresses under uniaxial tension and compression are thus:

σy =
τcr + ταobs

PT
tot

(Tension) σy = −
τcr + ταobs

PC
tot

(Compression) (16)

where ταobs is an initial contribution of obstacle strength, i.e. an athermal contribution from the re-

solved shear stress, and is approximately 53 MPa, 12 MPa, and 15 MPa for molybdenum, tungsten,

and tantalum, respectively [53, 54, 55, 56].

Figures 4 (a) and (b) show crystal orientations of the single crystal tantalum [62, 63] where

yield stresses are measured. Both experiments at performed at 77 K and at close to 300K with

�̇ = 4× 10−4 s−1.

Table 2 show best-fit non-Schmid constants and τcr obtained from the 0 K atomistic simulations

and single crystal experiments performed at 77 - 300 K.

Figure 5 show measured and predicted yield stresses for non-associative and associative flows

as well as {110} and {112} slips. Table 2 lists standard deviation and error percentage of fit for
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[52]:

ρα =



κ1

����
NS�

β=1

ρβ − κ2ρ
α



 · |γα| (24)

where κ1 and κ2 are material parameters representing creation and annihilation of dislocations,

respectively.

4. Orientation-Dependent Yield Stress of Single Crystals

The total stress projection tensor, Ptot in Equation (12), can be used to analyze the stress

required to initiate yielding of a single crystal. For example, assuming τcr to be the same for all

slip systems, the stress required to initiate slip under the applied stress, σ, can be obtained from:

τcr + ταobs = P
α
tot : σ (25)

The yield stresses under uniaxial tension and compression are thus:

σy =
τcr + ταobs

PT
tot

(Tension) σy = −
τcr + ταobs

PC
tot

(Compression) (26)

where ταobs is an initial contribution of obstacle strength, i.e. an athermal contribution from the re-

solved shear stress, and is approximately 53 MPa, 12 MPa, and 15 MPa for molybdenum, tungsten,

and tantalum, respectively [53, 54, 55, 56].

Table 3 contains the measured yield stresses of molybdenum, tungsten, and tantalum for various

crystal orientations upon uniaxial tension and compression with a nominal strain rate of 10−3/s at

77 K. Using sets of measured yield stresses for each reference, best-fit non-Schmid constants and τcr

are obtained by least squares fitting procedure as listed in Table 4. Crystallographic slip is assumed

to occur on twenty-four �111� {110} slip systems. The non-Schmid constants are constrained in two

ways. First, a slip system that has the maximum Pα
tot cannot have P

α
s ≡ v ·Pα

s v less or equal to zero

for a tensile stress (all the signs are reversed if the uniaxial stress is reversed). This is numerically

possible in Equation (12) but violates Equation (20). Second, sets of non-Schmid constants cannot

produce Ptot = 0 for any loading axis, in either tension or compression. If Ptot = 0 is satisfied for
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Ta single crystal tests 

Ferriss et al. (1962) 

Best-fit Parameters 

Figure 5: Measured and predicted yield stresses.

Table 3: Measured yield stresses of BCC single crystals in [001], [011], [111], and [149] tensile orientations at 77 K.

Mat. σ (Tension, MPa) σ (Compression, MPa) Ref.
[001] [011] [111] [149] [001] [011] [111] [149]

Mo 320 998 - - 290 833 - - [57]
Mo 360 1059 - 500 - - - - [21]
Mo 278 710 885 - - - - - [58]
W 748 1547 1321 970 - - - - [59]
W 600 1237 810 - - - - - [60]
Ta 379 684 - - 578 364 - - [57]
Ta 600 748 - - 468 559 - - [61]
Ta 591 860 1070 676 - - - - [62]

{110} and {112} slip using associative and non-associative models. It is shown that for both {110}

and {112} slip, consideration of the non-Schmid effect increased the accuracy of the fit by almost a

factor of two. On the other hand, no significant difference was observed between {110} and {112}

for both 77 K and 298 K.

Table 3 contains the measured yield stresses of molybdenum, tungsten, and tantalum for various

crystal orientations upon uniaxial tension and compression with a nominal strain rate of 10−3/s at

77 K. Using sets of measured yield stresses for each reference, best-fit non-Schmid constants and τcr

are obtained by least squares fitting procedure as listed in Table 4. Crystallographic slip is assumed

to occur on twenty-four �111� {110} slip systems. The non-Schmid constants are constrained in two

ways. First, a slip system that has the maximum Pα
tot cannot have P

α
s ≡ v ·Pα

s v less or equal to zero

for a tensile stress (all the signs are reversed if the uniaxial stress is reversed). This is numerically

possible in Equation (10) but violates Equation (20). Second, sets of non-Schmid constants cannot

produce Ptot = 0 for any loading axis, in either tension or compression. If Ptot = 0 is satisfied for

12

Temp. c1 c2 c3 c4 τcr Std. dev. (A) Std. dev. (NA) 
77 K -0.35 0.12 -0.79 0.53 383 75.3 MPa 27.4 MPa 
300 K -1.18 0.70 0.12 0.08 57 10.9 MPa 7.7 MPa 
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Best-fit non-Schmid constants 

Table 4: Best-fit non-Schmid constants, and differences (in MPa) between predicted and measured values using the
generalized yield law.

Material c1 c2 c3 c4 τcr Ref.

Mo 0.11 0.70 0.04 -0.04 208 [57]

Mo 0.31 0.70 0.11 -0.11 215 [21]

Mo 0.42 0.23 0.13 -0.02 147 [58]

W 0.15 0.05 -0.01 0.26 325 [59]

W 0.36 -0.09 0.23 -0.01 293 [60]

Ta 0.30 0.04 0.11 0.01 173 [57]

Ta -0.11 0.19 -0.03 0.16 225 [61]

Ta -0.07 0.15 -0.08 0.29 211 [62]

Ta 0.05 0.05 0 0.16 229 [63]
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Figure 4: Predicted Ptot within the standard stereographic triangle under uniaxial tension for molybdenum, tungsten
and tantalum at 77 K using non-Schmid constants obtained from the single crystal experimental data for molybdenum
(a) [57], (b) [21], (c) [58], tungsten (d) [59], (e) [60], and tantalum (f) [57], (g) [61], (h) [62], and (i) [63].
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Predicted Ptot 
Table 4: Best-fit non-Schmid constants and standard deviation(MPa) between predicted and measured values using
generalized yield law.

Material c1 c2 c3 c4 τcr Ref.

Mo 0.11 0.70 0.04 -0.04 208 Sherwood et al. (1967)

Mo 0.31 0.70 0.11 -0.11 215 Guiu and Pratt (1966)

Mo 0.42 0.23 0.13 -0.02 147 Irwin et al. (1974)

W 0.15 0.05 -0.01 0.26 325 Rose et al. (1962)

W 0.36 -0.09 0.23 -0.01 293 Argon and Maloof (1966)

Ta 0.30 0.04 0.11 0.01 173 Sherwood et al. (1967)

Ta -0.11 0.19 -0.03 0.16 225 Hull et al. (1967)

Ta -0.07 0.15 -0.08 0.29 211 Ferriss et al. (1962)

The choice of slip planes which dislocations move, {110}, {112}, or both {110} and {112},

develop different max(Ptot) distributions and thus, different yield stresses are predicted. Figure

5 shows max(Ptot) within the standard stereographic triangles for an associative flow for {110},

{112}, and both {110} and {112} slip planes. A single maximum value of max(Ptot) is observed in

[149̄] orientation for {110} slip planes with max(Ptot) = 0.5 while two and three maximum values

are found for {112} and combined slip planes. Slip directions and slip plane normals used for {110}

and {112} slip are listed in Table 2. Here, 24 slip systems were used for {110} and {112} slip

systems while 48 slip systems were used for combined {110} and {112} slip system.

In order to check whether choosing {112} or combined {110} and {112} slip planes may improve

the fit to experimental data over {110} calculations, Table 3 is refit to two other possible cases. For

combined {110} and {112} slip systems, it is assumed that the τcr for {110} and {112} slip systems

are equal. For comparison, same procedure is conducted for an associative flow (”baseline model”)

which only requires fitting of τcr to the experimental data. Table 5 summarizes standard deviation

between best-fit and measured yield stresses for {110}, {112} and combined {110} and {112} slip

planes for both baseline model and non-Schmid model. In all cases, non-Schmid model reproduced

measured yield stress more accurately compared to baseline model. Also, except for a single case

in tantalum, yield stresses predicted using {110} slip plane showed better fit to measured data

compared to cases with {112} or {110}+{112} slip planes. This simple analysis showed that it is
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Figure 5: Predicted Ptot within the standard stereographic triangle for associative flow using (a) {110} slip system,
(b) {112} slip system, and (c) combined {110} and {112} slip systems.

Table 5: Standard deviation (in MPa) between predicted and measured yield stresses for different slip systems.

Mat. Baseline model Non-Schmid model Ref.

{110} {112} {110}{112} {110} {112} {110}{112}

Mo 311 311 311 105 211 188 [57]

Mo 288 310 297 12 109 114 [21]

Mo 185 185 185 1 170 123 [58]

W 322 318 314 47 68 67 [59]

W 344 344 344 1 83 39 [60]

Ta 135 135 135 1 45 29 [57]

Ta 101 101 101 1 1 1 [61]

Ta 104 105 95 20 66 23 [62]

Ta 107 112 103 74 69 63 [63]

of the slip planes affects the calibration. The choice of slip planes on which dislocations move, e.g.

{110}, {112}, or both {110} and {112}, produce different distributions of Ptot, and thus different

yield stresses. Figure 5 shows Ptot within the standard stereographic triangle for an associative flow

(i.e. the same yield stress in tension and compression) for {110}, {112}, and both {110} and {112}

slip systems. A single maximum value of Ptot = 0.5 is found in the [149̄] orientation for {110} slip

planes, whereas two and three maxima are found for {112} and combined {110} and {112} slip

planes, respectively. The slip directions and slip plane normals used for {110} and {112} slip are

listed in Table 2. Here, twenty-four slip systems were used for {110} and {112} slip systems, while

fourty-eight slip systems were used for combined {110} and {112} slip.

In order to determine whether choosing {112} or combined {110} and {112} slip planes could
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{110} slip {112} slip {110}+{112} slip 

Baseline model Non-Schmid model References 
{110} {112} {110}+{112} {110} {112} {110}+{112} 

Mo 311 311 311 105 211 188 Sherwood (1967) 
388 310 297 12 109 114 Guiu (1966) 
185 185 185 1 170 123 Irwin (1974) 

W 322 318 314 47 68 67 Rose (1962) 
344 344 344 1 83 39 Argon (1966) 

Ta 135 135 135 1 45 29 Sherwood (1967) 
101 101 101 1 1 1 Hull (1967) 
104 105 95 20 66 23 Ferriss (1962) 
107 112 103 74 69 63 Byron (1968) 

Standard deviation (MPa) between predicted and measured yield stresses 



BCC CP-FEM Formulation 

and [110] compression, and [100] compression and [110] tension. Also, c1 and c2 had same effect on

max(Ptot) in tension and compression for [149] loading axis.

3. Crystal Plasticity Formulation

Generalized yield law described in the previous section is implemented into a nonlinear CP-

FEM code (JAS-3D) developed at Sandia National Laboratories (Biffle, 1987). The kinematics of

the crystal plasticity model is based on well-established continuum formulations (Lee, 1969; Rice,

1971; Hill and Rice, 1972; Peirce et al., 1982; Dingreville et al., 2010). The model is based on a

multiplicative decomposition of the total deformation gradient at a material point within a crystal

(Lee, 1969).

F = Fe · Fp (16)

Here, Fe represents elastic distortion and the rigid body rotation of the crystal lattice while Fp is

the plastic part based on the crystallographic slip via dislocation motion. The velocity gradient

can be written as follows:

L = Ḟ · F−1
(17)

where Ḟ is the rate of change of the total deformation gradient. Assuming that the plastic de-

formation is caused only by the dislocation slip, the velocity gradient can be expressed as follows

(Asaro, 1983):

Lp =

�

α

Pαγ̇α (18)

For a rate-dependent framework, γ̇α can be represented as a power-law function of resolved

shear stress, τα and slip resistance, gα (Hutchinson, 1976):

γ̇α = γ̇α0

�
τα

gα

�1/m

(19)

Here, γ̇α0 is the reference shear rate and m is the rate sensitivity factor. In this work, γ̇α0=1 /s and

10

m=0.012 is adopted and assumed to be identical for all 24 {110} �110� slip systems (Table 2). Note

that this work focuses on the low-temperature plastic deformation of BCC metals, within Regime

II, where the temperature is below the critical temperature which the metal exhibit thermally

activated flow. The slip resistance, gα, in Regime II can be written as follows (Weinberger et al.,

2012):

gα = max (ταcr − ταns, 0) + ταobs (20)

Here, ταcr, τ
α
obs and ταns represent slip resistance due to lattice friction, obstacle stress and non-Schmid

contribution for slip system α, respectively. ταobs represents resistance to dislocation motion arising

from forest dislocations and any other defect. Note that max operator in equation (20) avoids

lattice friction to become negative. In this work, it is assumed that ταcr is constant throughout the

deformation while ταobs builds up and contribute to work hardening. Two simple hardening laws

are considered to represent the obstacle stress: isotropic power-law hardening (Ludwik, 1909) and

dislocation density-based hardening (Taylor, 1934; Lee et al., 2010).

ταobs = k0 + k1�
k2 (21)

ταobs = αµb

����
NS�

β=1

ρβ (22)

Here, k0, k1, and k2 are fitting parameters, α is a material constant usually in the range of 0.3 - 0.6,

µ is the shear modulus, b is the Burger’s vector, NS is the total number of slip systems, and ρβ

is the dislocation density in slip system β. More complicated dislocation density-based hardening

models that considers detailed dislocation-dislocation interactions have been appeared (Franciosi

and Zaoui, 1982; Kubin et al., 2008; Devincre and Kubin, 2010). These models, however, require

fitting of many hardening parameters and not adopted here to keep the model as simple as possible.

The total dislocation density for α-th slip system is obtained by using a standard phenomenological
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equation as follows (Kocks, 1976):

ρα =



κ1

����
NS�

β=1

ρβ − κ2ρ
α



 · |γα| (23)

where, κ1 and κ2 are material parameters representing generation and annihilation of dislocations,

respectively.

4. Orientation-Dependent Yield Stress of Single Crystals

The total stress projection tensor, Ptot in Equation (11), can be used to predict required stress

to initiate yield of a single crystal. For example, by assuming τcr is same for all slip systems, stress

required to initiate slip upon applied stress tensor, σ, can be obtained from the following equation:

τcr + ταobs = P
α
tot : σ (24)

In the cases of uniaxial tension or compression, yield stresses in uniaxial tension and compression

can be obtained as follows:

σy =
τcr + ταobs
max(Pα

tot)
(Tension) σy = −

τcr + ταobs
min(Pα

tot)
(Compression) (25)

Here, ταobs can be regarded as an initial contribution of obstacle strength or an athermal part of the

resolved shear stress found to be around 53 MPa, 12 MPa, and 19 MPa for molybdenum, tungsten

and tantalum, respectively (Hollang et al., 2001; Brunner, 2000; Butt et al., 2009).

Table 3 lists measured yield stresses of molybdenum, tungsten and tantalum for various crystal

orientations upon uniaxial tension and compression with a nominal strain rate of 10
−3

/s at 77 K.

Using sets of measured yield stresses for each reference, best-fit non-Schmid constants and τcr are

obtained by least squares fitting procedure as listed in Table 4. It is assumed that crystallographic

slip occurs on 24 �111� {110} slip systems. Non-Schmid constants are limited by two conditions:

First, a slip system that has the maximum Ptot cannot have Ps less or equal to zero. This is

numerically possible in Equation (11) but violates Equation (19). Secondly, sets of non-Schmid

constants should not make max(Ptot) = 0 for any loading axis. If max(Ptot) = 0 is satisfied for
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Slip rate:  

Slip resistance: 

Obstacle stress: 

Obstacle stress 
Lattice friction 
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24 <111>{110} slip systems 



Single Crystal Stress-Strain Predictions for Mo 

(a) Case A 
Non-associative model 
{110} slip 
Taylor hardening 
 
 
(b) Case B 
Associative model 
{110} slip 
Taylor hardening 
 
 
(c) Case C 
Non-associative model 
{110} slip 
Power-law hardening 
 
 
(d) Case D 
Non-associative model 
{112} slip 
Taylor hardening 
 

Orientation dependent stress-strain curve is most accurately predicted in Case A. 
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Stress and Strain Maps in Mo 

Figure 13: Comparison of simulated molybdenum polycrystals after 10% applied uniaxial tension, using associative
and non-associative flow models. (a) Von Mises stress distributions, and (b) accumulated plastic shear strain averaged
over all slip systems.

and blue curves in Figure 10 (b).) In order to investigate the effects of the non-Schmid contri-

butions in models that capture the same bulk response, an associative model was calibrated to

the tensile response of the non-associative model (producing Assoc. 2 in Figure 10 (b)), such that

the two models do not share the same hardening constants, and uniaxial tension and compression

were applied up to 10% strain. Figure 12 compares the von Mises stress distributions in simulated

molybdenum polycrystals at small strain (� = 1%) in tension and compression. Despite different

initial Ptot distributions in tension and compression, no significant difference in stress distribution

is observed. However, a clear difference is observed between associative and non-associative models.

The locations of stress concentrations are similar but greater stress localization is observed for the

non-associative flow model.

Figures 13 and 14 compare simulated von Mises stress distributions and accumulated plastic

shear strain averaged over all slip systems after 10% strain. After substantial plastic deformation,

stress and strain distributions for associative and non-associative models appear similar. However,
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Yield Surface Predictions: Mo Polycrystals  
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Figure 16: Biaxial yield surfaces of polycrystal molybdenum for associative flow and non-associative flow: (a) 125
grains with a single element per grain and (b) 45 grains with many elements per grain, where the non-associative
model was calibrated to single crystal experiments at 77 K; and (c) 45 grains with non-Schmid constants obtained
from Gröger’s 0 K atomistic simulations [12].

crystal orientations for both associative and non-associative flow. It appears the that yield surfaces

of the non-associative model are more sensitive to initial texture, and that no appreciable tension-

compression asymmetry is present. Figures 16 (b) and (c) show yield surfaces using Case 2 (realistic

grain structure) at 77 K and 0 K, respectively. The yield surfaces predicted using Case 2 resemble

a Von Mises yield criterion, while Case 1 shows greater deviations from an isotropic yield function.

For Case 1, the yield surfaces are closer to Von Mises yield criteria when |σ11| > |σ22| and closer

to Tresca yield for |σ11| < |σ22|. The yield surface predicted by the non-associative model at 0 K

(Figure 16 (c)) shows large deviations from the von Mises yield surface.

Gröger et al [12] generated a yield surface for molybdenum polycrystals based on a Taylor

calculation, and fit a simple isotropic function, F , to the results:

F =
√
3[(J2)

3/2 + βJ3]
1/3 (25)

where J2 and J3 are the second and third invariants of the deviatoric Cauchy stress, respectively,

and β is the non-Schmid parameter that determines the shape of the non-associative yield function.

The yield surfaces in Figure 16 were fit to Equation (25) to obtain Gröger’s non-Schmid constant,
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Figure 17: Distributions of the strength differential calculated using non-Schmid constants obtained from (a) 77 K
single crystal experiments and (b) 0 K atomistic simulations. Dashed lines represent orientations of loading axes
where σt = σc (i.e. SD=0).

β, for the present work. The best fit at 77 K is β=0 for both associative and non-associative flow

in Case 1 and Case 2, indicating a von Mises yield function. However, the best fit at 0 K for non-

associative flow is β=0.92, as shown in Figure 16 (c). (Note that the predicted β from a Gröger’s

Taylor calculation was -0.72 [12].)

The notion that yield stress asymmetry is present in polycrystals at 0 K (i.e. as predicted

by atomistic simulations), but not at 77 K, can be understood by examining the the strength

differential (SD) that quantifies the tension-compression asymmetry, defined as follows [12]:

SD =
σt − σc

(σt + σc)/2
(26)

where σt and σc represent yield stresses in uniaxial tension and compression, respectively.

Figures 17 (a) and (b) show the predicted SD within the standard stereographic triangle for

molybdenum single crystals at 77 K and 0 K. The dashed lines represent the boundaries where

SD=0 or σt = σc. In Figure 17 (a), where SD is plotted using non-Schmid coefficients obtained

from 77 K single crystal experiments, loading axes close to [001] show σt < σc while σt > σc is

observed near the [011] pole. In contrast, the yield criterion based on 0 K atomistic simulations

predicts that for most loading axes, σc is larger than σt except for a small region near the [011]

pole. (Note that by definition, SD=0 for associative flow regardless of crystal orientation.) Since
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Summary 

•  Dislocation plasticity in BCC metals (and most materials, for that matter) is 
significantly more complex than in FCC. 

•  We have developed a generalized yield criterion for BCC transition metals, 
and implemented it into a BCC CP-FEM model. 

•  Yield criteria are calibrated to single crystal experiments on Mo, Ta, and W.  

•  Non-Schmid effects are clearly reflected in the stress-strain response, texture 
evolution, damage localization, and yield surfaces of single and polycrystals. 

•  Early CP-FEM predictions show good qualitative agreement with digital 
image correlation experiments on Ta oligocrystals. 

 


