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BCC Metals Show Tension/Compression Asymmetry
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... and Significant Temperature Dependence in Yield
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Ambiguity of the operating slip system: {110}, {112}, {123} planes
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Screw Dislocation Core Structure is Important
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Generalized Yield Law Incorporating Non-Schmid Effect

The resistance to slip on a slip system a:
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Ter = ‘?ot -0 = Pg e Pgs -0 m<: slip direction

:no‘: slip plane normal

Pg":co§(mo‘®no‘—|—no‘®mo‘) ¢ — n® x m®

P2 =1t @ m® + cot® @ n® + ¢3n® @ n® 4 c4t% ® t* + csm® @ m®

Representation of various yield criteria

Ref. Structure Co c1 Co c3 Ca cs

Qin and Bassanni (1992) ~ FCC 1+ B ¥£p 0 0 0 0
Steinmann et al. (1998) FCC a®m a™ o™ 0 0 0
Qin and Bassanni (1992) L1, 1+ \/TgB B —A- 1Ak Qf\fAk‘ —%iAk 0
Dao and Asaro (1993) Lls 1 2n2, 20 200, 2n2, 2n°,
Groger et al. (2008) BCC 1+ tas ‘égal —az + 1as ‘/Tgag —*/Tgag 0
Yalcinkaya et al. (2008) BCC 1 72 N3 Na N5 m
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Yield Stress Prediction for Ta Single Crystals
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Temp. c; c, C; cy 7., | Std.dev.(A)  Std. dev. (NA)
77K -0.35  0.12 -0.79 053 383 75.3 MPa 27.4 MPa
300 K -1.18 0.70 0.12 0.08 57 10.9 MPa 7.7 MPa
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Yield Stress Prediction for Mo, W and Ta Single Crystals

Best-fit non-Schmid constants

Predicted P,

[T11]

Material c1 co c3 cq Ter Ref.
Mo (a)| 0.11 0.70 0.04 -0.04 208 | Sherwood et al. (1967) Mo
Mo (b)| 0.31 0.70 0.11 -0.11 215 Guiu and Pratt (1966)
Mo (©)| 0.42 023 0.13 -0.02 147 Irwin et al. (1974) @ (o foot " (O 1o
W ()| 0.15 0.05 -0.01 0.26 325 Rose et al. (1962) i1 T
W (e)] 0.36 -0.09 0.23 -0.01 293 | Argon and Maloof (1966) -
Ta ()| 0.30 0.04 0.11 0.01 173 Sherwood et al. (1967)
Ta (g)| -0.11 0.19 -0.03 0.16 225 Hull et al. (1967)
Ta (h)| -0.07 0.15 -0.08 0.29 211 Ferriss et al. (1962) o [0111:[001] © ony
e
T=77K, €=10*s"! an (T11] (Ti1]

Ta
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{110} vs. {112} Slip

Predicted P,

[111] [111] (1] s
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[001] [o11] [oo1] [o11]  [oo1] o]
{110} slip {112} slip {110} +{112} shp

Standard deviation (MPa) between predicted and measured yield stresses

Baseline model Non-Schmid model References
{110} {112} {110}+{112} {110} {112} {110}+{112}
Mo 311 311 311 105 211 188 Sherwood (1967)
388 310 297 12 109 114 Guiu (1966)
185 185 185 1 170 123 Irwin (1974)
\W% 322 318 314 47 68 67 Rose (1962)
344 344 344 1 83 39 Argon (1966)
Ta 135 135 135 1 45 29 Sherwood (1967)
101 101 101 1 1 1 Hull (1967)
104 105 95 20 66 23 Ferriss (1962)
107 112 103 74 69 63 Byron (1968)
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BCC CP-FEM Formulation
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1/m
Slip rate: 7 =g (—) (Hutchinson, 1976) 24 <111>{110} slip systems

gOA

Slip resistance:  ¢% = max (75 — Tog, 0) + 75, (Weinberger, 2012)

‘—) Obstacle stress

Lattice friction

Obstacle stress: 75, = aub Z PP (Taylor, 1934)
B=1

NS
p* = (/ﬁ Zpﬁ — mgpa) |yl (Kocks, 1976)
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Eng. Stress (MPa)

Eng. Stress (MPa)

Single Crystal Stress-Strain Predictions for Mo

Orientation dependent stress-strain curve is most accurately predicted in Case A.
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(a) Case A
Non-associative model
{110} slip

Taylor hardening

(b) Case B
Associative model
{110} slip

Taylor hardening

(c) Case C
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Power-law hardening

(d) Case D
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Taylor hardening
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Isochoric deformation to 20% strain:
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Stress Maps in Mo
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Non-Associative Model has higher and more localized stresses,
greater tendency for failure e
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| 4!tress and Strain Maps in Mo
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Yield Surface Predictions: Mo Single Crystals
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Yield Surface Predictions: Mo Polycrystals
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Mnal Image Correlation of Ta Oligocrystal
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Electron Backscatter Diffraction Maps
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Finite Element Mesh
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" Validating CP-FEM Simulations w/ DIC Experiments

Experiment
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Experiment

CP-FEM Simulation

4.2% Applied Strain

Validating CP-FEM Simulations w/ DIC Experiments
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Validating CP-FEM Simulations w/ DIC Experiments
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Summary

« Dislocation plasticity in BCC metals (and most materials, for that matter) is
significantly more complex than in FCC.

* We have developed a generalized yield criterion for BCC transition metals,
and implemented it into a BCC CP-FEM model.

* Yield criteria are calibrated to single crystal experiments on Mo, Ta, and W.

* Non-Schmid effects are clearly reflected in the stress-strain response, texture
evolution, damage localization, and yield surfaces of single and polycrystals.

» Early CP-FEM predictions show good qualitative agreement with digital
image correlation experiments on Ta oligocrystals.
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