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Motivation

 The performance of an optical systems is always limited, regardless of 
how perfectly it is designed and built.

 Limitations come from

• Physics (i.e., diffraction)

• The optical design itself

• Imperfections in alignment and assembly

• Trades made during system design

• Detector performance

 Modern advancements in algorithms and computational power allow 
image processing techniques to mitigate these effects.

 Today I will present two classes of algorithms used for this purpose.
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Sampling Theory

 For an incoherent imaging system, the highest spatial frequency that can 
be transmitted is

 Spatial frequencies above       are not transmitted by the optical system.

 The highest spatial frequency that can be sensed by the detector is

• Spatial frequencies above       are aliased back to lower frequencies.

 When these two frequencies are equal we have
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Sampling Theory

 Define the sampling ratio     as              .

 When         the system is Nyquist-sampled.

• The pixel pitch is small enough that all of the spatial frequencies up to the 
optical cutoff frequency are sensed without aliasing.

• For a diffraction-limited Airy disk, there are at least 2.44 pixels across the 
first-null diameter.

• The resolution of the system is limited by diffraction.

 When         the system is undersampled.

• The pixel pitch is relatively large compared to the optical spot.  Spatial 
frequencies below the optical cutoff frequency and above the detector cutoff 
frequency are aliased.

• The resolution of the system is limited by the pixel pitch.
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Undersampled Systems

 Why not always design a system such that it is Nyquist sampled?

 Q depends on the focal length, aperture diameter, and pixel pitch.  These 
parameters effect many other decisions in a trade study.

 For example, the pixel pitch directly impacts the field-of-view (FOV).

• Using smaller pixels but maintaining the same FOV requires more pixels.

 Data processing needs will increase.

 Power consumption will go up.

 Data bandwidth needs will increase.

• Using smaller pixels but maintaining the number of pixels reduces FOV.

 Smaller Q values produce more energy on a single pixel.

• Increases signal-to-noise ratio.

• Reduces integration time and hence motion-blur.

 Smaller Q values often produce higher quality images despite the effects 
of aliasing†.

†R. D. Fiete, "Image quality and FN/p for remote sensing systems," Opt Eng 38, 1229-1240 (1999).
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 Consider the panchromatic bands of the following systems (designed to 
span a wavelength range of 0.45 m to 0.90 m.

 These systems are all considerably undersampled and would have 
improved resolution if Q were increased to 2.  Other system trades impact 
the decision.

 There may be times when improved resolution is desired.

Examples of Undersampled Systems

Name
Focal Length

(m)
Aperture 

Diameter (m)
Pixel Pitch

(m)
Q Range

Ikonos 2 10 0.70 12 0.54 to 1.07

Quickbird 2 8.8 0.60 12 0.55 to 1.10

GeoEye 1 13.3 1.10 8 0.45 to 0.91

Source:  www.eoportal.org
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Super-Resolution Imaging

 Super-resolution techniques allow the sampling ratio Q to be effectively 
increased.

 Super-resolution refers to using a number of low-resolution images to 
create a single high-resolution image.

• The low-resolution images are usually laterally displaced by sub-pixel 
amounts.

• Super-resolution algorithms have been implemented which use precise axial 
shifts.

 Such algorithms are generally impractical in deployed systems due to vibrations 
and variations in the line-of-sight pointing angle.

 Park, Park, and Kang have written an excellent overview article on super-
resolution techniques†.

† S. C. Park, M. K. Park, and M. G. Kang, "Super-resolution image reconstruction: 
A technical overview," IEEE Signal Proc Mag 20, 21-36 (2003).
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Drizzle

 One commonly used super-resolution algorithm is Drizzle†.

 It was developed by Fruchter and Hook for use with the Hubble Space 
Telescope.

† A. S. Fruchter and R. N. Hook, "A novel image reconstruction method applied to 
deep Hubble Space Telescope images," Proc SPIE 3164, 120-125 (1997).

Image from http://www.stsci.edu/~fruchter/dither/drizzle.html
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Drizzle Simulation



Slide 12 of 38

Drizzle Simulation

Reconstructed Image Best Focus Measurement
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Drizzle Simulation – Slices

Reconstructed Image Best Focus Measurement
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Optical Wavefront

Video from https://en.wikipedia.org/wiki/Wavefront

 Wavefront is an important concept in optical engineering.

 A wavefront is a surface of points having the same phase for a 
propagating optical wave.

 Optical engineers often talk about wavefront error – the deviation of the 
wavefront from an ideal shape (usually planar or spherical).

 Wavefront error, also known as aberration, is usually measured with an 
interferometer.
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Wavefront Error

 Why is wavefront error useful?

 Wavefront error is the phase of the complex field amplitude at the pupil 
plane of an optical system.

• We generally know the magnitude of this complex field amplitude – it is 
simply unity wherever light is transmitted and zero where it is blocked.

 The optical transfer function (OTF), which fully specifies the system 
performance at a particular wavelength and field angle, is equal to the 
autocorrelation of the complex pupil function.

 Thus if we know the wavefront error, we can fully model the performance 
of the optical system.

 For example, the image of an ideal point object is given by the square of 
the magnitude of the Fourier transform of the complex pupil function.

 Understanding wavefront errors is the basis of modern optical 
engineering.
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Common Aberrations

Z1:Piston

Z2:Tilt X Z3:Tilt Y

Z4:Defocus Z5:Astig 1st ord 45 deg Z6:Astig 1st ord 0 deg

Z7:Coma Y Z8:Coma X Z9:Trefoil 30 deg Z10:Trefoil 0 deg

Z11:Spherical Ab. Z12:Astig 2nd ord 0 degZ13:Astig 2nd ord 45 deg Z14:Tetrafoil 0 deg Z15:Tetrafoil 22.5 deg
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Interferometry

 Wavefront errors are generally measured interferometrically.

 Interferometry can be a difficult measurement.

• You need an interferometer whose laser works for your system.

• Vibrations may need to be very well controlled.

• Interferometry generally requires a double-pass configuration – light must 
pass through the optical system twice so that it can return to the 
interferometer.  Thus a precise, well-aligned return mirror is needed.

 For an imaging system, once the detector is installed interferometric 
testing of the system cannot be performed.

• Any changes in optical performance are difficult to characterize or 
understand.

 Other techniques for measuring wavefront do exist.
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Phase Diversity

 (U) Phase diversity (PD) algorithms allow the system wavefront to be 
reconstructed from two or more measurements made at different defocus 
depths.

• (U) If the scene is a point source, the algorithm is referred to as phase-
diverse phase retrieval (PDPR).

• (U) For extended scenes, phase diversity algorithms also provide an estimate 
of the scene as if the wavefront were perfect (i.e., diffraction-limited).

 (U) Phase diversity can be used to

• Characterize an optical system so its performance can be better understood, 
tracked, and accurately modeled.

• Improve system resolution by both characterizing system aberrations and 
removing their effects from imagery
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Phase Retrieval

 Phase retrieval refers to an algorithm that uses a measured spot to 
reconstruct the system wavefront error.

 Convergence and accuracy can be issues when using a single 
measurement.

Measured Spot

Phase 
Retrieval

Wavefront Error
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Phase Diversity

 Phase diversity refers to an algorithm that uses measured images at 
different defocus values to reconstruct both the scene and the wavefront.

 Measurements can be made at two or more defocus depths.

Measured Images Scene and Wavefront Error

Phase 
Diversity
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Applications

 (U) In the early 1990s, phase retrieval was applied to images taken with the 
Hubble Space Telescope.

• The aberration content of the system was determined.

• A misalignment of the Planetary Camera 6 (PC-6) subsystem relative to the 
main optical telescope was found.

 (U) Phase diversity algorithms will be used to perform fine adjustment of 
the segmented mirrors in the James Webb Space Telescope.

 (U) Phase diversity is commonly used to perform real-time correction of 
optical systems that incorporate adaptive optical components.

• Boeing has demonstrated a system capable of reconstructing wavefront 
errors at 200 frames per second.†

† Dolne, J.J. et al, Proc. of SPIE, Vol 6712 (2007)
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Algorithms

 Several algorithms for phase diversity and phase retrieval exist.

 All are essentially nonlinear optimization problems:

• Define an error metric based on predicted and measured images.

• Define variables.

 Wavefront (point-by-point phase or Zernike coefficients)

 Lateral shifts (i.e., registration)

 Axial shifts

 Pupil amplitude

• Search for variables which minimize the error metric.

• More a priori knowledge is better.

 Assumptions

• Light is monochromatic.

• Extended scenes are narrow so wavefront error does not change as a 
function of field.

• Appropriate sampling, Q1.

• If 2>Q1, aliasing artifacts may impact the reconstruction.
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Benefits

 Wavefront errors can be measured much later in integration and during 
operational use.

• Interferometric methods are not possible once focal planes are installed.

 Wavefront errors can be measured at any wavelength where a source and 
filter are available.

• Interferometry is limited to laser lines of available tools.

 Wavefront errors can be measured from images of extended scenes with 
phase-diverse phase retrieval.

• Improved image quality is possible.

• No point object is needed.
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Phase Diversity for Undersampled Systems

 Algorithms exist for implementing phase diversity on undersampled 

systems, but they have limitations:

• Restricted to point objects1

• Restricted to point objects and requires subaperture scanning2

• Works with extended scenes but is intolerant to line-of-sight jitter3

 An algorithm that works with extended scenes in a deployed environment 

is needed.

1 S. T. Thurman and J. R. Fienup, J Opt Soc Am A 26, 2640-2647 (2009).
2 G. R. Brady, M. Guizar-Sicairos, and J. R. Fienup, Opt Express 17, 624-639 (2009).
3 X. J. Hu, S. Y. Li, and Y. L. Wu, Appl Optics 47, 6079-6087 (2008).
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New Algorithm for PD with Undersampled 
Systems

 The Drizzle algorithm is used for super-resolution at each defocus depth.

• Low-resolution images are used to create a single high-resolution image.

• Effects of pixel size and algorithm “pixfrac” parameter are deconvolved from 
measured data.

 Two phase-diversity algorithms are used on super-resolved data.

• PD1:  S. T. Thurman, R. T. DeRosa, and J. R. Fienup, J Opt Soc Am A 26, 
700-709 (2009).

• PD2:  R. G. Paxman, T. J. Schulz, and J. R. Fienup, J Opt Soc Am A 9, 1072-
1085 (1992).

 PD2 is modified to optimize lateral shifts of each measured image.

 Results are presented here for PD2 with an extended scene.

 PD1 assumes a point object.

• Results are presented in the literature1-3.

1 E. A. Shields, Opt Lett 37, 2463-2465 (2012).
2 E. A. Shields, Computational Optical Sensing and Imaging, OSA Technical Digest (online) 
paper CTu2B.4 (2012).
3 E. A. Shields, Proc. of SPIE, Vol 8499 (2012).
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Extended Scene Configuration

 The phase diversity configuration uses a filtered quartz-tungsten-halogen 
(QTH) source to mitigate speckle.

 A ground glass diffuser is used to improve scene uniformity.

 The extended scene is an Air Force 1951 resolution target.

 The detector is mounted on stages allowing lateral motion in all three 
directions.

Interferometric Configuration Phase Diversity Configuration
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 20 single-shot wavefronts were collected, averaged, and fit to 15 Zernike 
polynomials†.

 Wavelength: 

• Interferometry:  632.8 nm

• Phase Diversity: 650 nm center wavelength with bandwidth of 40 nm

 Aperture Diameter:  1.6 inches

 Focal Ratio:  f/16

 Defocus depths of -1, 0, +1 mm (defocus Zernike coefficients† of -0.22, 0, 
+0.22 waves)

• Peak-to-valley defocus errors are 0.76, 0, and 0.76 waves.

†R. J. Noll, "Zernike Polynomials and Atmospheric-Turbulence," J Opt Soc Am 66, 207-211 (1976).

Experimental Test Parameters
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Extended Scene Parameters

 Data were collected in two modes: Nyquist-sampled and undersampled.

 Comparisons of the two reconstructions provides information on the 
impact of the super-resolution pre-processing step.

Parameter Nyquist-Sampled Case Undersampled Case

Frames per defocus depth 1 64 (spatially jittered)

Pixel Pitch 3.45 µm 13.8 µm

Sampling Ratio Q 3.0 0.75

Super-Resolution Factor N/A 3
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Extended Scene Scanning

 The camera is scanned laterally at each defocus depth for the 
undersampled case.

 Image registration via cross-correlation is used to align images.

 The following plot shows calculated image locations for the 64 frames at 
best focus.
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Sample Scenes at Best Focus

Nyquist-Sampled Scene Undersampled Scene
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Wavefront Results
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 Wavefronts and root-mean-square (RMS) values are shown in waves.

 The reconstructed wavefronts agree well with the interferometric 
measurement.
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Difference Wavefronts

 The RMS errors of the difference wavefronts are lower than /20, 
demonstrating good agreement.

 Reconstruction errors are inline with those in the literature for this 
magnitude of wavefront error†.
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†J. J. Dolne et al,  Appl Optics 42, 5284-5289 (2003).
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Impact of Super-Resolution Pre-Processing

 The difference between the reconstructed wavefronts is shown.

 This characterizes the impact of the super-resolution pre-processing.

 The reconstructions agree to better than /50, demonstrating excellent 
agreement.
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Reconstructed Scenes

Reconstruction from Nyquist-
Sampled Measurements

Reconstruction from 
Undersampled Measurements
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Reconstructed Scenes

Single Undersampled Scene Phase Diversity ReconstructionDrizzle Only
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Summary

 Many remote sensing imaging systems are designed such that the pixels 
are relatively large compared to the size of the optical spot.

• Such systems are called undersampled.

• The resolution of undersampled systems is limited by the pixel size.

• Aliasing artifacts may be present in undersampled systems since the optical 
system transmits spatial frequencies that exceed what the detector can 
measure.

 Super-resolution techniques can be used to improve the spatial sampling.

• Increased resolution is not free.  Costs include:

 Considerably more data need to be collected.

 The image must somehow be moved by small amounts on the detector.

 Image registration is required.

 Considerable processing may be necessary for the super-resolution algorithm 
itself.
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Summary

 The optical wavefront error is critical to understanding the performance of 
an optical system.

 Interferometry can be used to measure wavefront error, but it has 
limitations.

 Many of those limitations can be overcome through the use of phase 
diversity.

 Phase diversity imaging from a deployed, undersampled system is 
possible by using super-resolution techniques as a pre-processing step.

 Modern image processing techniques can be leveraged with great utility to 
improve system resolution and image quality.


