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Basic Steps to Using DAKOTA 

1. Define analysis goals; understand how DAKOTA helps 

and select a method to use 

2. Access DAKOTA and understand help resources 

3. Workflow: create an automated workflow so DAKOTA 

can communicate with your simulation (Advanced Topic) 

– Parameters to model, responses from model to DAKOTA 

– Typically requires scripting (Python, Perl, Shell, Matlab) or 

programming (C, C++, Java, Fortran) 

– Workflow usually crosscuts DAKOTA analysis types 

4. DAKOTA input file: Jaguar GUI or text editor to configure 

DAKOTA to exercise the workflow to meet your goals 

– Tailor variables, methods, responses to analysis goals 

5. Run DAKOTA: command-line; text input / output 



Possible Directions 

• See process of interfacing DAKOTA to a black-

box application through file system 

• See current state of DAKOTA library interface 

• Understand MPI vs. local parallelism 

• Understand modes of application parallelism (in 

queue, out of queue, serial, parallel apps) 

 

• From DAKOTA 101: 

– Matlab, Python interfacing 

– DAKOTA as a library 

– Basics of HPC at SNL 
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DAKOTA Execution & Info Flow 

DAKOTA Input File 

• Commands 

• Options 

• Parameter definitions 

• File names 

DAKOTA Output Files 

• Raw data (all x- and f-values) 

• Sensitivity info 

• Statistics on f-values 

• Optimality info 

CALORE thermal analysis 

ALEGRA shock physics 

SALINAS structural dynam 

Premo high speed flow 

          (your code here) 

Code 

Input 

Code 

Output 

DAKOTA Parameters File 
{x1 = 123.4} 

{x2 = -33.3}, etc. 

Use APREPRO/DPREPRO 

to cut-and-paste x-values 

into code input file 

User-supplied automatic 

post-processing of code 

output data into f-values  

DAKOTA executes 
sim_code_script  

to launch a 

simulation job 

DAKOTA Results File 
999.888 f1 

777.666 f2, etc. 

DAKOTA Executable 

Sensitivity Analysis, 

Optimization, Uncertainty 

Quantification, Parameter 

Estimation 

DAKOTA  Application Interfacing Class 



Application Stand-in: 

Rosenbrock “Banana” Function 

f(x1,x2) = 100*(x2-x1*x1)2 + (1-x1)2 

-2  x1  2 

-2  x2  2 

Minimum: f(x1,x2) = f(1,1) = 0.0 
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Demo:  

Rosenbrock as a “black box” 

• Locate example in 
Dakota/examples/script_interfaces/generic 

 

• Described in DAKOTA 5.2 User’s Manual 18.1 

 

• Explore top-down (DAKOTA down to application and back) 

 

• Since you’re familiar with  your application, may want to 

build from application up 



Interfacing to Your Simulation 

(Assuming Text-based I/O) 

1. Annotate your input file to create template 
 { stress }  { alpha1 } 

2. Create a representative DAKOTA params.in file in aprepro 

format (see User’s 11.6) and test:  
dprepro params.in analysis.in.template analysis.in 

3. Verify commands to run application with analysis.in 

4. Determine how to automatically extract results of interest 

(direct application to export, shell commands, python, perl, 
visual basic, etc.) to create results.out (see User’s 13.2) 

5. Assemble into a script, e.g., run_analysis.sh; test script with 

sample params.in: 
./run_analysis.sh params.in results.out 

6. Test with a simple DAKOTA input deck, e.g., parameter study 



Parallelism 

• See Application Parallelism slides shipped in 

Dakota/examples/parallelism 



Nested parallel models support large-scale applications and architectures. 

1. SMP/multiprocessor 

workstations: Asynchronous 

(external job allocation) 

2. Cluster of workstations: 

Message-passing 

(internal job allocation) 

3. Cluster of SMP’s: Hybrid 

(service/compute model) 

4. MPP: 

Internal MPI 

partitions 

(nested 

parallelism) 

Serial  

DAKOTA 

job1 &    job2 &    job3 &    job4 & 

master 
slave slave slave slave 

job1          job2          job3          job4 

master 
slave slave slave slave 

jobs &      jobs &      jobs &      jobs & 

Parallelism from a computing 

platform perspective 



1. Algorithmic coarse-grained parallelism: independent fn. 

Evaluations performed concurrently: 

• Gradient-based (e.g., finite difference gradients, speculative opt.) 

• Nongradient-based (e.g., GAs, PS, Monte Carlo) 

• Approximate methods (e.g., DACE) 

• Concurrent-method strategies (e.g., parallel B&B, island-model 

GAs, OUU) 

2. Algorithmic fine-grained parallelism: computing the internal 
linear algebra of an opt. algorithm in parallel (e.g., large-scale 
opt., SAND) 

3. Function evaluation coarse-grained parallelism: concurrent 
execution of separable simulations within a fn. eval. (e.g., 
multiple loading cases) 

4. Function evaluation fine-grained parallelism: parallelization of 
the solution steps within a single analysis code (e.g., SALINAS, 
MPSalsa) 

Parallelism from an 

algorithmic perspective 



DAKOTA Advanced Topics: 

Hybrid and Advanced Algorithms 
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Uncertainty 

• Second order probability 

• Uncertainty of optima 

 

Nonlinear least squares 

• Surrogate-based calibration 

• Model calibration under 

uncertainty 

Optimization 

• Surrogate-based: data fit, multifidelity, ROM 

• Mixed integer nonlinear programming (MINLP): 
PEBBL (parallel branch and bound) 

• Optimization under uncertainty 

– TR-SBOUU, RBDO (Bi-level, Sequential) 

– MCUU, PC-BDO, EGO/EGRA, Epistemic, … 

• Hybrids (e.g., global/local) 

• Pareto set 

• Multi-start 

• Multilevel methods 

Opportunities for Mixing 

and Matching Methods 

Strategies (general nesting, layering, sequencing and recasting 

facilities) combine methods to enable advanced studies: 

• opt within opt (multilevel opt & hierarchical MDO) 

• UQ within UQ (second-order probability) 

• UQ within opt (OUU) and NLS (MCUU) 

• opt within UQ (uncertainty of optima) 

with and without surrogate model indirection 

global  

optimization 

local 

opt.  

epistemic 

sampling 

aleatory 

sampling 

simulation 

local 

opt.  

local 

opt.  



Need to think of relationships 

between DAKOTA input blocks 

• Strategy 

– Consists of a method or set of methods 

 

• Method 

– Operates on a model 

 

• Model has 

– Variables/parameters 

– Responses 

– Interface 

There may be more 

than one of these in 

a DAKOTA input file. 



Structure of surrogate-based 

(or multi-fidelity) optimization 

Establish initial conditions 

• Parameter set 

• Function, derivative 

values 

• Search scope 

Determine where to go next 

• Direction 

• Distance 

Convergence 

or stopping 

criteria met? 
Done 

Relocate and Adjust 

search scope 

yes no 

Most simulations are 

done here, so replace 

with something less 

computationally 

intensive. 

Sanity check against high-

fidelity model occurs here. 



Trust Region  

Surrogate-Based Minimization 

Data fit surrogates 

• Global: polynomials, splines, 

neural network, Kriging, RBFs 

• Local: 1st/2nd-order Taylor 

Data fits in SBO 

• Smoothing: extract global trend 

• DACE: limited # design vars 

• Must balance local consistency  

with global accuracy 

Multifidelity surrogates: 

• Coarser discretizations, 

looser conv. tols., reduced 

element order 

• Omitted physics: e.g., Euler 

CFD, panel methods 

Multifidelity SBO 

• HF scale better w/ des. vars. 

• Requires smooth LF model 

• May require design mapping 

• Correction quality is crucial 

Multi-fidelity 

ROM surrogates: 

• Spectral decomposition 

• POD/PCA w/ SVD 

• KL/PCE  (random fields, 

stochastic processes) 

ROMs in SBO 

• Key issue: parametrize  

(extended or spanning ROM) 

• Otherwise like data fit case 

emerging 

area 

ROM Data Fit 



Many Types of Data-Fit Surrogates 

Polynomials are accurate in small 

regions and smooth noisy data. 

Splines can represent complex 

multi-modal surfaces and smooth 

noisy data. 

Gaussian processes are good 

predictors of mean and variance 

but can suffer from ill conditioning. 

Correction terms can be applied to 

surrogates for improved accuracy. 

linear 

quadratic 

cubic 

additive 

multiplicative 

convex combination trend correlation 

truncated power basis functions 



Structure of mixed (or nested) 

uncertainty quantification 

Generate instantiation of 

epistemic parameters 

Fix epistemic parameter 

values and conduct aleatory 

UQ study 

Compute aleatory statistics 



Epistemic UQ:  

Nested (“Second-order” )Approaches 

• Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 

• Typical in regulatory analyses (e.g., NRC. WIPP) 

• Outer loop: epistemic (interval) variables, inner loop UQ over aleatory 

(probability) variables; potentially costly, not conservative 

• If treating epistemic as uniform, do not analyze probabilistically! 
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Interval Estimation Approach 

(Probability Bounds Analysis) 

• Propagate intervals through simulation code 

• Outer loop:  determine interval on statistics, e.g., 

mean, variance 

– global optimization problem:  find max/min of 

statistic of interest, given bound constrained 

interval variables 

– use EGO to solve 2 optimization problems with 

essentially one Gaussian process surrogate 

• Inner loop:  Use sampling, PCE, etc., to determine 

the CDFs or moments with respect to the aleatory 

variables 
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Efficient Global Optimization 

• Technique due to Jones, 

Schonlau, Welch 

• Build global Gaussian process 

approximation to initial sample 

• Balance global exploration (add 

points with high predicted 

variance) with local optimality 

(promising minima) via an 

“expected improvement 

function” 

True fn 

GP surrogate 

Expected 

Improvemen

t 

From Jones, Schonlau, Welch, 1998 



Hybrid Optimization 

strategy, 

  graphics 

  hybrid sequential 

    method_list = 'GA' 'PS' 'NLP'  

method, 

  id_method = 'GA' 

  model_pointer = 'M1' 

  coliny_ea 

    seed = 1234 

    population_size = 10 

    verbose output 

method, 

  id_method = 'PS' 

  model_pointer = 'M1' 

  coliny_pattern_search stochastic 

    seed = 1234 

    initial_delta = 0.1 

    threshold_delta = 1.e-4 

    solution_accuracy = 1.e-10 

    exploratory_moves basic_pattern 

    verbose output 

method, 

  id_method = 'NLP' 

  model_pointer = 'M2' 

  optpp_newton 

    gradient_tolerance = 1.e-12 

    convergence_tolerance = 1.e-15 

    verbose output 

model, 

  id_model = 'M1' 

  single 

    variables_pointer = 'V1' 

    interface_pointer = 'I1' 

    responses_pointer = 'R1' 

model, 

  id_model = 'M2' 

  single 

    variables_pointer = 'V1' 

    interface_pointer = 'I1' 

    responses_pointer = 'R2' 

variables, 

  id_variables = 'V1' 

  continuous_design = 2 

    initial_point    0.6    0.7 

    upper_bounds     5.8    2.9 

    lower_bounds     0.5   -2.9 

    descriptors      'x1'   'x2' 

interface, 

  id_interface = 'I1' 

  direct 

    analysis_driver=  'text_book' 

responses, 

  id_responses = 'R1' 

  num_objective_functions = 1 

  no_gradients 

  no_hessians 

responses, 

  id_responses = 'R2' 

  num_objective_functions = 1 

  analytic_gradients 

  analytic_hessians 

Newton Method 

Evolutionary Algorithm: 

Generates Multiple Starting Points 

for Pattern Search 

Pattern Search Ensemble: 

Generates Starting Point 

for Newton Method to finish 



Multi-Objective Optimization 

May want tradeoffs between 

multiple objectives. 

Image from http://en.wikipedia.org/wiki/Pareto_efficiency 

strategy, 

  single_method 

  tabular_graphics_data 

method, 

  optpp_q_newton   

    output verbose  

    convergence_tolerance = 1.e-8 

variables, 

  continuous_design = 2 

    initial_point    0.9    1.1 

    upper_bounds     5.8    2.9 

    lower_bounds     0.5   -2.9 

    descriptors      'x1'   'x2' 

interface, 

  system asynchronous 

    analysis_driver=  'text_book' 

responses, 

  num_objective_functions = 3 

  multi_objective_weights = .7 .2 .1 

  analytic_gradients 

  no_hessians 



Efficient Global Reliability Analysis: 

GP Surrogate + MMAIS (B.J. Bichon) 

• Apply an EGO-like method to the equality-constrained optimization problem 

• In EGRA, an expected feasibility function balances exploration with local 

search near the failure boundary to refine the GP 

• Cost competitive with best MPP search methods, yet better probability of 

failure estimates; addresses nonlinear and multimodal challenges 

Gaussian process model  (level curves) of reliability limit state with 

10 samples    28 samples 

explore 

exploit 

failure  

region 

safe  

region 



Optimization Under Uncertainty 

O p t 

U Q  

S im 

{d } {S u }

{u} {R u }

min 

s.t. 

(nested paradigm) 

Rather than design and then post-process to evaluate uncertainty… 

actively design optimize while accounting for uncertainty/reliability metrics 

su(d), e.g., mean, variance, reliability, probability: 

13 design vars d:  Wi, Li, qi 

2 random variables x: ΔW, Sr 

σ 
σ 

-5.0 

simultaneously reliable and robust designs 

Bistable switch problem formulation (Reliability-Based Design Optimization): 

min 

s.t. 
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