

DAKOTA Advanced Topics: Interfacing and Parallelism

<http://dakota.sandia.gov>

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

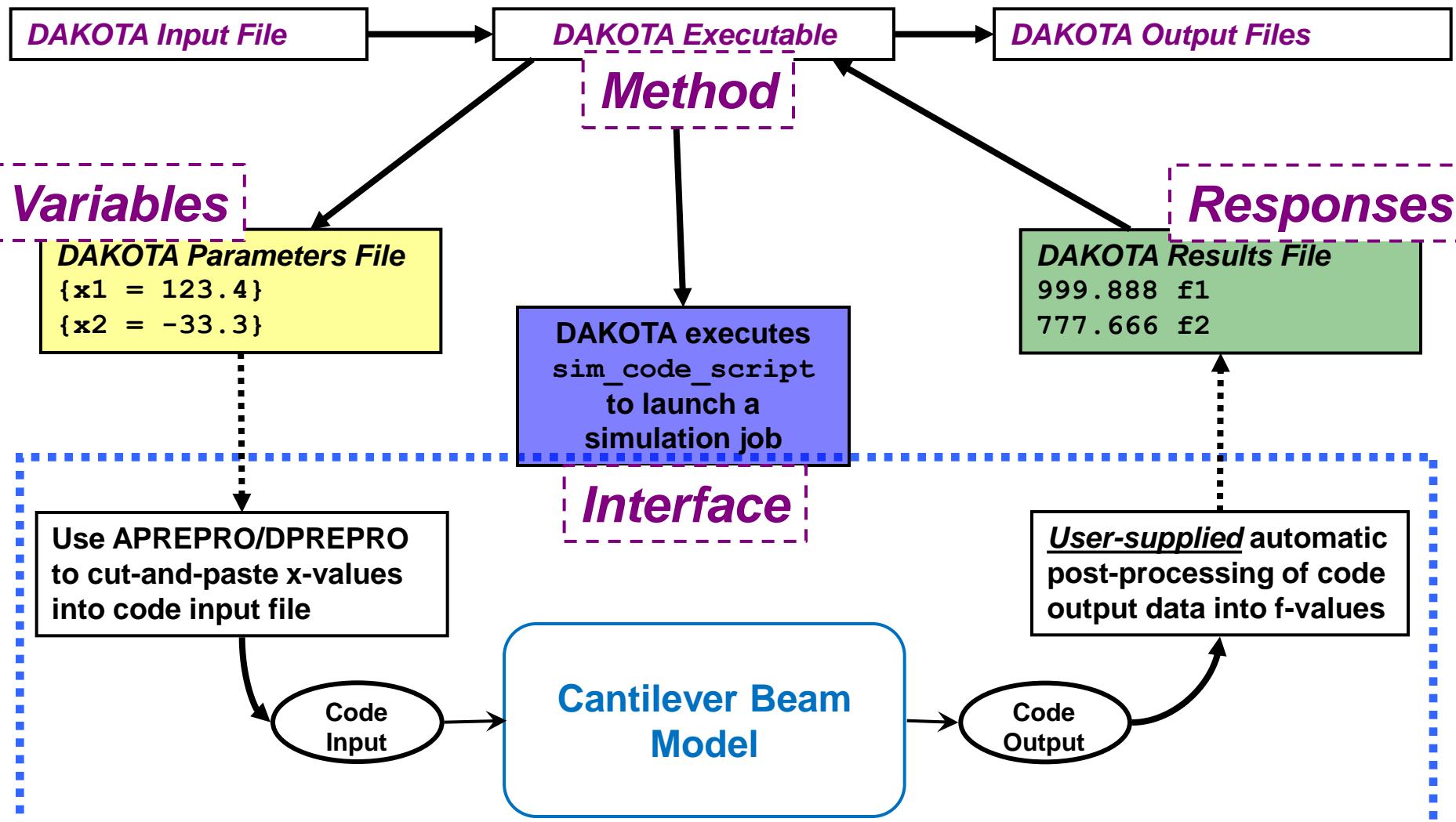
Basic Steps to Using DAKOTA

1. Define analysis goals; understand how DAKOTA helps and select a method to use
2. Access DAKOTA and understand help resources
3. **Workflow:** create an automated workflow so DAKOTA can communicate with your simulation (Advanced Topic)
 - Parameters to model, responses from model to DAKOTA
 - Typically requires scripting (Python, Perl, Shell, Matlab) or programming (C, C++, Java, Fortran)
 - Workflow usually crosscuts DAKOTA analysis types
4. **DAKOTA input file:** Jaguar GUI or text editor to configure DAKOTA to exercise the workflow to meet your goals
 - Tailor variables, methods, responses to analysis goals
5. Run DAKOTA: command-line; text input / output

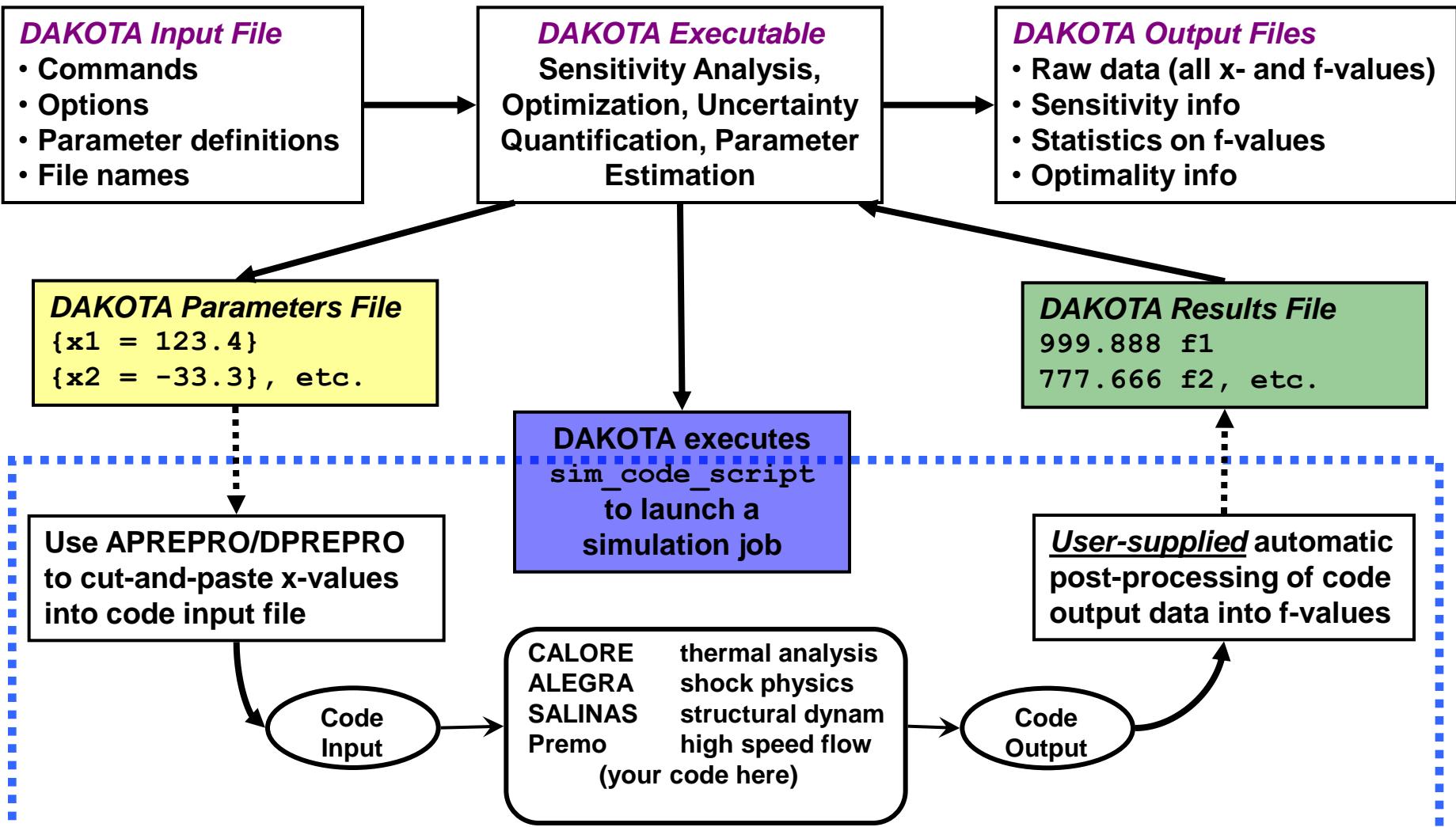
Possible Directions

- See process of interfacing DAKOTA to a black-box application through file system
- See current state of DAKOTA library interface
- Understand MPI vs. local parallelism
- Understand modes of application parallelism (in queue, out of queue, serial, parallel apps)
- From DAKOTA 101:
 - Matlab, Python interfacing
 - DAKOTA as a library
 - Basics of HPC at SNL

Interface communicates through file system and user-supplied script



DAKOTA Execution & Info Flow



DAKOTA Application Interfacing Class

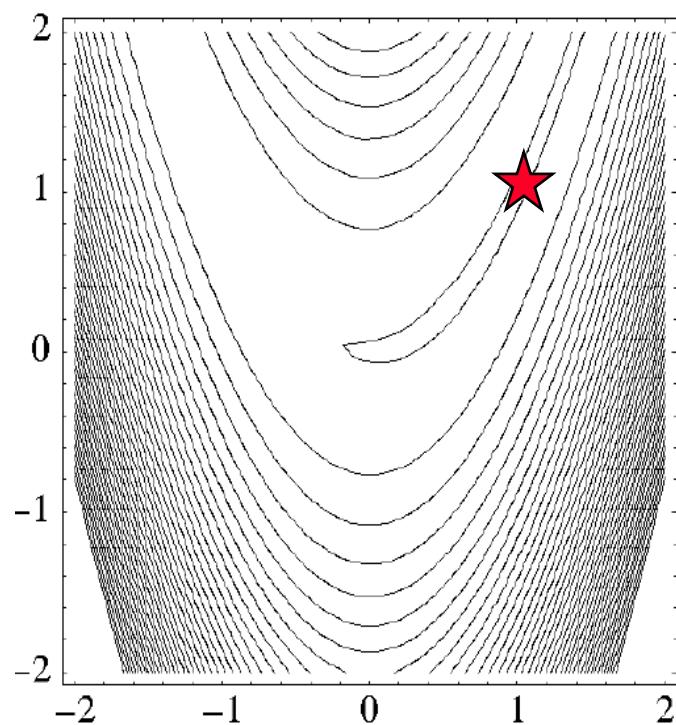
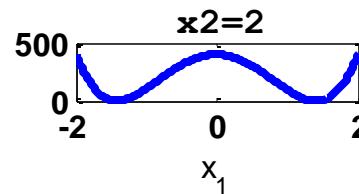
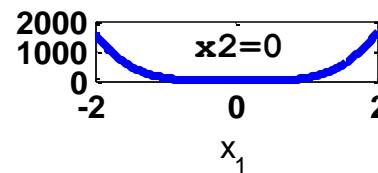
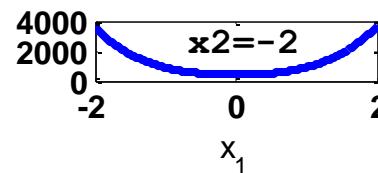
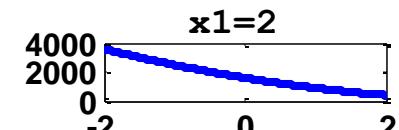
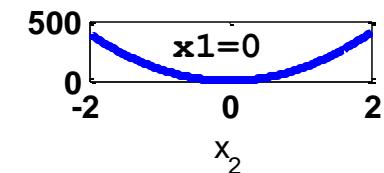
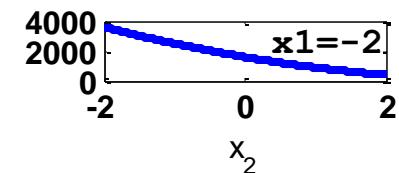
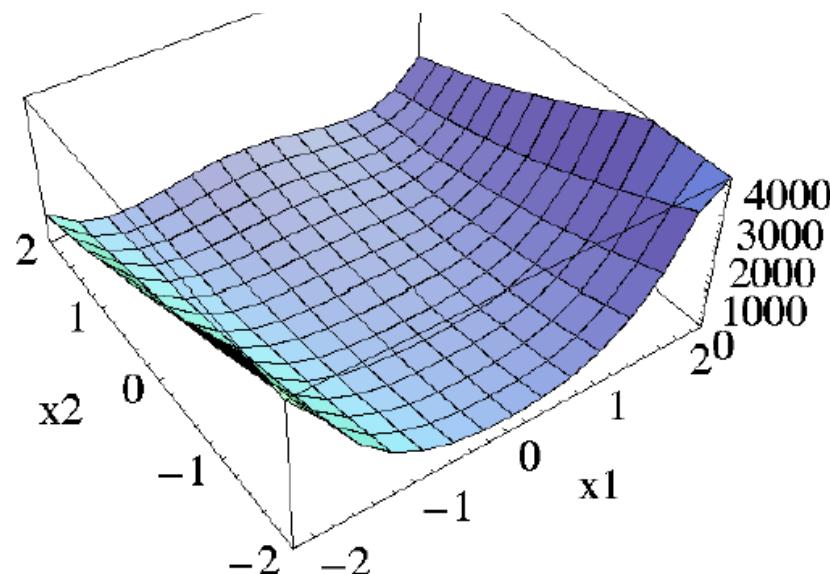
Application Stand-in: Rosenbrock “Banana” Function

$$f(x_1, x_2) = 100*(x_2 - x_1^2)^2 + (1 - x_1)^2$$

$$-2 \leq x_1 \leq 2$$

$$-2 \leq x_2 \leq 2$$

$$\text{Minimum: } f(x_1, x_2) = f(1, 1) = 0.0$$



Demo: Rosenbrock as a “black box”

- Locate example in
`Dakota/examples/script_interfaces/generic`
- Described in DAKOTA 5.2 User’s Manual 18.1
- Explore top-down (DAKOTA down to application and back)
- Since you’re familiar with your application, may want to build from application up

Interfacing to Your Simulation (Assuming Text-based I/O)

1. Annotate your input file to create template

```
{ stress }           { alpha1 }
```

2. Create a representative DAKOTA params.in file in a prepro format (see User's 11.6) and test:

```
dprepro params.in analysis.in.template analysis.in
```

3. Verify commands to run application with analysis.in

4. Determine how to automatically extract results of interest (direct application to export, shell commands, python, perl, visual basic, etc.) to create results.out (see User's 13.2)

5. Assemble into a script, e.g., run_analysis.sh; test script with sample params.in:

```
./run_analysis.sh params.in results.out
```

6. Test with a simple DAKOTA input deck, e.g., parameter study

Parallelism

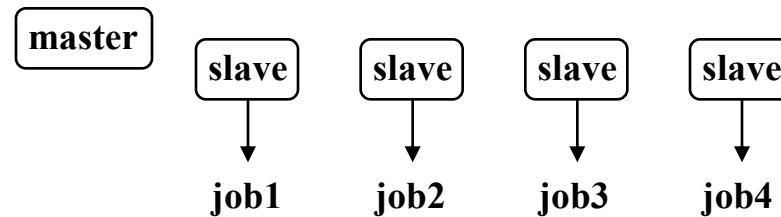
- See Application Parallelism slides shipped in Dakota/examples/parallelism

Parallelism from a computing platform perspective

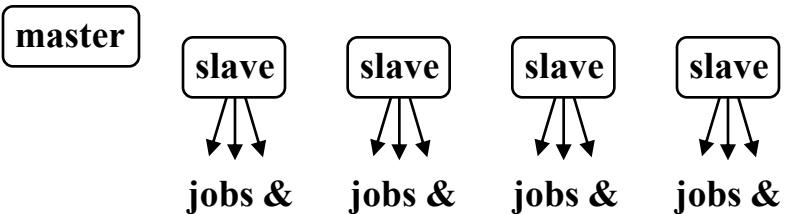
Nested parallel models support large-scale applications and architectures.

1. SMP/multiprocessor workstations: Asynchronous (external job allocation)

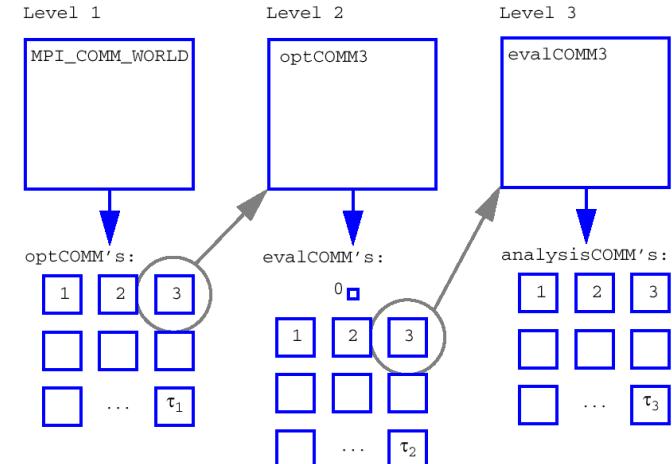
2. Cluster of workstations: Message-passing (internal job allocation)



3. Cluster of SMP's: Hybrid (service/compute model)



4. MPP: Internal MPI partitions (nested parallelism)



Parallelism from an algorithmic perspective

1. ***Algorithmic coarse-grained parallelism***: independent fn.

Evaluations performed concurrently:

- Gradient-based (e.g., finite difference gradients, speculative opt.)
- Nongradient-based (e.g., GAs, PS, Monte Carlo)
- Approximate methods (e.g., DACE)
- Concurrent-method strategies (e.g., parallel B&B, island-model GAs, OUU)

2. ***Algorithmic fine-grained parallelism***: computing the internal linear algebra of an opt. algorithm in parallel (e.g., large-scale opt., SAND)

3. ***Function evaluation coarse-grained parallelism***: concurrent execution of separable simulations within a fn. eval. (e.g., multiple loading cases)

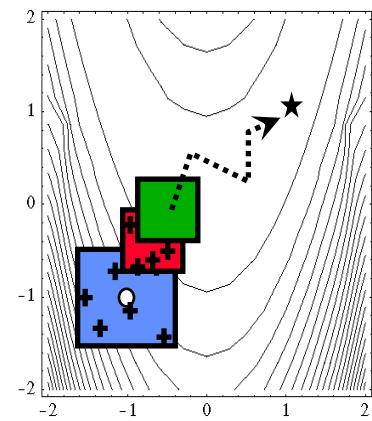
4. ***Function evaluation fine-grained parallelism***: parallelization of the solution steps within a single analysis code (e.g., SALINAS, MPSalsa)

DAKOTA Advanced Topics: Hybrid and Advanced Algorithms

<http://dakota.sandia.gov>

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Opportunities for Mixing and Matching Methods



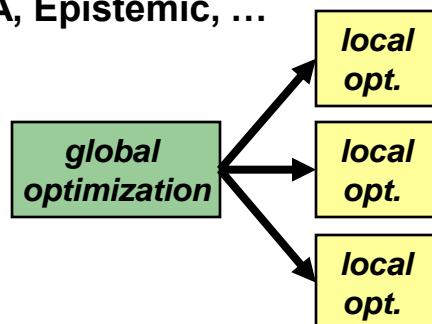
Strategies (general nesting, layering, sequencing and recasting facilities) combine methods to enable advanced studies:

- opt within opt (multilevel opt & hierarchical MDO)
- UQ within UQ (second-order probability)
- UQ within opt (OUU) and NLS (MCUU)
- opt within UQ (uncertainty of optima)

with and without surrogate model indirection

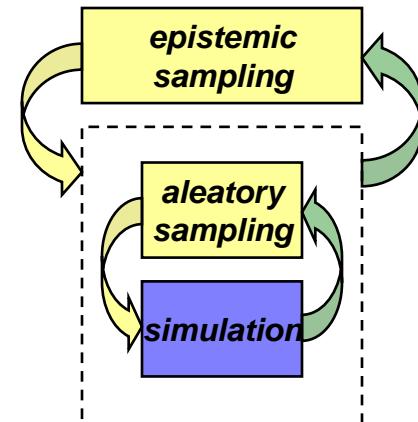
Optimization

- Surrogate-based: data fit, multifidelity, ROM
- Mixed integer nonlinear programming (MINLP): PEBBL (parallel branch and bound)
- Optimization under uncertainty
 - TR-SBOUU, RBDO (Bi-level, Sequential)
 - MCUU, PC-BDO, EGO/EGRA, Epistemic, ...
- Hybrids (e.g., global/local)
- Pareto set
- Multi-start
- Multilevel methods



Uncertainty

- Second order probability
- Uncertainty of optima



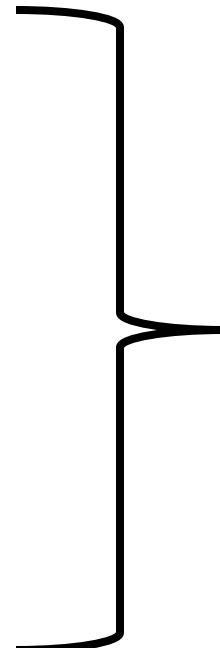
Nonlinear least squares

- Surrogate-based calibration
- Model calibration under uncertainty

Need to think of relationships between DAKOTA input blocks

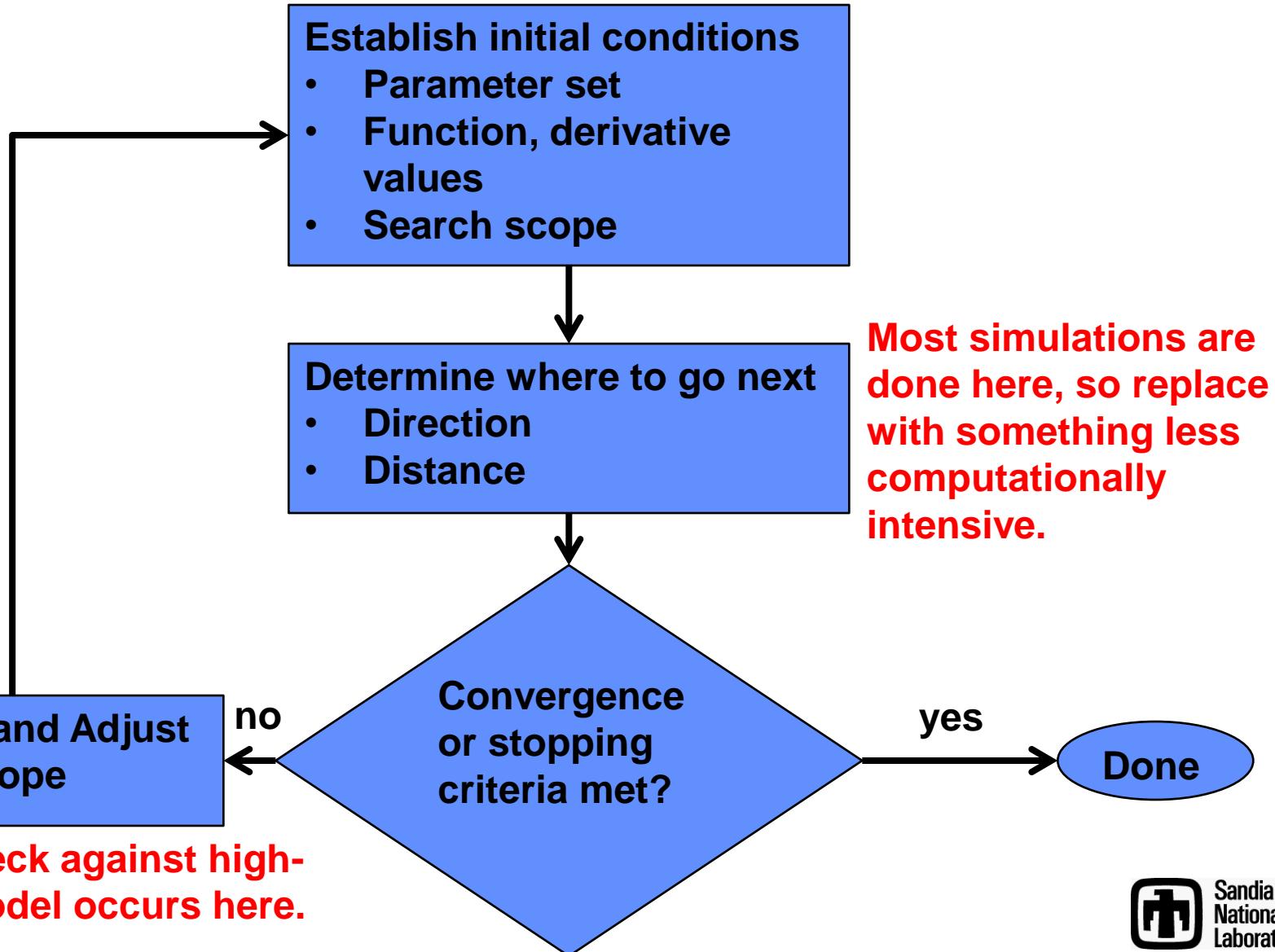
- **Strategy**
 - Consists of a method or set of methods

- **Method**
 - Operates on a model
- **Model has**
 - Variables/parameters
 - Responses
 - Interface

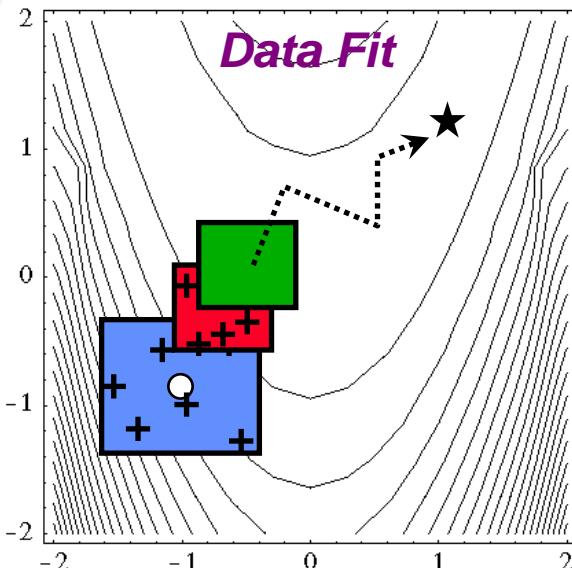
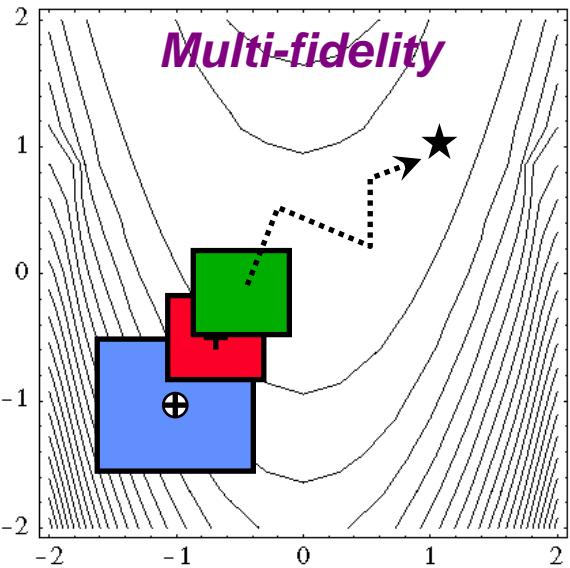
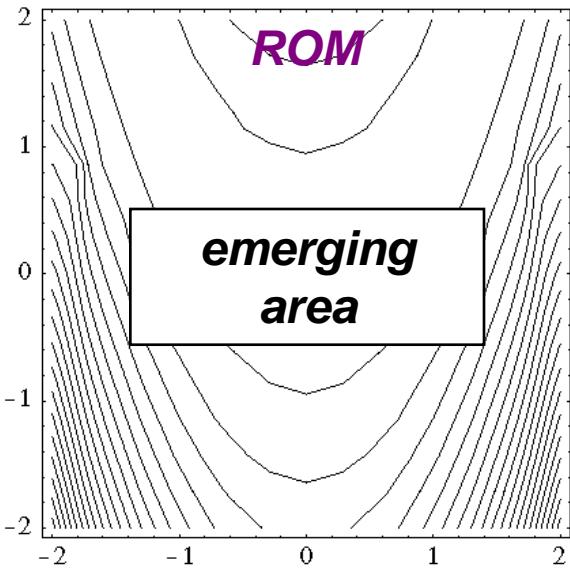


There may be more
than one of these in
a DAKOTA input file.

Structure of surrogate-based (or multi-fidelity) optimization



Trust Region Surrogate-Based Minimization



Data fit surrogates

- Global: polynomials, splines, neural network, Kriging, RBFs
- Local: 1st/2nd-order Taylor

Data fits in SBO

- Smoothing: extract global trend
- DACE: limited # design vars
- Must balance local consistency with global accuracy

Multifidelity surrogates:

- Coarser discretizations, looser conv. tols., reduced element order
- Omitted physics: e.g., Euler CFD, panel methods

Multifidelity SBO

- HF scale better w/ des. vars.
- Requires smooth LF model
- May require design mapping
- Correction quality is crucial

ROM surrogates:

- Spectral decomposition
- POD/PCA w/ SVD
- KL/PCE (random fields, stochastic processes)

ROMs in SBO

- Key issue: parametrize (extended or spanning ROM)
- Otherwise like data fit case

Many Types of Data-Fit Surrogates

Polynomials are accurate in small regions and smooth noisy data.

linear

$$\hat{f}(\mathbf{x}) \approx c_0 + \sum_{i=1}^n c_i x_i$$

quadratic

$$\hat{f}(\mathbf{x}) \approx c_0 + \sum_{i=1}^n c_i x_i + \sum_{i=1}^n \sum_{j \geq i}^n c_{ij} x_i x_j$$

cubic

$$\hat{f}(\mathbf{x}) \approx c_0 + \sum_{i=1}^n c_i x_i + \sum_{i=1}^n \sum_{j \geq i}^n c_{ij} x_i x_j + \sum_{i=1}^n \sum_{j \geq i}^n \sum_{k \geq j}^n c_{ijk} x_i x_j x_k$$

Splines can represent complex multi-modal surfaces and smooth noisy data.

$$\hat{f}(\mathbf{x}) = \sum_{m=1}^M a_m B_m(\mathbf{x})$$

↑
truncated power basis functions

Gaussian processes are good predictors of mean and variance but can suffer from ill conditioning.

$$\hat{f}(\underline{x}) \approx \underline{g}(\underline{x})^T \underline{\beta} + \underline{r}(\underline{x})^T \underline{\underline{R}}^{-1} (\underline{f} - \underline{\underline{G}} \underline{\beta})$$

↑
↑
trend correlation

Correction terms can be applied to surrogates for improved accuracy.

additive

$$\hat{f}_{hi_\alpha}(\mathbf{x}) = f_{lo}(\mathbf{x}) + \alpha(\mathbf{x})$$

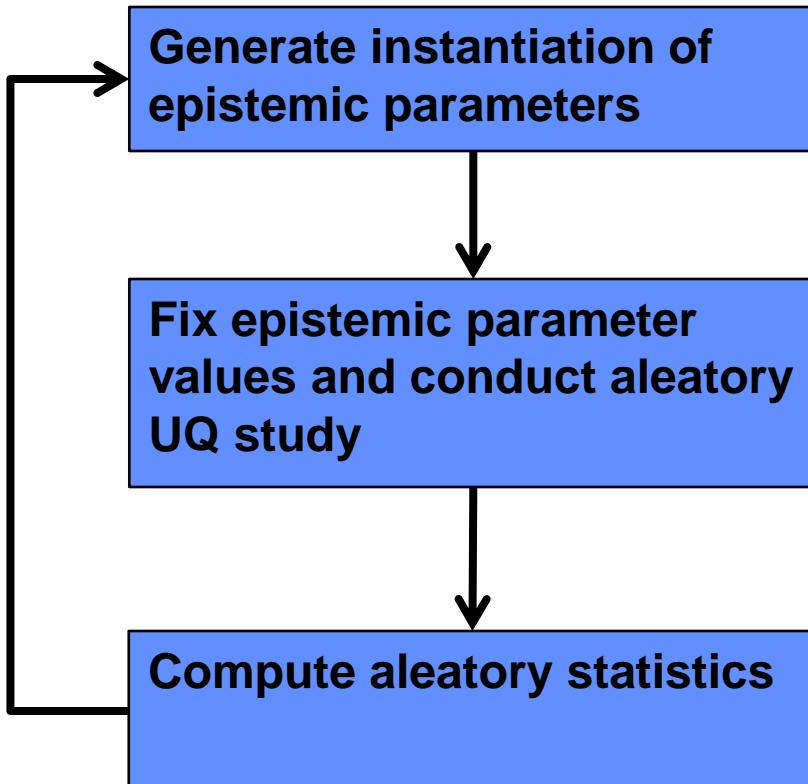
multiplicative

$$\hat{f}_{hi_\beta}(\mathbf{x}) = f_{lo}(\mathbf{x}) \beta(\mathbf{x})$$

convex combination

$$\hat{f}_{hi_\gamma}(\mathbf{x}) = \gamma \hat{f}_{hi_\alpha}(\mathbf{x}) + (1 - \gamma) \hat{f}_{hi_\beta}(\mathbf{x})$$

Structure of mixed (or nested) uncertainty quantification



Epistemic UQ: Nested (“Second-order”)Approaches

- Propagate over epistemic and aleatory uncertainty, e.g., **UQ with bounds on the mean of a normal distribution (hyper-parameters)**
- Typical in regulatory analyses (e.g., NRC. WIPP)
- Outer loop: epistemic (interval) variables, inner loop UQ over aleatory (probability) variables; *potentially costly, not conservative*
- *If treating epistemic as uniform, do not analyze probabilistically!*

50 outer loop samples:
50 aleatory CDF traces

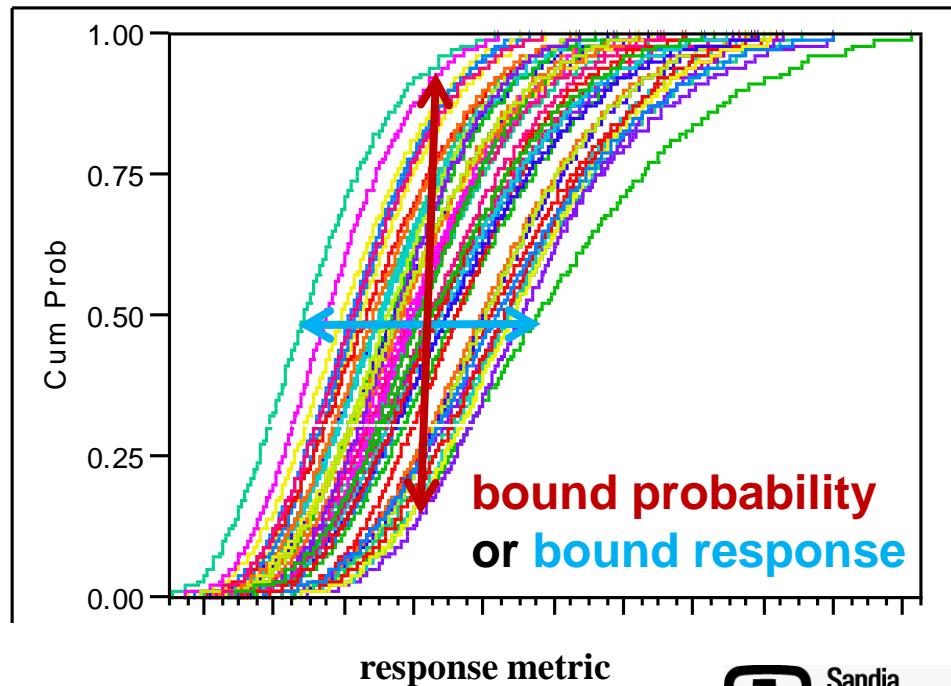
epistemic
sampling

$$m \in [L, U]$$

aleatory
UQ

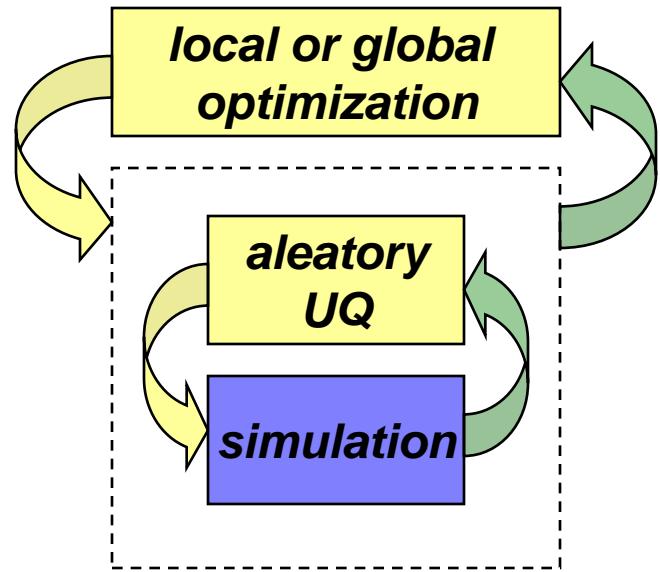
simulation

$$u \sim N(m, \sigma)$$



“Envelope” of CDF traces represents response epistemic uncertainty

Interval Estimation Approach (Probability Bounds Analysis)



- *Propagate intervals through simulation code*
- **Outer loop:** determine interval on statistics, e.g., mean, variance
 - global optimization problem: find max/min of statistic of interest, given bound constrained interval variables
 - use EGO to solve 2 optimization problems with essentially one Gaussian process surrogate
- **Inner loop:** Use sampling, PCE, etc., to determine the CDFs or moments with respect to the aleatory variables

$$\min_{u_E} f_{STAT} (u_A | u_E)$$

$$u_{LB} \leq u_E \leq u_{UB}$$

$$u_A \sim F(u_A; u_E)$$

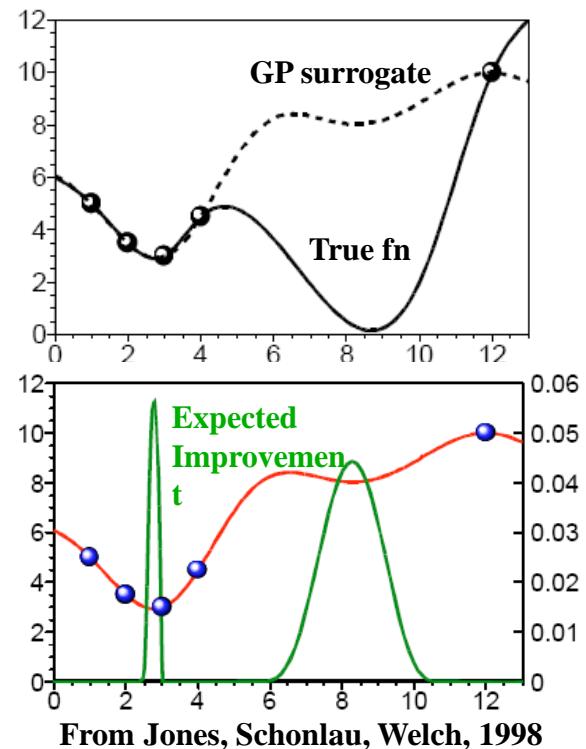
$$\max_{u_E} f_{STAT} (u_A | u_E)$$

$$u_{LB} \leq u_E \leq u_{UB}$$

$$u_A \sim F(u_A; u_E)$$

Efficient Global Optimization

- Technique due to Jones, Schonlau, Welch
- Build global Gaussian process approximation to initial sample
- Balance global exploration (add points with high predicted variance) with local optimality (promising minima) via an “expected improvement function”



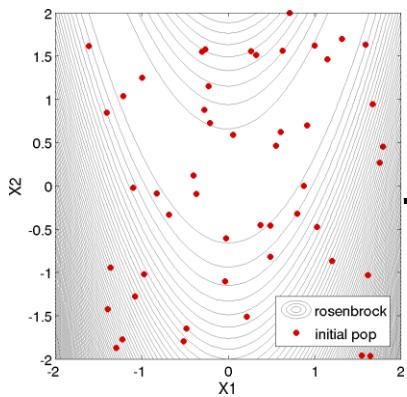
From Jones, Schonlau, Welch, 1998

Hybrid Optimization

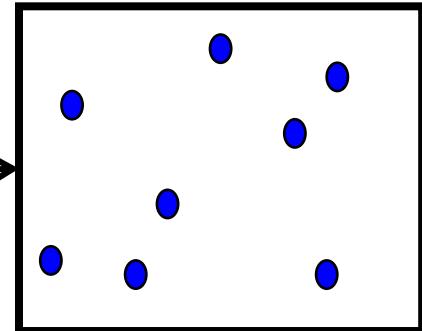
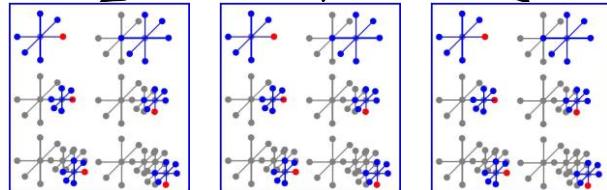
```

strategy,
  graphics
  hybrid_sequential
    method_list = 'GA' 'PS' 'NLP'
  method,
    id_method = 'GA'
    model_pointer = 'M1'
    coliny_ea
      seed = 1234
      population_size = 10
      verbose_output
  method,
    id_method = 'PS'
    model_pointer = 'M1'
    coliny_pattern_search stochastic
      seed = 1234
      initial_delta = 0.1
      threshold_delta = 1.e-4
      solution_accuracy = 1.e-10
      exploratory_moves basic_pattern
      verbose_output
  method,
    id_method = 'NLP'
    model_pointer = 'M2'
    optpp_newton
      gradient_tolerance = 1.e-12
      convergence_tolerance = 1.e-15
      verbose_output
  model,
    id_model = 'M1'
    single
      variables_pointer = 'V1'
      interface_pointer = 'I1'
      responses_pointer = 'R1'
  model,
    id_model = 'M2'
    single
      variables_pointer = 'V1'
      interface_pointer = 'I1'
      responses_pointer = 'R2'
variables,
  id_variables = 'V1'
  continuous_design = 2
  initial_point    0.6    0.7
  upper_bounds     5.8    2.9
  lower_bounds     0.5   -2.9
  descriptors      'x1'   'x2'
interface,
  id_interface = 'I1'
  direct
    analysis_driver= 'text_book'
responses,
  id_responses = 'R1'
  num_objective_functions = 1
  no_gradients
  no_hessians
responses,
  id_responses = 'R2'
  num_objective_functions = 1
  analytic_gradients
  analytic_hessians

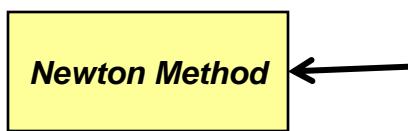
```



Evolutionary Algorithm:
Generates Multiple Starting Points
for Pattern Search



Pattern Search Ensemble:
Generates Starting Point
for Newton Method to finish



Newton Method

Multi-Objective Optimization

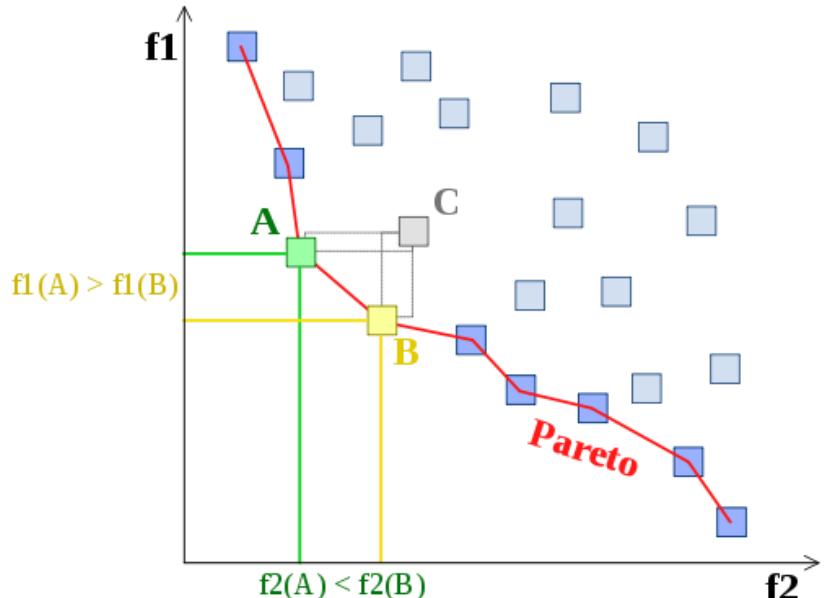


Image from http://en.wikipedia.org/wiki/Pareto_efficiency

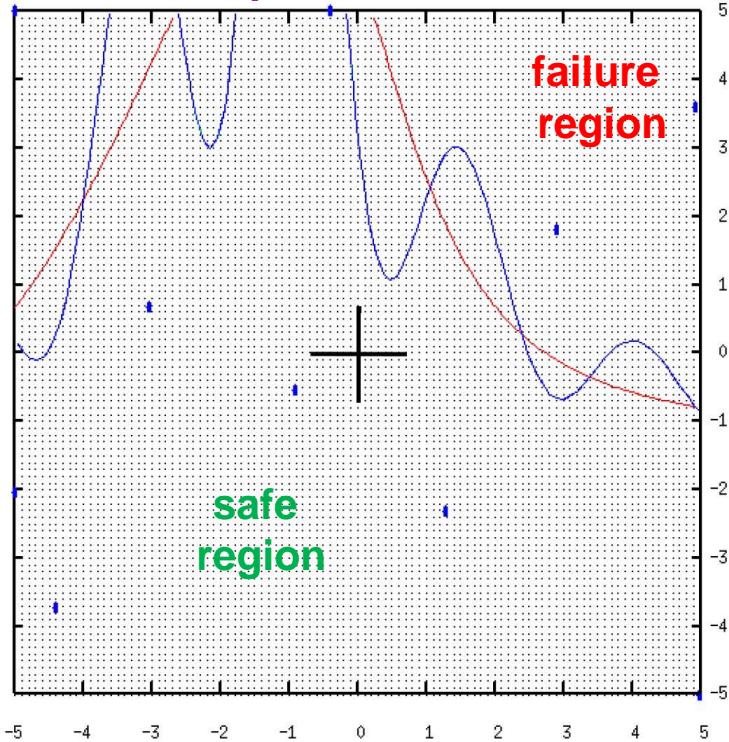
May want tradeoffs between multiple objectives.

```
strategy,  
  single_method  
  tabular_graphics_data  
method,  
  optpp_q_newton  
  output verbose  
  convergence_tolerance = 1.e-8  
variables,  
  continuous_design = 2  
  initial_point      0.9      1.1  
  upper_bounds       5.8      2.9  
  lower_bounds       0.5     -2.9  
  descriptors        'x1'     'x2'  
interface,  
  system asynchronous  
  analysis_driver=  'text_book'  
responses,  
  num_objective_functions = 3  
  multi_objective_weights = .7 .2 .1  
  analytic_gradients  
  no_hessians
```

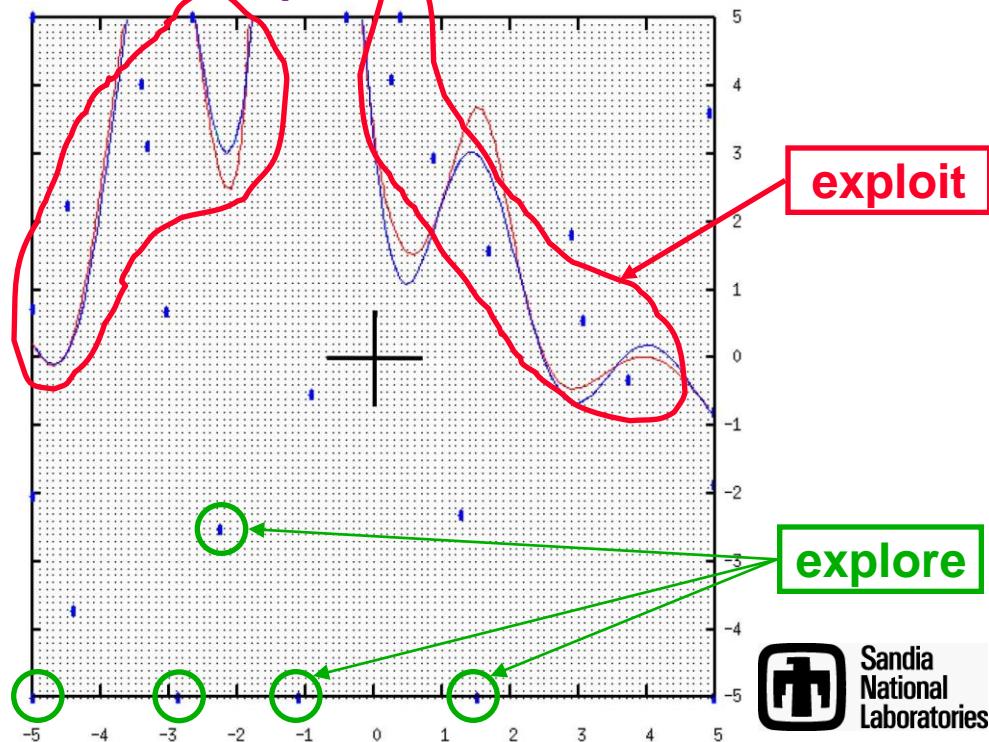
Efficient Global Reliability Analysis: GP Surrogate + MMAIS (B.J. Bichon)

- Apply an EGO-like method to the equality-constrained optimization problem
- In EGRA, an expected feasibility function balances exploration with local search near the failure boundary to refine the GP
- Cost competitive with best MPP search methods, yet better probability of failure estimates; addresses nonlinear and multimodal challenges

Gaussian process model (level curves) of reliability limit state with 10 samples

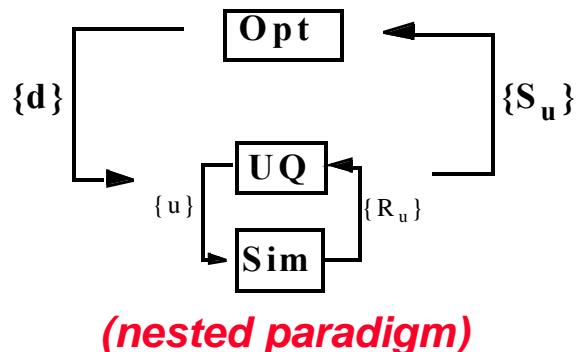


28 samples



Optimization Under Uncertainty

Rather than design and then post-process to evaluate uncertainty...
actively design optimize while accounting for uncertainty/reliability metrics
 $s_u(d)$, e.g., mean, variance, reliability, probability:



$$\begin{aligned}
 & \min \quad f(d) + W s_u(d) \\
 & \text{s.t.} \quad g_l \leq g(d) \leq g_u \\
 & \quad h(d) = h_t \\
 & \quad d_l \leq d \leq d_u \\
 & \quad a_l \leq A_i s_u(d) \leq a_u \\
 & \quad A_e s_u(d) = a_t
 \end{aligned}$$

Bistable switch problem formulation (Reliability-Based Design Optimization):

simultaneously reliable and robust designs

$$\begin{aligned}
 & \max \quad E[F_{min}(d, x)] \\
 & \text{s.t.} \quad 2 \leq \beta_{ccdf}(d) \\
 & \quad 50 \leq E[F_{max}(d, x)] \leq 150 \\
 & \quad E[E_2(d, x)] \leq 8 \\
 & \quad E[S_{max}(d, x)] \leq 3000
 \end{aligned}$$

