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#Why Do We Need To Know the Behavior
of Materials Under Extreme Conditions?

e weapons applications (warheads,
armor, etc.)

 explosives behavior and applications

* inertial confinement

e solar probe
- 100 um particles * planetary science
- up to 300 km/s velocities (P~360 GPa,

- P~ 100TPa, T, ~10°K T~7000 K)




Material Behavior:
EOS & Constitutive Aspects
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Knudson, M. D., M. P. Desjarlais and D. H.
Dolan (2008). "Shock-wave exploration of
the high-pressure phases of carbon."
Science 322: 1822-1825.



;" What is a Shock Wave?

- A “discontinuous” wave that moves at a fixed velocity (if
steady)
- wave front moves at speed U, (shock velocity)
- shocked material moves at speed u,, (particle or mass velocity)
- uniaxial strain condition (¢ =¢,=¢, =¢,,=¢,,=0)
shocked unshocked . States ahead and behind shock

material  material assumed to be in thermodynamic
o,=0, p,, equilibrium
Ow P,E | E, u=0, - well defined temperature in each state
— described by equilibrium
‘fp_, Eg thermodynamics
- Shock compression is adiabatic
- very fast process (< 1 ns)

-~ irreversible (i.e. NOT isentropic)
- temperature typically increases

X ————m

(fixed wrt unshocked material)



«V}*' Conservation Equations
and the Shock Hugoniot

Five variables: oy, u,, U, p, and E
Three conservation relationships (Rankine-Hugoniot jump

conditions)

- By measuring two variables (typically oy, u,, or Uy), the other three
can be determined

conservation of

mass: PoUs=p (Us - uy,)
momentum: o, = p, Usu,
energy: E-E=0.50,(V,-V)

Rayleigh
lines

Hugoniot

V=p"

material loads along the Rayleigh line, so the Hugoniot is a
collection of end states, not a material response curve

the Hugoniot is not a complete equation of state (EOS)!




:}' Gas Guns to Generate
Shock Waves

Single Stage Gun 100mm

IShock‘Thermodynamlcs Applled Researchl

Propellant Gun 89mm '

Two Stage Gun 29mm

gas guns
- launch thin plates (mm’s) at high
velocities

- well-posed, repeatable initial conditions
- sample is in uniaxial strain

. used to study material behavior at high
pressures and strain rates
Chhabildas, L. C., Dunn, J. E., Reinhart, W. D., and Miller,

. Usa b I e | N I a bo rato ry Sett| N g J. M. (1993). "An impact technique to accelerate flier plates

to velocities over 12 km/s," Int. J. Impact Eng. 14, 121-132.

also: explosives, lasers, magnetic loading (Z)



f\ i
> Diagnostics for Dynamic Experiments

Velocity Interferometry
(VISAR & PDV)

Time-Resolved
Spectroscopy
(Visible & IR)

——> position

Pressure

Flash X-rays
* Gauges

Side Debris X-ray
T=12.23E-6s

Vel. =421 km/s—

Advanced Diagnostics: pRad, synchrotron, etc.
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4 %ackground on Dynamic Behavior
‘ of Granular Materials

H. Jae

B. Behringer, Duke

porous S10,, Trunin et al.

reversal due
to thermal

®leffects \ .

 granular materials display a rich variety of behaviors

* significant experimental and modeling challenges
 extensive quasi-static and low-velocity impact work

* determine thermal behavior through P-V work (Trunin, 2004)
 consolidation studied extensively to optimize loading, etc.
 partial compaction region seldom addressed

* applications: dynamic consolidation, energetic / reactive materials,
planetary science, energy/blast absorption, ceramic armor



;;,' Very Early Thoughts on
Particulate Materials

Newton’s Principia, Book Il, 1687:

Si jaceant particulx &, 4, ¢5 45 ¢ in linea reéta, poteft quiders
oreflio direte propagari ab 2 ad e; at
particula ¢ urgebit particulas oblique po-
fitas f & g oblique, & particule illz f & g
non f{uftmebunt preflionem illatam, nift
fulciantur a particulis ulterioribus 5 & £
quatenus autem fulciuntur, premunt par-
ticulas fulcientes; & he non fuftinebunt
preflionem nifi fulciantur ab ulterioribus
[ & m eafque premant, & fic deinceps in infinitum. Preflio igi-
tur, quam primum propagatur ad particulas qua non in diretum
jacent, divaricare incipiet & oblique propagabitur in infinitum s
& poftquam incipit oblique propagari, {i inciderit in particulas
ulteriores, qua non in direCtum jacent, iterum divaricabit; id-
que toties, quoties in particulas non accurate in direftum ja-

centes inciderit. QE?)
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Investigation of Dynamic
Behavior of Granular Ceramics

* investigate dynamic compaction behavior of ceramic powders
(WC, sand, Al,O;, etc.)
 develop 1nsight into physics of dynamic behavior of these

materials and the parameters that influence 1t

« explore a variety of techniques (quasi-static experiments,
mesoscale simulations, etc.) to predict dynamic results

e determine suitability of current models within Sandia codes for
simulating dynamic behavior of powders
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;“" Planar Impact Experiments
on Granular Materials
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multiple sample thicknesses on the same experiment for
accurate shock velocity and uniform powder density;
sealed capsule allows fluid / powder mixtures

Vogler, T.J., Lee, M.Y., Grady, D.E., 2007. “Static and dynamic compaction of ceramic powders.”
International Journal of Solids and Structures 44, 636-658.

Brown, J.L., Thornhill, T.F., Reinhart, W.D., Chhabildas, L.C., Vogler, T.J., 2007. “Shock response of dry
sand.” in Shock Compression of Condensed Matter — 2007, American Institute of Physics, 1363-1366.



Single Stage‘Gun 100mm

Wet Sand Targets
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shock velocity calculated based steady, attenuated
structured

on powder thicknesses and waves
. . waves
arrival times

o
R

* seem to be first time-resolved measurements of steady waves
in granular materials

* since waves are steady, Rankine-Hugoniot jump conditions
can be used even though waves have finite rise times
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#7”Shock Velocities and Hugoniot States
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« impedance matching to aluminum impactor used to
determine Hugoniot stress and particle velocity (o= p,,,Uu,)

* density then calculated from p= p,,U/(U-u,)



‘V;,,/ Compaction Response for
WC and Wet/Dry Sand
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e first reshock state lies above Hugoniot suggesting
elastic response of compacted material

* dynamic response is stiffer than static response for
WC, about the same for sand



:}' Scaling Between Rise
Time of Wave and Stress

for many fully dense materials (Al,
Be, Bi1, Cu, Fe, MgO, S10,, U),
rise times of steady waves scale as
¢ ~ 6% (Swegle & Grady, 1985)

c
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}" Z Pulsed Power Machine

 Generates ~26 MA over 100’s of ns

o Utilize current to generate
magnetic forces

 Magnetic forces create smooth
waves in materials

 Waves used for isentropic loading
(to ~400 GPa) and to launch high-
velocity flyer plates (to ~40 km/s,
pressures > 1 TPa)

; xlh.f shorting cap cathode L VISAR profile
I 25
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Davis, J.-P., Deeney, C., Knudson, M. D., Lemke, R. L., Pointon, T. D., and Bliss, D. E. (2005). "Magnetically driven isentropic
compression to multimegabar pressures using shaped current pulses on the Z accelerator," Physics of Plasmas 12, 056310.



High Pressure Z Experiments

Induced
Magnetic

Field \

Current Powder

[ [samoe 400, 600, 800, and 1000 micron samples
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V =9.9-10.3 and 11.2-11.4 km/s
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> Two Different Forms of Granular Ta,O.

~1.3 g/cc from Cerac ~3 g/cc from American Elements
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X-ray diffraction shows all material is in orthorhombic phase
also 90% dense disks from cold pressing or low temperature sintering



i
ad High-Pressure Shock Results

Z results
\ Tézo;
150 \
P
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T 100 | o possible phase
Poo = 1-2.g7Cm ~ 3.0 glen? _
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. . :/? (<]
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hotter for a ol o -

lower pressure

as pressure increases,
density decreases
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:;9' Mesoscale Modeling of Granular
Materials: Past Work

» collapsing ring of material under external pressure (Carroll &
Holt, 1972; Nesterenko, 2001; Tong & Ravichandran, 1997)

» Williamson (1990) considered a unit cell in a uniform
distribution of particles under dynamic loading

* Benson and coworkers (1994-present) studied compaction of
granular materials (primarily metals) using a 2-D Eulerian
code for a moderate number of grains

 Baer (2002-present) simulated compaction of HMX and
sugar (HMX simulant) using a 3-D Eulerian code for a
moderate number of particles

- follow approach of Benson et al. for larger number of
grains by exploiting parallel computing platforms
- begin with 2-D and determine whether 3-D is necessary
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"~ € .
;,.'»/ Mesoscale Modeling of

Granular Materials

® o
@ . . ’
Vs , : periodic BC’s
_v ‘ ‘. buffer Ll.F ton/bott
a A window on top/o0ttom
O .0

e particles 1dealized as circles (rods) for initial work

* constant velocity boundary condition applied

 run in CTH (explicit Eulerian finite difference code)

* Mie-Gruneisen EOS, elastic-perfectly plastic strength for WC

Borg, J.P., Vogler, T.J., (2008). “Mesoscale calculations of the dynamic behavior of a granular ceramic.”
International Journal of Solids and Structures 45, 1676-1696.

Borg, J. P. and T. J. Vogler (2009). "Aspects of simulating the dynamic compaction of a granular ceramic."
Modeling and Simulation in Materials Science and Engineering 17: 045003.

get at underlying physics of granular materials



~ &
> Computational Dynamic Compaction

Pressure at 0.00e+00 seconds
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A 4

Computational Dynamic Compaction

driver velocity u,=300 m/s

shock thickness on the order
of ~2-5 particles

strong force chains observed

wave smooths in aluminum
buffer
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}"CIose-Up of Compaction Process

300 m/s
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~adl Properties of Propagating Wave

2
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0
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e arrival time of wave suggests
steadiness at all times

e stresses 1n wave front indicate
nearly 0.5 mm required to
reach steady state

e lateral motion >10% of

longitudinal velocity
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f‘_;,// Distributions from 2-D and 3-D
Calculations

Percent Occurance
=)
o

?( —-3D Stiction

‘ —3D Slide |
A 2D Stiction||
\ 2D Slide

10
05 0 0.5
Dimensionless Lateral Velocity
35 :

—--3D Stiction
30¢ —3D Slide
ot o5l B 2D Stiction

S 2D Slide
3 20 {
S
= 15¢
3
5 10
a
5,
0 1000 2000 3000

Temperature (K)

. flelds are smoother in 3-D

- larger lateral velocity and

temperature in 2-D
simulations

-y
o

Percent Occurance

ol

imﬂ‘oﬂlﬂ [ —

Y000

2000 3000 4000 5000
Temperature (K)



|
}J Mesoscale Calculations
with Peridynamics
Y EMU - Parallel, particle-based implementation
of peridynamics (Silling, S. A. (2000). J. Mech.

Phys. Solids 48, 175-209.
includes fracture and contact missing from

CTH

Experimental Sand Hugoniot
| EMU Linear Elastic Hugoniot

1.5
EMU Fracture ¢_=0.0025 Hugoniot o

o, (GPa)

0.5r

0 L L 1 L L L
2000 2100 2200 2300 2400 2500 2600 2700
Density (kg/m3)

Lammi, C.J., and Vogler, T.J. (2011). “Mesoscale Simulations of Granular Materials with Peridynamics,” in Shock
Compression of Condensed Matter — 2011, American Institute of Physics, 1467-1470.



“System Level” Work
providing insight into other problems

Borg, J. P. and T. J. Vogler (2008).
"Mesoscale simulations of a dart

penetrating sand." Int. J. of Impact
Engineering 35: 1435-1440.

0.5

Y (cm)
Y (cm)
=3
0

224 mm Sand with 1.6 mm grains

CTH

224 224 mm sand with 1.6 mm

mm uniform sand
R

coupled FEM /
peridynamics
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“Homogeneous” Materials
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Scaling of Waves in Materials

Granular Materials

Granular Ceramics

wC
[Anderson Tio,
etal,1994] g~g10 . 12
£~G
™~ as-received

10° 107

Zhuang et al.
layered samples

Layered Materials

. 2
Eo< O
SS/PC
SS/PC (fine)
G/PC

G/ PC (fine)
b Al/PC

4

107 108

s e(sY

particulate composites (e.g. WC/epoxy, ALOX, PBX) show 4t power scaling




;;G»'Simulations for Layered Materials
1-D CTH Calculations
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- ..>/ Dimensional Analysis for

Layered Materials

variables of problem:
o, €, h, vi, C, (ps,Pr) OF (Z4,2;)

construct non-dimensional groups:
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Non-Dimensional Simulation Results
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- non-dimensionalization
collapses data for

different layer
thicknesses
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- data for different material
combinations collapse

well using density ratio
(with one exception)
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> Non-Dimensionalized
Experimental Results
1
Zhuang et al. By
0.6 | layered samples & G2
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C. Pi v’

- hon-dimensional experimental results also collapse to a
single curve (approximately to second power)



%" 2-D CTH Simulations of
Granular Materials
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ah> Non-Dimensionalization
of CTH Results
0.3 —————————————m
2-D, WC | 2-D Granular
() 32 um ¢ = 32 um v
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- ® o . ° u
P v
| |
0.01 | ° ¢ Y (GPa) 1 : .. 8 _
m 8 m WC
0.003 L .G ° Z ’ A v ALO,
. € ~ ? * 4 - € ~ ? ss
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-scale wave speeds by square root of volume fraction
(suggested by Steinberg, some validation by Bless)

-Y needed to collapse data, though metals and
ceramics separated somewhat



«::&' Results from a Particle-Based
Peridynamics Code

discretization
of grains

300 m/s 200 m/s
X

-waves are steady
-wave speed increases with V
-width of band decreases with V

-elastic simulations yield same scaling
- Grady’s scaling doesn’t work




;;,af/ Non-Dimensionalization
| of Peridynamics Results
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-no strength in problem is material elastic
-fracture does not seem to affect scaling

-elastic-plastic material (baselin_e? has lower
characteristic wave speed - will shift data upward
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| ..‘>/ Non-Dimensionalization of

Experimental Results

Granular Materials Granular Materials
(0]
and Foam A and Foam
2 2
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-use hardness (H) as characteristic strength
-does volume fraction enter in separately?

-ceramics collapsed better without H, teflon collapsed
better with H

-polyurethane foam (Zaretsky et al., 2012) consistent
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#’ A Simple Scaling Argument

for Granular Materials (2)
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mass transfer across void is critical aspect, thus granular
WC (n=1) and WC/epoxy (n=4) behave very differently
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}’" Topics Not Covered
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e pressure-shear loading and other approaches
N

for measuring strength -
e non-planar and multi-dimensional validation

impactor

experiments
e nanoindentation of individual grains
=

* role of particle fracture

e EOS development for granular materials and
mixtures in the high-pressure regime
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o £ o Conclusions

e planar waves in granular ceramics:
- steady waves with very low wave speeds observed

- dynamic response significantly stiffer than static response for
WC; about the same for sand

- Z. machine attains pressures well above those for gas guns
- shock of porous materials probes thermal behavior of materials

* mesoscale simulations:
- nonuniform stress distribution (force chains) and lateral motion
- 2-D and 3-D results comparable but differences in distributions
- particle methods or other techniques needed for missing physics
- may be suitable for some macroscopic simulations

e scaling of waves:

- strain rate scales with stress to 15 power in granular materials
due to mass transport across pores

- non-dimensional groups identified for heterogeneous materials
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