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0 Why quantum computing
@ New realms of computational power and information security
@ In the news
@ Large funding and research focus

© Realizing a quantum computer
@ Quantum computing 101: A compare and contrast approach
@ Pre-requisites for the existence of a quantum computer
@ Physical realization and models of quantum computing
@ Quantum computer vs. Classical computer

e Error correction in quantum information processing
@ Overview of important quantum gates (operations)
@ A classical error correction example
@ Quantum error correction: an overview

@ Summary
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Outline

@ Why quantum computing
@ New realms of computational power and information security
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Excitement New realms MITN MLF&RF

High gain in unsorted database search

@ Searching an unsorted database with N entries
e Best known classical method, linear search of database, runs
in time proportional to N
e Best quantum algorithm is called Grover’s method and runs in
time proportional to VN
o Impact: database searches, fast estimation of average of a set
of numbers

Runtime of algorithm

Number of entries, N, in unsorted database
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Excitement

New realms MITN MLF&RF

Extra-ordinary gain in prime-factoring of large numbers

A CRYPTO NERD'S
I MAGINATION ¢

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLWSTER TO CRACK \T

NO GooD! TS
U046 -BIT RSAL
BLAST, OUR
EVIL PLAN
\S FOILED! ™~

WHAT WoULD

ACTUALLY HAPPEN:

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNNIL
HE TEUS LS THE PASSWORD.
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Source: http://xked.com/538/
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Excitement New realms MITN MLF&RF

Extra-ordinary gain in prime-factoring of large numbers

@ Factorization of large numbers, N represented by b-bits
e Best known classical method, known as General Number Field
Sieve (GNFS) is very inefficient

2
@ Has exponential runtime of O (exp ((%\/Blog b) 3))

e Best known quantum method known as Shor’s method is
efficient and faster than its GNFS counterpart
e Has polynomial runtime of O (b*)
e Impact: Public-key encryption using RSA security algorithm

Lower constant of proportionality Higher constant of proportionality
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Excitement New realms MITN MLF&RF

Extra-ordinary gain in prime-factoring of large numbers

@ Factorization of large numbers, N represented by b-bits
e Best known classical method, known as General Number Field
Sieve (GNFS) is very inefficient
2
3

@ Has exponential runtime of O (exp ((%\/Blog b) ))

e Best known quantum method known as Shor’s method is
efficient and faster than its GNFS counterpart
e Has polynomial runtime of O (b*)
e Impact: Public-key encryption using RSA security algorithm
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Excitement New realms MITN M

Physically vs. Computationally secure encrypted

information

@ Information security based on physical (nature) not computational
constraint for exchanging secure keys

e The physical constraints are due to natural phenomena:
@ we cannot clone a qubit; a qubit is the basis of information in
quantum systems
@ a measured qubit conveys no information about its previous
value
e Commercial companies providing quantum key distribution
(QKD) systems are:
@ id Quantique in Geneva, Switzerland,
@ MagiQ Technologies in New York, USA, and
© QuintessencelLabs in Australia.
o Current state-of-the-art is secure communication of
1 Mbits/sec over 20 km
e Impact: Provably secure communications, Cyber security
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Excitement

Motivation: In the news

@ Excerpts from Science Daily (http://www.sciencedaily.com)

e Major Step Taken Towards ‘Unbreakable’ Message
Exchange (August 3, 2012)
Photons have been produced and implemented into a quantum
key distribution link, paving the way for unbreakable
communication

e Quantum Physics: New Insights Into the Remote Control
of Quantum Systems (August 6, 2012)
Answering questions on resource requirement for achieving
quantum information processing

e Quantum Cryptography Theory Has a Demonstrated
Security Defect (August 7, 2012)
Researchers at Tamagawa University challenge the present
theory that unconditional security exist in the security theory
of quantum key distribution based on true random sequence

generation
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Excitement New realms MITN MLF&RF

Motivation: Large research focus

@ Sandia National Laboratories Quantum Information Science group

@ Microsoft’s Station Q group with focus on topological form of
quantum computing, and Microsoft’s QuArC group with focus on
scalable, programmable quantum computer and the optimization of
algorithms

@ D-Wave, The Quantum Computing Company
(http://www.dwavesys.com)

@ IBM’s Quantum Information group with focus that includes fault
tolerance, error-correction, authentication

@ Georgia Institute of Technology GTQI group
@ MIT Center for Theoretical Physics
@ California Institute of Technology I1QI group
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Requirements 101 prereq phyreal quant vs class

Outline

© Realizing a quantum computer
@ Quantum computing 101: A compare and contrast approach
@ Pre-requisites for the existence of a quantum computer
@ Physical realization and models of quantum computing
@ Quantum computer vs. Classical computer
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Requirements

approach

101 prereq phyreal quant v

Quantum computing 101: A compare and contrast

Classical

Quantum

Basis of information

Bits: 0 or 1

2-level system

Qubits: [1) = (Z
infinitely possible vectors
or states with the restriction that |||¢)[2 = 1

ee. 0= (5). 19 = (53)

Gates

AND, OR, NOT

generally irreversible

Any unitary matrix, M: (MJVM = MMt = 1)
e.g., ldentity or Idle rotation, | = (1 0)

0 1
Bit—flip,X:(O 1)

1 0
reversible operations
Can transport (qu)bits Yes Yes
Can clone (copy) (qu)bits Yes No
Effect of measurement Nothing Destroys original qubit
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Requirements 101 prereq phyreal quant v

Cloning qubits is impossible: A No-go Theorem

@ One can make multiple copies of an a priori known qubit, but...

@ One cannot make a gadget that makes copy of any arbitrary input qubit

Proof

If such a gadget existed, then it should do the following: |¢) — |¢) ® |¢) = |11)). Let such a gadget be
represented by the linear operator, C. The requirement for linearity of the operator comes from Schrodinger's

equation. Then,

Cly)y = |vd)
By the same token, we expect c oy _ 00) @)
cly = [11) @
c(0) +11)) = (l0oo) +[11)) 3)

The last line comes from the linearity property of the operator C, which contradicts the expected result of
c(loy +11)) = (lo) + 1)) ® (|0} + [1})
#  (|00) +[11))

Thus, no such gadget can exist; we call this the No-cloning Theorem. O
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Requirements 101 prereq phyreal quant v

Quantum measurements are ‘“‘destructive”

@ Measurements are projective: qubits are collapsed to an eigenbasis
of the measurement operator

@ Think of measurements as observations that done in a chosen
reference frame

@ In classical computing, we have the single frame of “1” or “0" for
bits, but for quantum computing, we have an infinite set of such
reference frame

@ A complete set of projective operators, I;, i € {0,...,n— 1}, for
quantum measurement satisfies

Q@ NZ2=n; Vi
=il
2] Zf:o My =1
© A qubit |¢) observed with the projection, I1;, becomes I; |¢))

with probability +/(|M;[)

© An example is a single-qubit measurement in the standard

10 0 0
basis with n =2 ﬂ0—< > I'I1—< ) _
= o o) T 0 1 M
Laborat
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Requirements 101 prereq phyreal quar

Pre-requisites for the existence of a quantum computer[l]

© 0

© 60600

Existence of a scalable physical system with well characterized qubits
Capability to initialize the state of the qubits to a simple pure state

Existence of long relevant decoherence times, much longer than the
gate operation time

Existence of a universal set of quantum gates
Existence of a qubit-specific measurement
Capability to inter-convert stationary and “flying” qubits

The ability to faithfully transmit flying qubits between specified
locations
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Requirements phyreal

Physical realization and models of quantum computing

E Trapped ion @Trapped atom Photenic @Quanium dot Superconducting E Quasiparticle
N i |
LI - d X m
b\\x i ] = - \% 3 ,-b -
AN w iz X 2
> e = B
LS ‘ —— =

Source: Technical Overview presentation on AQUARIUS Grand Challenge
(Third EAB)

@ Physical realization of qubits; think of vacuum tubes and transistors
for bits

Quantum dots (non-mobile)

lon traps (mobile)

Neutral atom laser (non-mobile?)
Photons (mobile)
Superconducting flux (non-mobile) @Sa"‘"a
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Requirements 101 prereq phyreal quant vs class

Physical realization and models of quantum computing

Quantum circuit for factoring 15= 3 x 5

T
Quantum braid for a single CNOT gate, with four anyons encoding one qubIt (Ising anyons)

Source: Technical Overview presentation on AQUARIUS Grand Challenge
(First EAB)

@ Models of quantum computing

e Circuit or network model
e Adiabatic quantum computing model _
o One-way (Cluster state) computing model @ﬁ&"ﬂ%

Laboratories



Requirements 101 prereq phyreal quant vs class

Quantum computer vs. Classical computer

@ A quantum algorithm vs. a classical algorithm

e Fact: Every problem that can be solved on a classical
computer (CC) can be solved just as “efficiently” on a
quantum computer (QC)

e Fact: There are problems (such as factoring) that have
significantly more efficient algorithms in a QC than a CC

e Hence, the high motivation to have a quantum computer

o What we do not know: There exists problems that a QC can
solve more efficiently than CC
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Gates CEC QEC

Outline

e Error correction in quantum information processing
@ Overview of important quantum gates (operations)
@ A classical error correction example
@ Quantum error correction: an overview
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Focus Gates CEC QEC

Pauli operations (1)

o /=0p= (é 2) . Identity/no-operation/memory.

e X=0x= <(1) (1)> . Bit-flip.

e /=07= ((1) _Ol> . Phase-flip.

o Y=oy = ((l) _OI> where i = v/—1 : Phase- and Bit-flip.
@ The set of all possible Pauli operations on a single qubit is

P1={1,X,Y,Z}, modulo-{£1,Fi}

e NOTE: VG € Py, Gt = G and G2 = | (unitary), Vk € N.
Thus, all Pauli operations are valid quantum gates!
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Focus Gates CEC QEC

Pauli operations (I1)

@ Any valid quantum gate, U, can be expressed as a sum of
Pauli gates. Simple case, take a generic

U= <u11 u12> € C*2, then

U1 U
Y i J2r Uz | 12 ;L Uon g o i(U122 L121)Y+ u11 g uz2

In fact, this actually works for all matrices, but this is
irrelevant to us in our current scope.

@ Simple case can be seen with the Hadamard gate,

11
_ 1 _ X Z
H_ﬁ<1 —1)‘@*@
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Gates CEC QEC

Clifford gates

o Clifford gates.
e Definition: Any quantum gate, G, that maps a Pauli operation
to the same or a different Pauli operation. Essentially, any
gate that satisfies the property

GPGt e P.

e Note that all Pauli gates are Clifford gates.

e There are other Clifford gates. The set of all single qubit
Clifford gates is the set generated by the group
C=PU{H,S}.

e Quantum circuits with only Clifford gates and Pauli errors can
be simulated efficiently on a classical computer.
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Focus Gates CEC QEC(

A classical error correction example

@ Let us start with what we have good familiarity: classical
repetition code
e Assume a binary symmetric error channel (0 and 1 have equal
probability of getting flipped)
e Replace a logical-0 bit by 00...0 and a logical-1 bit by 11...1
—— —

0 1
e Majority vote at the output is the name of the game

/ //
o8l

Output probabilty

0.8

x3 3
Input probability Sandia
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Quantum error correction: nomenclature

@ Qubits and quantum gates are highly sensitive to different noise
sources: “detaching”-nature (decoherence), temperature, control
noise, and quantization error.

@ Notation: An [n, k, d] error-correcting code is one where there are
k logical bits, n physical bits used to represent them, and d is the
“distance” of the code. An [n, k, d] code can fix erroneous sets of
n-length bits as long as there are less than % bits in error

@ Re-visit error correction in classical computing

e A [3,1,3] repetition code: 0+~ 000, 1+ 111
e We can correctly fix any single error by majority voting
@ We can also fix double errors by majority voting, but
incorrectly!
e Quantum error-correcting code: similar idea but qubits are
protected against a wider spectrum of errors
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Focus Gates CEC QEC

Quantum error correction: The Stabilizer formalism (1)

@ We denote the stabilizers of a code by the set S; this set does
not change the state of any codeword.

@ We denote the errors by the set E; this set causes the
codeword to change state and anti-commutes with S.

@ We denote the logical operators of the code by L; this set
does a valid operation on a codeword and can result in
another codeword; they do commute with the stabilizers, S

@ An example: the quantum repetition code (only fixes bit-flip,
X)

o Codewords: |0) — |000), |1) — [111)

o S={Ill,ZZI,ZIZ,1ZZ}. Note: lll = ® | ® |
(Kronecker/Tensor product)

o L={XXX,ZZZ,..}

o E={XIl,...}
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Focus Gates CEC QEC

Quantum error correction: The Stabilizer formalism (I1)

@ Two matrices, A and B, commute if AB = BA and
anti-commute if AB = —BA

@ The X and Z matrices anti-commute with each other, but
obviously commute with themselves

@ Suppose that a single bit-flip error (X) occurred, then it will
anti-commute with at least one of the repetition code
stabilizers and we can fix it

@ In general, there are infinitely many single qubit errors
that do not fit bit-flip and so require more general code
to fix
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Summary

@ Quantum computers are now strongly believed to be highly
more efficient than classical computers for certain problems.

@ By their nature, error correction is inevitably needed for
sensible quantum information processing.

@ This area of research still has significant challenges to
overcome, ranging from universal quantum computing to
fault-tolerance
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Questions

Thank you for being here!
Q&A
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Teasers

So, you still want to know more
(Teasers)



References

How can we still correct errors, when we canno

copy

Granted, we cannot copy an arbitary qubit, we can copy the error on the qubit

Unlike in classical computing where a perfect observation (measurement) gives the value of a bit with
certainty, ...

...a perfect quantum measurement is still probabilistic; wrap your mind around this reality

A measurement always projects the input qubit into one of its eigenbasis

However, coupling qubits with helper or ancilla qubits allows us to do two things

o Replicate the error on our data qubit onto a set of ancilla qubits
e Apply projective measurements on the ancilla qubits

e Decode the error that most likely occurred and apply the error-mitigation method
@ Thus, we have the power to do quantum error-correction without copying or observing the data directly

@ Caveat: the data qubits must be encoded in a sufficient error-detecting or error-correcting code
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