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Abstract

Detrimental ecological impacts have often been observed or anticipated when changes in
streamflow indicators exceed percent deviation thresholds believed to be ecologically critical.
Yet, short pre- and post-impact flow records often make it difficult to determine whether changes
exceeding tolerable thresholds are due to dam operations or natural variability. Through a
hypothetical reservoir operations example, we incorporate the uncertainty of dam-induced
streamflow changes into a Bayesian decision tree framework that evaluates tradeoffs between
expected regrets associated with hydropower and ecology. The likelihood of over-protection
(type 1) and under-protection (type II) errors associated with hypothesis tests are used to compute
expected hydropower and ecosystem regrets associated with dam operation decisions. We
examine changes to high (annual QS5) and low flows (annual Q95) in typical years using a
modified and extended nonparametric ranked-sum test that accounts for percent deviation
thresholds. A multiple comparison test is then used to determine the likelihood of at least one
threshold violation. An example shows that our decision-theoretic approach can lead to different
dam operation recommendations than do other common methods, and highlights limitations that
arise when the type I error rate is selected a priori. While we illustrate a hydropower-ecosystem
tradeoff, our approach can also be applied to other multi-stakeholder reservoir and river

management conflicts.
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1. Introduction

Reservoirs provide storage for water supply, hydroelectric production, flood control,
irrigation, recreation, and other conservation needs. The retention and selective release of water
downstream modifies the flow regimes that sustain riverine ecosystems. As dams alter pre-
existing flow regimes in myriad ways (McManamay ef al., 2013), their effects on downstream
ecosystems are diverse (e.g. Carlisle et al., 2011). The composition of species in riverine
ecosystems often changes following the commissioning of dams with large storage capacities
that regulate high- and low-flow extremes (e.g., Poff et al., 2007; Mims and Olden, 2013).
Prescribing operating rules that sustain pre-dam ecosystems has become an increasingly
recognized challenge, especially when flow manipulation benefits off-stream human interests
(e.g., Cardwell ef al., 1996; Suen and Eheart, 2006; Poff et al., 2009). Short streamflow records
make it more difficult to determine whether ecosystem changes are due to dam impacts or
natural variability (e.g. Kennard et al., 2010; Nikghalb et al., 2016). Moreover, there are few
guidelines for incorporating uncertainty stemming from short streamflow records into these
tradeoffs.

Streamflow has been identified as the primary driver in riverine ecosystems (Power et al.,
1995; Walker et al, 1995) since it influences ecological conditions through changes in velocity,
depth, temperature, water quality and substrate (e.g. Poff et al. 1997; Jager, 2014; McManamay
et al., 2015). Indeed, many interconnections between streamflow and habitat conditions are
indirect, which can moderate any apparent correlation between hydrologic alteration and
ecological responses (e.g. Jager, 2014; McManamay, 2015). Yet, the availability of streamflow
data relative to other proximate indicators of ecological degradation has generated tremendous

interest in characterizing ecological responses to flow alteration, including reviews by Poff and



Zimmerman (2010) and Webb et al. (2013). Flow-based approaches to managing environmental
flows can also be implemented in data-poor regions where hydrologic and ecological monitoring
can be more challenging (McKay, 2015; Lamouroux, 2015; Eriyagama et al., 2016). Institutions
representing ecological interests, such as The Nature Conservancy, have recently promoted
expert-elicited flow-ecology relationships in stakeholder negotiations (e.g., Kendy et al., 2012;
Steinschneider et al., 2015). In this paper, we introduce a tool suited for assessing impacts to
species and communities whose overall welfare (e.g. abundance, diversity) is well correlated
with deviations in flows from pre-impact conditions.

Determining the extent to which dam operations change a flow regime is not always
straightforward. Indeed, dam operations can be deduced through water balance equations if there
are flow gauges both up- and down-stream of the dam, or reservoir water level measurements
and an up- or down-stream gauge. However, in other cases, only a downstream gauge may exist.
In such situations, how does one evaluate the likelihood that differences in exceeding perceived
ecological thresholds between pre- and post-dam periods arise from dam operations alone, rather
than due solely to the natural random variability of streamflow between the two periods? These
uncertainties, which are especially large when there are short pre- and post-dam streamflow
records (e.g. Kennard et al., 2010; Williams, 2017), confound efforts to develop relationships
between flow alteration and ecological responses.

To date, only a handful of studies have examined hypotheses of dam-induced hydrologic
alteration within a statistical framework (Botter et al., 2010; Kennard et al., 2010; FitzHugh,
2014; Taylor et al., 2014; Kroll et al., 2015). Importantly, these studies evaluated changes in the
natural flow regime without considering thresholds of alteration beyond which species may be

adversely impacted (see Poff and Zimmerman, 2010; Kendy et al., 2012; Steinschneider et al.,



2014), a unique feature considered in this study. The strict preservation of the natural flow
regime is often impractical or infeasible (Kendy et al., 2012; Kopf et al., 2015). Even if an
ecosystem indicator worsens with flow alteration, stakeholders may still consider a maximum
allowable degree of alteration. Thresholds expressed in terms of percent deviations from pre-dam
conditions can be applied across sites exhibiting similar ecosystem and hydrologic behavior
without the detailed site-specific information necessary for identifying flow magnitude
thresholds. They have also been increasingly advocated because they preserve natural flow
variability better than alternative policies, such as those requiring constant or seasonally varying
minimum flows (e.g. Smakhtin ef al., 2004; Vogel et al., 2007; Richter, 2009; Richter et al.,
2012; Razurel et al., 2015; Rheinheimer et al., 2016).

While hypothesis testing has been increasingly applied to characterize changes in flow
statistics deemed important for managing riverine ecosystems (e.g. FitzHugh, 2014; Taylor ef al.,
2014; Kroll et al., 2015), reservoir operators are left with little guidance regarding how to use
such tests for prescribing reservoir release operating rules. Hypothesis test results have potential
societal consequences, as they can lead to unnecessary changes in operating rules that reduce
reservoir benefits or avoidable ecological consequences when release rules are not changed. We
apply a Bayesian decision-tree framework based on statistical decision theory (e.g. Wald, 1939;
Berger, 1993) to incorporate the uncertainty associated with decisions concerning violations of
alteration thresholds into evaluations of tradeoffs between flow benefits for off-stream
(hydropower) and in-stream (ecosystem) users. Decision trees have been applied to other water
resources problems concerned with uncertain environmental changes, including the potential
ecological effects of effluent discharge (Mapstone, 1995), planning hydraulic infrastructure

under uncertain future lake levels (e.g. Hobbs ef al., 1997), building barriers for possible storm-



surge increases (Rosner et al., 2014) and optimization of removal of barriers to fish passage
(O’Hanley and Tomberlin, 2005). To highlight the value of our probabilistic framework, we
compare our findings with results obtained using (i) non-probabilistic methods and (ii) null
hypothesis significance testing (NHST), a widely-used approach that examines only the chance
of falsely concluding a threshold violation, i.e. a type I error. For illustrative purposes, we
compare flows at a downstream station with and without the reservoir in place using a Before-
After impact analysis. This experimental design ensures that differences between the two flow
regimes arise from either random sampling variability or dam operations, thus avoiding the need
to consider confounding factors that may explain differences between them.

Our decision-oriented hypothesis testing approach can be applied to reservoirs and dams
with a range of off-stream benefits, including water supply, hydropower, and flood control.
However, in this study, we demonstrate the effects of seasonal flow alteration from a baseload
hydropower dam. Over the next two decades, many hydropower dams are slated to be built in
highly biodiverse basins with short streamflow records (Winemiller et al., 1996; Zarfl et al.,
2015) and little transparency about operating rules (e.g. Lauri et al., 2012). While studies
examining hydropower-ecological tradeoffs under different dam operating rules have
proliferated (e.g. Halleraker et al., 2007; Rendfalt et al., 2010; Yang and Cai, 2011; Jager, 2014),
including ones revising operating rules when renewing licenses (e.g. Pearsall ef al., 2005), few
studies share our focus on the extent to which the uncertainty of differences between pre- and
post-dam flows affect dam operating decisions.

The remainder of the paper is structured as follows. First, we formulate a hypothesis test
for examining the likelihood that changes in high- (annual Q5) and low-flow indicators (annual

Q95) indicators exceed percent-deviation thresholds — and are not due to random sampling



variability. Next, we integrate a Bayesian decision tree framework, which considers the
likelihood of under- and over-design interpreted from Type I and II hypothesis testing errors,
respectively. We then describe the hypothetical baseload hydropower reservoir with which we
demonstrate our method, before discussing limitations and possible extensions of our decision-

theoretic approach and offering concluding remarks.

2. Testing for violations of hydrologic alteration thresholds

This section describes our approach for examining whether changes to ecologically
important AFDC quantiles violate percent-deviation thresholds. First, we present a hypothesis
test that detects violations for individual AFDC quantiles. Then, we present a multiple
comparison (field significance) test to determine the likelihood of one or more threshold
violations associated with an ecologically critical AFDC quantile.

2.1 Annual flow duration curves

Another challenge with implementing hydrologic methods is choosing indicators of
alteration that recognize the distinct ways in which different riverine species respond to
hydrologic alteration, yet can easily be incorporated into reservoir operation rules. Flow duration
curves (FDCs) indicate the probability that a daily flow of a given magnitude will be exceeded.
An FDC may be thought of as a graphical signature which summarizes a river’s overall
hydrologic behavior. They have been used in an extremely wide range of water resources
applications, including hydropower design, habitat assessment, flood abatement, and water
quality evaluation (Vogel and Fennessey, 1995; Castellarin et al, 2013). They underpin
environmental flow management in data-poor regions, including India (Jain, 2015) and Sri Lanka

(Eriyagama ef al., 2016) and are useful in regions where other indicators inform environmental



flows management (e.g., Tennant et al., 1976; Renodfalt et al., 2010). While period-of-record
FDCs computed from daily flows in pre- and post-dam periods offer a signature of the flow
variability over an entire station record, they cannot assess changes in typical years between pre-
and post-dam periods. In contrast, annual FDCs (AFDC’s), introduced by Vogel and Fennessey
(1994), represent the variability of flows within a single water year. Sets of AFDC’s depict the
within- and between-year hydrologic variability and can be used to construct confidence
intervals for FDCs (Vogel and Fennessey, 1994). In addition, the median AFDC can reveal high-
and low-flow conditions representative of a typical year. Figure 1 shows pre- and post-dam
AFDCs from the stylized example presented in Section 4, in which we examine long-term
decreases in typical annual values of high in-channel flows (QS5) and long-term increases in
typical low flows (Q95) due to the flow homogenization effects of baseload hydropower. High
in-channel flows are essential for flushing sediment and pollutants and are often correlated with
ecologically critical flood flows. Meanwhile, low-flow increases can cause drought-tolerant,
native species to be replaced with generalist species that favor conditions created by less
seasonally variable flows (Carlisle et al., 2011; Mims and Olden; 2013, Nikghalb et al., 2016).
The acute flat-lining effect visible in the post-dam flow plot indicates the turbine discharge
capacity that constrains reservoir releases when storage is adequate. While AFDC’s do not
indicate temporal flow sequences, hypothesis tests of AFDC’s can address some ecologically
important timing issues if the intervals over which FDCs are computed match the timescale of a
problem, e.g., using seasonal FDCs for changes in hydrologic conditions during spawning
periods (Gao et al., 2009).

[INSERT FIGURE 1]

2.2 Threshold violations of individual AFDC quantiles

Our hypothesis test determines the likelihood that differences in an AFDC quantile
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between pre- and post-dam periods in excess of a tolerable percent deviation threshold are not
due to random sampling variability, but rather to dam operations, i.e. a proof by contradiction
(Cohn and Lins, 2005). Conventional hypothesis tests with a null hypothesis of no change, i.e. no
threshold violation, and an alternative hypothesis of change, i.e. a threshold violation,
accommodate this dichotomy of “acceptable” and “unacceptable” changes well (Figure 2). If a
threshold violation is not detected, then it implies we should keep existing dam operating rules.
Conversely, a violation implies a need to change reservoir operations to ‘protect the
environment’.

Figure 2 shows that a type I error corresponds to the likelihood of detecting a threshold
violation when, in fact, there is no violation. We denote this type I error probability a =
P(CA|NA), where P(CA) is the probability of concluding alteration, and P(NA) is the
probability of no alteration. A type I error amounts to an overdesign error and implies that
hydropower production would be reduced unnecessarily if a more ecosystem-friendly operating
rule were chosen. The probability of a type II error indicates the likelihood of not detecting a
threshold violation when there is one. It amounts to an under-design error from an ecosystem
protection perspective and signals the possibility of adverse ecosystem impacts. We denote this
probability [] = P(CNA|A), where P(CNA) is the probability of concluding no alteration beyond
a percent-deviation threshold from the test and P(A) is the probability of a violation of an
alteration threshold. Of perhaps greatest interest is the power of the hypothesis test 1-[1[J which

reflects our ability to detect alteration when present.

[INSERT FIGURE 2]

A two-sample hypothesis test comparing pre- and post-dam AFDC quantiles is needed to

evaluate the likelihood of making decisions concerning violations of various alteration



thresholds. For instance, this test could compare the distributions of m different annual Q95
values in the pre-dam period with n different annual Q95 values from the post-dam period. The
overarching objective is to classify the difference between the pre- and post-dam AFDCs as
either: (i) alteration within a tolerable threshold, i.e., “no alteration”, or (ii) alteration exceeding a
tolerable threshold, i.e., “alteration”.

Kroll et al. (2015) found two promising tests for testing for changes of any magnitude in
annual flow duration curves. These two tests offer a viable starting point for devising a
hypothesis test that can assess changes in thresholds of stakeholder-identified flow indicators.
However, these two tests pose problems for assessing hydropower-ecosystem tradeoffs. First,
their confidence interval (CI) test assumes that AFDC quantiles are normally distributed, which
is often not the case downstream of hydropower dams due to turbine release constraints and
other operational caveats (Botter et al., 2010; FitzHugh, 2014). Their nonparametric Kuiper test
(Kuiper, 1960), which accommodates non-normal distributions, identifies the maximum positive
and negative differences between the cumulative probabilities of pre- and post-dam flows to
assess the likelihood of distributional change. While accounting for these two differences make it
suitable for analyzing reservoir-induced annual flow regulation, it does not examine changes in
pre-determined flow durations, indicators that are often used to assess flow alteration in
environmental flows management (Kendy et al., 2012).

In contrast, the nonparametric Mann-Whitney-Wilcoxon test can be used to evaluate
differences between individual AFDC quantiles of interest without concern over distributional
hypothesis of AFDC quantiles. A multiple comparisons test can then be used to draw
conclusions about the overall likelihood of hydrologic alteration from tests applied to individual

quantiles. Similar field significance approaches for estimating the overall likelihood of type I and



IT errors from a series of hypothesis tests assessing changes in individual indicators of concern
have been advocated for other infrastructure design problems recently (Reiff ez al., 2016).
2.3 Mann-Whitney-Wilcoxon test

We first illustrate the Mann-Whitney-Wilcoxon (MWW) test for a simplified case in
which any change in flow for a given AFDC exceedance probability constitutes alteration. This
test assesses the likelihood that the difference between pre- and post-dam distributions of a given
AFDC quantile, Qpre and Qp4s¢, belongs to either a “no alteration” class corresponding to a null
hypothesis of no change in distribution, or an “alteration” class corresponding to an alternative
hypothesis of changes in distribution. First, to compute the type I error, we can express the null
hypothesis as Hy: Qpre = Qpose and the alternative hypothesis as either Hy: Qpre > Qpost OF
Hy: Qpre < Qpost depending on the direction of hypothesized change. In Section 2.4, we describe
an adjustment to the test that enables us to examine threshold exceedance hypotheses. While our
Before-After experimental design may suggest the need for a paired sample hypothesis test, such
as the Wilcoxon signed-rank test, the MWW test can also be applied to independent, unpaired
samples representing pre- and post-dam records of different lengths. See Yue and Wang (2002)
for a detailed appraisal of this test for different sample distributions and properties.

[INSERT FIGURE 3]

Figure 3 shows an example of the distribution of AFDC quantiles corresponding to a
possible post-dam decrease in a flow indicator. Two possible AFDC quantile outcomes, “no
alteration” and “alteration”, each have probability distributions with locations defined using the
MWW test statistic U. U describes the difference between the AFDC quantiles corresponding to
the two samples of lengths m and n, respectively. To compute it, each flow value in a sample of

length m corresponding to an AFDC quantile of interest m is paired with every flow

10



corresponding to the same AFDC quantile in the sample of length n, yielding m*n pairs. The test
statistic U summarizes the number of pairs for which the alternative hypothesis is true, which, in
turn, indicates the extent to which a given AFDC is stochastically greater than the other. In
contrast, a value of zero means that all post-dam flows corresponding to a given AFDC quantile
are greater than all pre-dam observations, and is the strongest evidence possible against an
alternative hypothesis of lower pre-dam flows. A value of (m*n)/2 would signal that the two
samples cannot be distinguished from each other. Mathematically, the U test statistic is

computed as follows:

U= izgo(omi ~ Qpost) M

i=1 j=1
where ¢ (Qpre, = Cpost ;) = 1 if Qpre, = Qpost, > 0 and is equal t0 0 if Qpre, = Qpost; < 0.
Another unique feature of this test is that Shieh et al. (2006) derived the probability distribution
of U under both the null and alternative hypotheses. When both samples are larger than eight, a

standardized U statistic, termed Z, may be approximated by a standard normal distribution under

the null hypothesis:

_ (U — po)
=

Z (2)

where y, and g, are the mean and standard deviation of the U statistic under the null hypothesis,

and are both functions of only the known sample sizes m and n:

m=*n

= 3

Ho 2 (3)
m+n+x(m+n-+1

o = ) @

12

When the size of both samples is less than eight, an exact empirical distribution of U

under the null hypothesis should be computed from the ranks using formulae given by Mann and
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Whitney (1947). Bellera et al. (2010) describes applications of this test to small samples of
unequal length. Type I error probability estimates from this test may be distorted if the variances
of Qpreand Qs differ significantly and corrections to the null hypothesis assumption of equal
variances are not made (Kasuya, 2001).

In contrast with conditions under the null hypothesis, determining the probability
distribution associated with U under the alternative hypothesis is much less straightforward
because the distribution of U is unknown. Unless a Markov chain Monte Carlo method is applied
(Lee, 2014), one must define an alternative hypothesis based on a given distributional
assumption (Blair and Higgins, 1980; Shieh ef al., 2006) or run Monte Carlo simulations (e.g.
Neave and Granger, 1968; Yue and Wang, 2002; Kroll ef al., 2015) to determine type II errors.
Kroll et al. (2015) demonstrate that a normal distributional hypothesis associated with the
estimated quantiles from an AFDC could not be rejected across 80 percent of all exceedance
probabilities considered in a set of 20-year pre-dam and 10-year post-dam daily flow records at
117 United States Geological Survey (USGS) stations. We have found that this assumption is
especially suitable for quantiles near the median flow (Q50). In this initial study, we assume
alternative hypotheses in which AFDC quantiles are well approximated by standard normal
distributions and standardize both Q. and Qs With the pre-dam mean and standard deviation.
In practice, transformations could normalize AFDC quantile distributions, if needed. We apply
an analytical large-sample method from Shieh er al. (2006) based on standard normal
distributional assumptions to estimate the probability of type II errors associated with a MWW
test. Shieh et al. (2006) express the mean of the test statistic U under the alternative hypothesis,

which we term p, , as a function of the two sample sizes and the difference between their sample

means 6:
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G .

where @() denotes the cdf of a standard normal variate. Shieh et al. (2006) give the standard

deviation of U under the alternative hypothesis as:

e bl o men-o o))

where Z is a standard normal random variable defined in (2). To evaluate ¢, we approximate

the term E [{CD(Z + @)}2] by numerically computing the average value of {CID(Z + é)}z using

the Z scores for quantiles ranging from 0.0005 to 0.9995. Using u4 and o4, we then estimate the

power of the test (1 — f8) as follows:

Ha — Uo — Za00>

1= = PU > o + 200} = ¢ >

(7)

where « is the type I error probability and z, is the 100(1 — a) percentile of the standard
normal distribution. For a given value of z,, the power 1 — £ rises as the difference between the
means of the alternative and null distributions of U increases. Figure 4 illustrates the tradeoff
between the likelihood of type I and type II errors, and shows that, if one is more concerned with
designing a test with a low false positive (type I error) rate, there is a greater chance of obtaining
false negatives (type II errors). In other words, the likelihood of over-protection and the
likelihood of under-protection are inversely related. The concavity of this tradeoff curve
increases with (i) the difference between pre- and post- dam flows and (ii) the length of the

station record before and after dam is commissioned.

[INSERT FIGURE 4]
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2.4 Adapting the MWW test for use with percent deviation thresholds

Next, we describe how to modify the MWW test to determine the likelihood that a typical
pre-dam flow deviates from a typical post-dam flow by more than a given threshold. The MWW
test cannot directly evaluate hypotheses regarding percent deviation thresholds because the
values of the observations are transformed into ranks. Thus, for the MWW test to account for the
percent deviation thresholds being examined, we must scale the pre-dam flows Q. with the
tolerated percent deviation before testing hypotheses that pre-dam flows differ from their post-
dam counterparts so that:

Qpre-scatea = Qpre * (1 + d) (8)
where d indicates the percent deviation threshold tolerated. The probability of type I and II errors
of the threshold-adjusted MWW test indicate the likelihood that (i) the threshold will not be
violated when the test suggests it will be and (ii) it will be violated when the tests suggests it will
not be, respectively. With (8), we can test a hypothesis that the post-dam flows are greater than
the pre-dam flows without specifying a given shift. Monotonic transformations can be applied to
ensure Qpre—scatea aNd Qpose have similar variances without changing the order of ranked
observations from the two samples.

[INSERT FIGURE 5]

To illustrate the modification of the MWW test for percent deviation thresholds, we
assume the post-dam values for a hypothetical high-flow AFDC quantile follow the same
distribution as its pre-dam counterpart, except that they have been reduced by 30%. If we
evaluate the presumptive flow standard from Richter ef al. (2012), which specifies that a
decrease exceeding 20% could cause adverse ecological impacts, we first scale the pre-dam

flows by 0.8, i.e. d = - 0.2. Then, we perform a MWW test in which the null hypothesis states
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that the scaled pre-dam flows are less than or equal to the post-dam flows, i.e. no violation of an
alteration threshold, and the alternative hypothesis is that the scaled pre-dam high flows are
greater than the post-dam high flows. In other words, we hypothesize a violation of the alteration
threshold because the post-dam flows are still lower than the scaled pre-dam flows. The location
of the mode of the post-dam flow distribution to the left of the pre-dam ones in Figure 5 indicates
that the probability of a threshold violation not due to sampling uncertainty exceeds 50%. Again,
monotonic transformations can be applied to ensure Qpre—scaiea and Qpos: have similar
variances without changing the order of ranked observations from which the test draws
conclusions.
2.5  Hypothesis tests of overall change in AFDCs

Next, we assess the likelihood that dam operations cause violations of alteration
thresholds for at least one ecologically critical AFDC quantile. Multiple comparison procedures
assess the overall, or field, significance associated with the repeated application of a hypothesis
test applied to independent sub-samples of a phenomenon (e.g. Thompson et al., 2011; Reiff et
al., 2016). Assuming the high (Q5) and low flows (Q95) are statistically independent, the
following test determines the likelihood of a violation for at least one of these two ecologically
critical AFDC quantiles as follows:

Hy: No threshold violations
Ha: At least one threshold violation
We then compute the probability of hypothesis testing errors for K independent AFDC

quantiles:

K
Qoverall = 1 — 1_[(1 - ak) (9)
k=1
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K
Boverall =1- 1_[(1 - Bk) (10)
k=1

Type II errors By are conditional upon the type I errors oy selected for each AFDC
quantile hypothesis test, and vice versa, since a value of one uniquely determines the other.
Future work may consider the impact of cross-correlations among individual hypothesis test

results when determining the overall field significance (Douglas et al., 2000).

3.  Informing dam operation decisions with hypothesis test results

In this section, we introduce our Bayesian decision-tree framework, which accounts for
both type I and II errors associated with hypothesis tests regarding the exceedance of percent
deviation thresholds when evaluating potential hydropower and ecological consequence of
reservoir operation decisions. We also contrast this approach with common deterministic and
probabilistic decision-making methods.

3.1  Approaches for incorporating Type I and II errors in decisions

In our post-hoc, or observed, power analysis, we determine the power 1 -
corresponding to a given a, estimated effect size 8, and sample sizes m and n. We show the
importance of carefully choosing among numerous methods for incorporating hypothesis test
results into decisions. First, we apply null hypothesis significance testing (NHST), a common
practice for making decisions in which null hypotheses of no change are rejected if the likelihood
of a type I error falls below a critical probability set a priori, commonly 0.05 (e.g. loannidis,
2005). If the type I error probability exceeds this statistical threshold, one concludes insufficient
evidence for rejecting the null hypothesis. This need for evidence of change may lead to
situations in which flow alteration only slightly exceeding a threshold is deemed insignificant for

declaring a violation. Such a low type I error acceptance rate implies that over-protection regrets,
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i.e. hydropower losses, are much more consequential than under-protection ones, an implied
valuation which does not necessarily reflect the relative benefits of hydropower and ecosystems.
Moreover, type Il errors are not considered in this approach.

A second approach involves setting the type I (or type II) error to an arbitrary a priori
value that reflects stakeholder risk tolerances and valuations (e.g., Mapstone, 1995; Field et al.,
2004), and then determining the type II (or type I) error associated with it. Both errors are then
used in a decision-tree framework. While some authors have called for a reversal of the “burden
of proof” when the potential environmental damage is greater than the potential cost overruns
stemming from protective actions (e.g. Field et al, 2004), we employ the conventional
formulation in which a type I error signals overprotection.

A third approach involves maximizing the overall tradeoff between two competing
objectives by optimizing the values of type I and II error probabilities. This is especially suitable
when a central decision-maker has a vested interest in both objectives or an external party aims
to negotiate tradeoffs between stakeholders with competing interests. Examples of such a
criterion include minimizing the overall expected cost (Field et al., 2004) and minimizing
expected regret, i.e. the expected consequences of incorrect decisions (Rosner et al., 2014). The
latter criterion is especially applicable when a decision-maker has a budget sufficient for
changing the reservoir operating rules but wants to avoid unnecessary costs. In contrast, cost
minimization may be more appropriate for minimizing the sum of hydropower and ecological
“damage” costs (see Field et al. (2004) for an ecological conservation example). Here, we focus
on minimizing the expected regrets associated with incorrect inferences.

3.2 Linking hypothesis testing errors to decision regrets

Statistical decision theory provides an avenue for incorporating type I and II errors into
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Bayesian decision tree approaches for evaluating infrastructure design and operation decisions
made when changes in environmental conditions are uncertain (e.g. Hobbs et al., 1997). A
Bayesian approach is necessary because type I and II error probabilities express the likelihood of
a decision conditional upon an unknown true state of nature. However, for decision-makers
knowing the probability of a consequence conditioned upon a decision, is imperative. For
instance, the probability of a type I error expresses the likelihood of concluding a threshold
violation if there is not actually one, i.e. P(CA|[NA) = P(Conclude Alteration | No Alteration).
This is different from the probability of not having a threshold violation if we conclude
significant alteration and thus decide to change dam operating rules. i.e. P(NA|CA) = P(No
Alteration | Conclude Alteration). The decision tree in Figure 6 further illustrates this concept.
The square node indicates a dam operator decision and the circular nodes represent chance
nodes, which reflect the likelihood of type I and II errors associated with the MWW test
regarding the violation of alteration thresholds due to a previous dam-building decision. The
ensuing branches identify the probability of making decisions leading to subsequent regrets
associated with hydropower or ecological aspects of the project. Thus, Figure 6 integrates the
hypothesis test outcomes with the consequences, or regret, associated with hydropower and
ecological outcomes.
[INSERT FIGURE 6]

Figure 6 also shows that Bayes Theorem allows us to specify a prior probability of
violating an alteration threshold and integrate it into a decision tree to obtain the final posterior
probabilities. While prior probabilities based on stakeholder and expert beliefs can be
incorporated using Bayes Theorem (Webb et al., 2015), we demonstrate this method with an

arbitrary non-informative prior probability in which there is a 50% chance of violating an
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alteration threshold. Bayes Theorem yields the probability of not violating an alteration threshold
when deciding to change dam operating rules based on a conclusion of alteration P(NA|CA):

P(CA|NA)P(NA
P(NA|CA) = ( L(C,)q)( ) (1D

where the probability of concluding alteration is:
P(CA) = P(CAINA)P(NA) + P(CA|A)P(A) (12)
P(NA|CA) can be interpreted as the hydropower regret probability because it reflects the
likelihood of unnecessarily changing dam operating dams based on an incorrect conclusion of
alteration. Substituting (12) into (11), we obtain:

POVAICA) = P(CA|NA)P(NA) (13)
~ P(CAINA)P(NA) + P(CA|A)P(A)

Since we are assuming P(NA) = P(A) = 0.5, P(CA|NA) and P(CA|A) can be removed

from (13) and then we can use a and § from Figure 2 to solve for P(NA|CA):

P(NA|CA) = #—ﬁ) (14)

We also use Bayes Theorem to estimate probabilities for the other three possible

combinations of flow alteration violation outcomes conditional upon conclusions from the

MWW test.
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With regret probabilities, we can compute the expected regrets (e.g. Rosner et al., 2014)
of dam operations decisions. First, we compute the expected hydropower regret ERyp in terms of
the difference in hydropower production between a “fraction-of-inflow” operating rule HPgq;,
which ensures that the outflow does not excessively deviate from the inflow (see Section 4), and
a reference run-of-river operating rule HPgop requiring daily releases to equal daily inflows:

ERyp = P(NA|CA) * (HPpo; — HPgor) (15)

Substituting in the expression derived from the hypothesis test result in Figure 7 leads to:

ERyp = * (HPFOI - HPROR) (16)

a
a+(1-p)
Hydropower production can be quantified in terms of revenue, energy generation, reliability or
other relevant performance indicators.

Next, we compute the expected ecological regret Rg-o. The probability that a decision
will lead to an undesirable ecological state is given by P(A|CNA) in Figure 7. When dam
operation changes a measurable ecological indicator, P(A|CNA) serves as a weight for

determining E R, so that:

B

ERgco = —(1 —a) + B

* (Egco — Enp) 17)

Ecological indicators may include measures of ecological health, such as species
abundance and diversity, or monetary values of a fishery or ecosystem services. We assume flow
alteration uniformly affects all species and that a single stakeholder represents all ecological
interests, even though species and ecosystem functions (and the stakeholders representing them)
often have competing hydrologic interests (e.g. Szemis et al., 2012; Railsback et al., 2015;
Kozak et al., 2015). When hydropower and ecological objectives are not commensurate, the

impacts of dam operations on each objective can be measured relative to maximum possible
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values, e.g. hydropower under HPg,r as a percentage of the hydropower production
under HPrp;. This way, we can identify the values of @ and f that minimize the total expected

regret ER7or for a given threshold set:

B

Hltror = A-o+8

* (HPpo; — HPRogr) + * (Eror — Eror) (18)

a
a+(1-p8)

This approach differs from classic hydropower optimization models in which production
is maximized given a set of constraints, including environmental flows (e.g. Cardwell et al.,
1996). Our approach is equivalent to selecting an optimal point on a receiving (relative)
operating characteristic curve (ROC), a graphical technique for selecting thresholds for
diagnostics based on binary classification systems (Swets, 1992). For an earth sciences example
of ROC curves, see Figure 11 in Oommen et al. (2010). We apply this optimization routine to
each individual AFDC quantile separately and then combine the optimal values of a and B to
determine the overall probabilities of type I and II errors.

[INSERT FIGURE §]

Figure 8 illustrates the relationship between the hypothesis test errors and regret
probabilities when the prior probability of alteration is 0.5. These complex tradeoffs, which stem
from having inadequate information concerning the likelihood of alteration, show that the
likelihood of regret due to either hydropower (panel A), or ecological (panel B) or both (panel C)
generally decreases as both type I and II error likelihoods decrease. Consider the case of fixing
the type I error probability at 5%, a common assumption in NHST. The hydropower regret will
always be very low, though the likelihood of ecological regret (panel B) or the total regret
likelihood (panel C) will be much higher. Making a type II error has a much greater impact on

the ecosystem than on hydropower when the type I error is low.
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4.  Stylized baseload hydropower dam example

4.1  Reservoir operations simulation model

We illustrate our decision-tree framework for comparing the hydropower-ecosystem
tradeoffs resulting from different reservoir operating rules using a stylized hydropower reservoir
example to avoid accounting for systematic differences between pre- and post-dam periods other
than dam operations (see the Supporting Information for details). We use a 37-year inflow series
(1913-1949) from the USGS station (02080500) on the Roanoke River at Roanoke Rapids, North
Carolina for daily inflows. The reservoir can store 22% of the mean annual inflow during this
period. Water is released downstream from the reservoir via: (i) turbine outflows, (ii) an
environmental flow bypass and (ii1) spills during high-flow periods (Figure 9). Turbines are
situated in an integral powerhouse built into the dam, and release water into the main channel
below the dam. To avoid accounting for the operation of individual turbines, we assume they can
release between 20% and 100% of the mean annual discharge (239 m?/s). Turbine releases are
permitted whenever the sum of available storage in the conservation pool and the daily inflow
exceeds 20% of the mean annual discharge. When low inflow and storage prevent power
generation, a low-flow outlet releases 28.6 m>/s, the annual seven-day minimum discharge with a
ten-year recurrence interval (7Q10), provided that sufficient storage remains. When the
conservation storage pool is full, inflow passes downstream via a spillway with an infinite
discharge capacity without any gates for controlling releases. Our hypothetical dam has an
installed energy generating capacity of 49.4 MW, which can power as many as 49,400 homes in
an industrialized region (Electricity Power Supply Association, 2017). However, its annual

average generation is expected to be substantially lower since energy is not always produced at
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the maximum rate due to water shortages, environmental flow constraints, and other operational
issues.
[INSERT FIGURE 9]

4.2 Operating rules and flow alteration thresholds analyzed

We compare a fraction-of-inflow (FOI) operating rule, which requires daily turbine
releases to be between 40% and 180% of the inflow on the same day, with a run-of-river (RR)
scheme that does not alter daily flows. Although it is unlikely that a large storage reservoir
would be converted into a run-of-river facility, this comparison provides a valuable reference
point for assessing the hydropower and ecosystem impacts of flow alteration. The percent
deviations in daily inflows permitted are based on percent deviation thresholds for fish that
Carlisle ef al. (2011) detected in annual maximum and seven-day low flows collected at 237
stations in the contiguous United States. We first evaluate flow alteration for a set of percent
deviation thresholds (Threshold Set 1) based on Carlisle ef al. (2011) in which the annual Q5
flows cannot decrease by more than 60% and the annual Q95 AFDC flows cannot increase by
more than 80%. While we recognize that changes to ecosystems from low and high flows are not
equivalent to ones stemming from alterations to extreme high and low flows, we use them to
illustrate the incorporation of empirical thresholds into our decision-making framework. Then,
we replace these thresholds with a set in which the annual Q5 values cannot decrease by more

than 30% and the annual Q95 values cannot increase by more than 50% (Threshold Set 2).

5. Results

5.1 Threshold Set 1

The average annual hydropower production declines by just 13% when the reservoir

switches from HPror (330 GWh, 3.30 x 10° kWh) to HPror (286 GWh, 2.86 x 10° kWh). The
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very low interannual flow variability (annual Cv = 0.22) at this site explains this mild reduction
(see Vogel et al. (1998) for the Cv of annual flows in the U.S.). HProrreduces the average Q5 by
37% and elevates the average Q95 by 66%, changes that are less severe than the 60% decrease in
high flows and 80% increase in low flows that Threshold Set 1 tolerates. Both the large turbine
discharge capacity and spills prevent the annual Q5 from decreasing below 40% of its pre-dam
average. While Threshold Set 1 permits Q95 values to increase by 80%, reservoir storage is often
insufficient for releases equal to 180% of the inflow to be made during these low-flow periods.
These results clearly illustrate that changes in high and low flows under HPror do not exceed the
deviations stipulated in Threshold Set 1. These results also highlight the extent to which turbine
constraints affect the flow alteration impacts of reservoirs, and demonstrate that they supplement
the storage and generation capacity metrics commonly used to appraise the ecological
performance of hydropower dams (e.g. Kibler and Tullos, 2014).

5.2 Threshold Set 2

Next, we illustrate a case with stricter thresholds, a 30% high-flow decrease and a 50%
low-flow increase. Even though these percent differences between HPror (-37%) and HPror
(66%) are both greater than permitted in Threshold Set 2, we must rule out the possibility that
these violations arise from random sampling variability. When stakeholders agree to tolerate a
20% type 1 error probability for both high- and low-flow alteration, 1.e. « = 0.2, the type II error
probabilities for violating high- and low-flow alteration thresholds are 0.38 and 0.26,
respectively. Next, we compute the probability of at least one violation of an alteration threshold
at either the Q5 or Q95 AFDC quantile. The probability of at least one type I error is 0.36, and
the probability of at least one Type II error is 0.54. Using (18), this translates to overall

hydropower and ecological regret probabilities of 0.44 and 0.46, respectively. Even though the
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average changes in the two AFDC quantiles exceed these posited thresholds, a total regret
probability close to one indicates insufficient evidence of a threshold violation.

Next, we compute the expected hydropower and ecological regrets with the hypothesis
test error probabilities. Since the difference in hydropower production between HPror and HPror
is 44 GWh per year, the expected hydropower regret is 0.44 * 44 GWh = 19 GWh, less than 6%
of the average annual hydropower output under HPror. In contrast, the likelihood of inducing
adverse ecological impacts by not modifying dam operations is 46%. (Recall that we interpret
ecological regret probability as an indicator of the likelihood of adverse ecological impacts in
this hypothetical example.) Figure 10 shows that, if we assume a one-percent decrease in
hydropower is of equal value to a one-percent increase in the likelihood of adverse ecological
impacts, under-protection errors become much more consequential. In other words, our a priori
type 1 error probability tolerance of 0.2 is too strict since HPror only reduces hydropower
production mildly (13%). The lighter gray points in Figure 10 indicate values for which a = 0.2,
whereas the darker “optimal” points denote the combination of type I and II error probabilities
that minimize the percent regret for each objective. Each point in the expected percent regret
plots corresponds to a point of the same color in the hypothesis test error tradeoff plots. The
tradeoff curve optima indicate that we should accept very high probabilities of type I errors to
minimize the total decision regret, as the ecological consequence of an incorrect decision to
maintain hydropower production is much greater than the hydropower consequence of changing
to a run-of-river rule. This example clearly illustrates the problem with arbitrarily setting type I
error probability requirements.

Table 1 below shows the importance of carefully selecting among the different

hypothesis testing approaches presented in Section 3.1 as well as the overall importance of
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hypothesis testing. Most notably, NHST applied with a critical type I error probability of 0.05

suggests that these changes to high (p = 0.09) and low flows (p = 0.10) are not significant

enough to warrant any action. (The overall probability of at least type I error of 0.18 is even

higher). In contrast, the two approaches considering both type I and II errors indicate a need to

protect the river, although the degree to which they each suggest protection varies considerably.
[INSERT TABLE 1]

Next, we examine the difference between expected regrets when different thresholds are
tested. Figure 11 shows the range of optimal expected regrets for percent decrease thresholds of
0-30% for high flows and for percent increase thresholds of 0-60% for low flows. The actual
percent changes in high (-37%) and low flows (66%) exceed all these thresholds. Figure 11a
shows that optimal solutions for the other thresholds examined also have expected ecological
regrets much lower than their corresponding expected hydropower regrets because the potential
ecological consequences are much greater on a percent-loss basis. In contrast, Figure 11b shows
the optimal regrets for a scheme in which a 1% probability of a hydropower regret is weighted
the same as a 1% probability of an ecological regret, i.e., a 13% hydropower loss is equal to a
100% chance of incurring adverse ecological impacts. In other words, hydropower production is
assumed to be worth nearly eight times as much as the ecosystem. Under this valuation, one can
see that some high- and low-flow percent deviation thresholds have optimal points with a greater
expected ecological regret and, hence, a larger type II error probability. As expected, Figure 11
also shows that the regret probabilities rise as the percent difference between pre- and post-dam
AFDC quantiles approach the stakeholder-identified percent deviation thresholds.

[INSERT FIGURE 11]

Since our one-tailed hypothesis test only examines the likelihood of thresholds being
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exceeded, we exclude cases in which the sum of the two regret probabilities exceeds one. For
this reason, the contours in Figure 11 may exceed 100%. When thresholds are not exceeded and
hypotheses of threshold exceedance are tested, this test yields values of o and B where o + > 1.
A value greater than one indicates that the test has been applied in the wrong direction, e.g. the
alternative hypothesis is that scaled pre-dam flows are greater than post-dam flows when they
are, in fact, less than them. Yet, tests for which a + B > 1 indicate that the violation of an
alteration threshold is very unlikely. Instead, they demonstrate a higher likelihood of hydropower

regret, which has equally important implications for dam operation decisions.

6. Discussion

This paper makes an initial contribution toward the incorporation of the uncertainty
associated with over- and under-design regrets associated with decisions regarding reservoir
release rules which impact hydropower-ecosystem tradeoffs. Most importantly, we highlight the
decision implications of different probabilistic approaches for incorporating the uncertainty of
long-term hydrologic alteration in evaluations of tradeoffs between hydropower and ecosystem
benefits of different operating rules for a large baseload hydropower reservoir. Our approach
focuses on minimizing the regrets associated with reservoir release decisions made in the face of
hydrologic uncertainty as opposed to the total cost-minimization approach introduced by Field et
al. (2004). One of the key differences between the regret- and cost-minimization approaches is
that cost-minimization also considers hydropower costs when changing to HPgyris the correct
decision. This implies that a cost-minimization approach would be more likely to recommend
operating rules conducive to hydropower production. Yet, further research is needed to compare

the implications of these two approaches for evaluating hydropower-ecosystem tradeoffs and
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other environmental management problems, including the introduction of constraints on the
distribution of costs among stakeholders.

Other nonparametric tests offer possibilities for extending our analysis. While we analyze
changes in intra-annual variability through our assessments of changes to typical values of high
and low flows, the nonparametric Siegel-Tukey test (Siegel and Tukey, 1960; see FitzHugh
(2014) for an environmental flows application) could examine changes in interannual variability
using AFDCs. In fact, interannual flow variability, especially extremely wet and dry years,
controls the composition of riverine ecosystems in many settings (e.g. Nislow et al., 2002;
Rivaes, 2015). Other more specialized nonparametric approaches could detect simultaneous
changes in the central tendency and variability of environmental flow indicators (see Marozzi,
2013). In addition, nonparametric tests that evaluate changes in distributions, such as the Kuiper
test that Kroll ef al. (2015) apply to changes in AFDCs, could be modified to determine whether
changes in AFDC quantiles have exceeded ecologically critical thresholds d.

Our test could easily be adapted to examine changes in flows on ecologically relevant
dates, though serial correlations among flows on different dates may need to be addressed. While
AFDCs describe the entire range of daily flows in each water year, many ecological functions
depend on the timing and sequence of flows (Stewart-Koster et al., 2015), factors not considered
within the context of AFDCs. Other studies of highly gauged rivers have recommended
ecological flow targets based on percent deviations from sequential daily flow hydrographs (e.g.
Steinschneider et al., 2014; McKay, 2015). Our framework can also assess changes to many
other flow statistics, such as flashiness indices (e.g. Baker et al., 2004) describing the rate of
change of sub-daily peaking flows (Haas et al., 2014), and even relevant non-flow indicators,

such as habitat suitability indices (Bovee and Cochnauer, 1977).
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One might question the purpose of testing for hydrologic alteration many years after a
dam is built if the flows have already been altered to an extent that might adversely affect species
with lifespans of no more than a few years. However, excessive hydrologic alteration may signal
the ongoing or potential decline of an ecosystem since the post-dam ecological equilibrium may
take some time to become established. Perkin ef al. (2016) observed fewer native opportunistic
species and more non-native generalist species downstream of a reservoir approximately a
decade after its impoundment compared to the first few post-dam years. Taylor et al. (2014)
detected fewer changes in pre-dam fish assemblages during a six-year post-impoundment period
than they did during the ensuing seven years. While more research on the rates of these
ecological transitions is needed, these two studies illuminate the value of performing hypothesis
tests on post-dam flow records of approximately one decade. Moreover, even if dam operations
adversely affect a riverine ecosystem within a few years, our hypothesis testing framework could
determine whether dam operations must be changed to provide flow conditions enabling
ecological restoration, or if other causes should be addressed instead. In fact, this hypothesis
testing framework could be inverted to examine the achievement of pre-dam flow conditions, an
increasing challenge given the proliferation of dam removal projects (O’Connor et al., 2015).
Also, in data-poor regions, these hypothesis tests can be used to screen sites where more
intensive ecological reconnaissance may be necessary. Ideally, such screening-level studies
would also determine when flow alteration is the limiting factor constraining riverine ecosystems
(e.g. McManamay et al., 2013; Knight et al., 2014).

Finally, our testing procedure motivates efforts to estimate the economic value of
environmental flows. In some cases, the value of fisheries provides a more objective measure of

the benefits of environmental flows (e.g., Kozak et al., 2015) while other benefits, such as the
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aesthetic and intrinsic values of riverine ecosystems, are more challenging to monetize. Most
importantly, our framework can provide useful results regarding tradeoffs between hydropower
and ecosystem management objectives even if they cannot be assessed commensurately.
Decision trees can also produce tradeoff curves that decision-makers can consult subsequently,
an increasingly advocated form of environmental planning decision support (e.g. Quinn et al.,

2017).

7. Conclusions

There is a growing interest in protecting riverine ecosystems downstream of dams using
percent-deviation thresholds of hydrologic alteration (e.g. Poff et al., 1997; Vogel et al., 2007,
Richter et al., 2012; McKay, 2015) since they require less field reconnaissance than flow
magnitude-based river and reservoir management policies. When evaluating changes between
pre- and post-dam periods, one wishes to consider the possibility that the exceedance of
thresholds is partly due to sampling variability alone, which stems from o natural streamflow
variability and the limited samples available contributes to the exceedance of thresholds. Our
decision-theoretic approach removes the effects of sampling variability from reservoir operation
decisions made for the purposes of maintaining hydropower production and/or conserving
ecosystem health thus enabling us to focus exclusively on uncertain hydropower and ecosystem
outcomes resulting from reservoir release decisions. We modify and extend a nonparametric
hypothesis test to examine whether differences between pre- and post-dam flow of an annual
FDC (AFDC) quantile exceed allowable percent deviation thresholds. While we apply this
approach to AFDCs, we have also created a general framework for incorporating the uncertainty
of environmental threshold exceedances into tradeoffs between off-stream reservoir benefits and

in-stream water uses. Our stylized example highlights differences between our decision-theoretic
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approach and conventional decision-making methods, which, in turn, motivates future efforts to
consider the uncertainty of hydrologic alteration assessments carefully when addressing river

basin conflicts.
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Supporting Information: Simulation model for stylized reservoir example

We illustrate our decision-tree framework for comparing the hydropower-ecosystem
tradeoffs resulting from different reservoir operating rules using a stylized example inspired by
the John H. Kerr Reservoir situated on the Roanoke River on the border of the U.S. states of
North Carolina and Virginia. Streamflow information is available from the United States
Geological Survey (USGS) station (02080500) on the Roanoke River at Roanoke Rapids, North
Carolina downstream from the dam. A 37-year pre-dam record is available from the 1913-1949
water years (Oct 1 — Sep 30), as construction began altering the flow in 1950 (Richter et al.,
1996). Dam-induced changes in streamflow at this station have also been profiled in studies
evaluating the observed impact of the dam (e.g. Richter et al., 1996). While there are numerous
ecological concerns downstream of the dam, the preservation of seasonally flooded hardwood
forests has formed the crux of many conservation efforts (Richter et al., 1996/7). The potential
impacts of revised operating rules proposed during a stakeholder-driven Federal Energy
Regulatory Commission dam relicensing process required for privately operated dams in the
United States (e.g. Pearsall ef al., 2005) have also been investigated. To simulate the impact of
the reservoir on post-dam flows, we treat this streamflow record as reservoir inflow. This
approach enables us to avoid accounting for other possible systematic differences between pre-
and post-dam periods. However, we apply the hypothesis test as if we did not know that we had
done this.

We make numerous assumptions and simplifications to the actual reservoir system to
elucidate key features of our decision-making framework. The reservoir stores 1.27 x 10° m’
(1,027,000 acre-feet) of water between the top of the dead storage zone at 268 ft (8§1.7 m) above

sea level and the top of the conservation storage pool at 300 ft (91.4 m) above sea level (USACE,
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1992). The dead storage pool, from which hydropower releases cannot be made, stores an
additional 5.69 x 10® m? (461,600 acre-feet). The conservation storage, which can be released for
hydropower, is equal to approximately 20 percent of the mean annual inflow. In the conservation
storage pool, the reservoir surface area rises from 19,700 acres (79.7 km?) at the top of the dead
storage pool to 48,900 acres (197.9 km?) at the top of the conservation storage pool. To estimate
the daily reservoir water level, we relate changes in storage with changes in depth using a power-
law relationship, which considers the storage the conservation pool provides as well as the
reservoir surface area at the bottom and top of the conservation storage zone). While we include
many design parameters from the actual reservoir reported in USACE (1992), the operations we
simulate differ from the dam’s actual operations, which are driven by flood control and diurnal
energy price variability (Pearsall et al., 2005). We also do not consider evaporation from the
reservoir and assume that its storage capacity does not decrease over time due to sedimentation.
Figure 8 in the main text displays a schematic diagram of releases through three
mechanisms: (i) turbine outflows, (ii) an environmental flow bypass and (iii) spills during high-
flow periods. We express the minimum and maximum discharge capacity of the turbines as a
percentage of the mean daily discharge to avoid accounting for individual turbine operation
decisions. The John H. Kerr Dam powerhouse, which operates as a peaking facility, has nine
turbines, whose collective discharge capacity is nearly four times the mean annual inflow at this
site. However, such a large discharge capacity is unrealistic for a baseload hydropower plant.
Instead, we assume that the turbines, which are situated in an integral powerhouse built into the
dam, can release water at a rate up to the mean annual discharge. The turbines can be operated
when the daily inflow plus the storage available in the conservation pool exceeds 20% of the

turbine daily discharge capacity, since the dam may only operate just one or two turbines at a
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given instant if storage in the reservoir is low. This minimum turbine discharge parameter
enables us to avoid accounting for the operation of each individual turbine. We assume that all
turbine outflows immediately re-enter the main channel of the river without any ramping rate
restrictions.

We also consider reservoir releases made via the spillway and an environmental flow
bypass, i.e. a low-flow outlet that releases environmental flows equal to the annual seven-day
minimum discharge with a ten-year recurrence interval (7Q10) when there is an insufficient
combination of inflow and storage for hydropower generation. Unlike the actual John H. Kerr
Reservoir, at which flood storage up to 320 ft (97.5 m) is released through a set of controlled
gates with different discharge capacities, we assume that all water above the conservation storage
pool (300 ft) passes downstream via a spillway with an infinite discharge capacity. We estimated
the 7Q10 flow from the pre-dam record using the kappa distribution with the Imomco package in
R (R Core Team, 2016). We computed seven-day low flows for each calendar year instead of
Oct 1 — Sep 30 water years to include flows recorded during periods spanning the months of
September and October.

The gross elevation head that indicates the potential energy available for hydropower is
computed as the difference between the reservoir water surface elevation on a given day and the
tailwater elevation below the dam. We assume this elevation to be constant and set it to 62.2 m
(204 ft), the midpoint of the 199 ft -209 ft range reported in USACE (1992). We assume that the
net elevation head is 10% lower than this elevation difference to account for friction losses. The
hydropower generated on a given day HP,, measured in kilowatt-hours (kWh), is computed as
follows:

HP, = 24 % 9.807 * & * Quurp,¢ * Pnett (A1)
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where € denotes the efficiency of hydropower production, which is assumed to be 80 percent at
all times, Qgy;p ¢ is the turbine outflow on each day (m?/s), and h,,, indicates the net head (m)
on each day. The coefficients of 24 and 9.807 represent the number of hours in a day and the rate

of gravitational acceleration at the Earth’s surface (m/s?), respectively.
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Tables

Decision High flows (QS5) Low flows (Q95) Overall alteration

Making

Approach

Deterministic Alteration. Exceeds the | Alteration. Exceeds the | Alteration. Thresholds
30% decrease threshold, | 50% increase threshold, | at both sites are
an adverse ecological an adverse ecological exceeded, an adverse
impact will occur if impact will occur if ecological impact will
operations are not operations are not occur if operations are
changed. changed. not changed.

Null hypothesis | No alteration. o. = 0.09. | No alteration. oo =0.10, | No alteration. .= 0.18,

significance Alteration insignificant, | Alteration insignificant, | Alteration insignificant,

testing (p < no significant risk of an | no significant risk of an | no significant risk of an

0.05) adverse ecological adverse ecological adverse ecological
impact. impact. impact.

Fixing the type | Hydropower and Hydropower and Substantial regret

I error ecological regret ecological regret probabilities, decision

probability o at | probabilities are probabilities are depends on relative

0.20, using similar. similar. hydropower and

decision tree

Even though o is much
higher than 0.05, 3
(0.38) indicates a high
likelihood that test will
not recommend
changing the reservoir
operating rule when

Even though a is much
higher than 0.05, 3
(0.26) indicates a high
likelihood that test will
not recommend
changing the reservoir
operating rule when

ecological values.
While the hydropower
and ecological regret
probabilities are 0.44
and 0.46, respectively,
the greater potential
ecological consequences

necessary. necessary. of HPror make changing
to HPror worthwhile.
Optimal o and | The hydropower The hydropower The hydropower

B (minimizing
total regret)

regret dominates
because hydropower
losses are less
important than
ecosystem losses. o is
much higher (> 0.99)
than B (<0.01). The
lower consequence of
hydropower regrets
makes a higher oo much

regret dominates
because hydropower
losses are less
important than
ecosystem losses. o is
much higher (> 0.99)
than B (<0.01). The
lower consequence of
hydropower regrets
makes a higher o much

regret dominates
because hydropower
losses are much less
important than
ecosystem losses. Since
o is very high for both
high and low flows, it is
also very high for
overall alteration.
Similarly, since f3 is
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more tolerable.

more tolerable.

very low for both flows,
it is very low for overall
alteration.

Table 1: Management implications of different decision-making approaches.
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Figure 1: Pre- and post-dam annual flow duration curves from the stylized example in Sec 5.

Unknown Truth

Alteration not above Alteration above threshold
Decision Rule threshold Alteration, A
No Alteration, NA
Keep reservoir operation Under-protection error
rules (Type II error)
11—« P
(Conclude No Alteration) P(CNANA)
CNA B
P(CNAJA)
Change reservoir operation Over-protection error
1 Type |

rules (Type I error) 1-p

P(CA|A
(Conclude Alteration) a (CAIA)
CA P(CANA)

Figure 2: Confusion matrix for testing hypotheses of hydrologic change, defining unknown true
outcomes, decision rules with table entries showing the likelihood of the various possible outcomes {i.e.

type | and type Il errors).
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Hypothetical AFDC quantile distributions
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Figure 4: Tradeoff between type | and Il errors for hypothetical records of different lengths.
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Figure 5: Mann-Whitney-Wilcoxon test with a percent deviation threshold.
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Figure 6: Bayesian decision tree for incorporating the uncertainty of hydrologic alteration into dam

operating decisions
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Figure 7: Regret probabilities for decision analysis in Figure 6 based on a non-informative prior

probability (0.5) of alteration.
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Figure 10: Tradeoffs between type | and Il errors and regret probabilities for high- and low-flow

alteration, Threshold Set 2.
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Figure 11: Optimal regret combinations when (a) a one-percent decrease in hydropower is weighted
equally to a 1% increase in the likelihood of adverse ecological impacts, and (b) hydropower and

ecological regret probabilities are weighted equally.
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