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Abstract  

 Detrimental ecological impacts have often been observed or anticipated when changes in 

streamflow indicators exceed percent deviation thresholds believed to be ecologically critical. 

Yet, short pre- and post-impact flow records often make it difficult to determine whether changes 

exceeding tolerable thresholds are due to dam operations or natural variability. Through a 

hypothetical reservoir operations example, we incorporate the uncertainty of dam-induced 

streamflow changes into a Bayesian decision tree framework that evaluates tradeoffs between 

expected regrets associated with hydropower and ecology. The likelihood of over-protection 

(type I) and under-protection (type II) errors associated with hypothesis tests are used to compute 

expected hydropower and ecosystem regrets associated with dam operation decisions. We 

examine changes to high (annual Q5) and low flows (annual Q95) in typical years using a 

modified and extended nonparametric ranked-sum test that accounts for percent deviation 

thresholds. A multiple comparison test is then used to determine the likelihood of at least one 

threshold violation. An example shows that our decision-theoretic approach can lead to different 

dam operation recommendations than do other common methods, and highlights limitations that 

arise when the type I error rate is selected a priori.  While we illustrate a hydropower-ecosystem 

tradeoff, our approach can also be applied to other multi-stakeholder reservoir and river 

management conflicts.   

 

Key Words: Bayesian decision-making, environmental flows, flow duration curve, reservoir 

operation, type I error, type II error  
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1. Introduction 

Reservoirs provide storage for water supply, hydroelectric production, flood control, 

irrigation, recreation, and other conservation needs. The retention and selective release of water 

downstream modifies the flow regimes that sustain riverine ecosystems. As dams alter pre-

existing flow regimes in myriad ways (McManamay et al., 2013), their effects on downstream 

ecosystems are diverse (e.g. Carlisle et al., 2011). The composition of species in riverine 

ecosystems often changes following the commissioning of dams with large storage capacities 

that regulate high- and low-flow extremes (e.g., Poff et al., 2007; Mims and Olden, 2013). 

Prescribing operating rules that sustain pre-dam ecosystems has become an increasingly 

recognized challenge, especially when flow manipulation benefits off-stream human interests 

(e.g., Cardwell et al., 1996; Suen and Eheart, 2006; Poff et al., 2009). Short streamflow records 

make it more difficult to determine whether ecosystem changes are due to dam impacts or 

natural variability (e.g. Kennard et al., 2010; Nikghalb et al., 2016). Moreover, there are few 

guidelines for incorporating uncertainty stemming from short streamflow records into these 

tradeoffs. 

Streamflow has been identified as the primary driver in riverine ecosystems (Power et al., 

1995; Walker et al, 1995) since it influences ecological conditions through changes in velocity, 

depth, temperature, water quality and substrate (e.g. Poff et al. 1997; Jager, 2014; McManamay 

et al., 2015).  Indeed, many interconnections between streamflow and habitat conditions are 

indirect, which can moderate any apparent correlation between hydrologic alteration and 

ecological responses (e.g. Jager, 2014; McManamay, 2015). Yet, the availability of streamflow 

data relative to other proximate indicators of ecological degradation has generated tremendous 

interest in characterizing ecological responses to flow alteration, including reviews by Poff and 
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Zimmerman (2010) and Webb et al. (2013). Flow-based approaches to managing environmental 

flows can also be implemented in data-poor regions where hydrologic and ecological monitoring 

can be more challenging (McKay, 2015; Lamouroux, 2015; Eriyagama et al., 2016). Institutions 

representing ecological interests, such as The Nature Conservancy, have recently promoted 

expert-elicited flow-ecology relationships in stakeholder negotiations (e.g., Kendy et al., 2012; 

Steinschneider et al., 2015). In this paper, we introduce a tool suited for assessing impacts to 

species and communities whose overall welfare (e.g. abundance, diversity) is well correlated 

with deviations in flows from pre-impact conditions.  

Determining the extent to which dam operations change a flow regime is not always 

straightforward. Indeed, dam operations can be deduced through water balance equations if there 

are flow gauges both up- and down-stream of the dam, or reservoir water level measurements 

and an up- or down-stream gauge. However, in other cases, only a downstream gauge may exist. 

In such situations, how does one evaluate the likelihood that differences in exceeding perceived 

ecological thresholds between pre- and post-dam periods arise from dam operations alone, rather 

than due solely to the natural random variability of streamflow between the two periods? These 

uncertainties, which are especially large when there are short pre- and post-dam streamflow 

records (e.g. Kennard et al., 2010; Williams, 2017), confound efforts to develop relationships 

between flow alteration and ecological responses.   

To date, only a handful of studies have examined hypotheses of dam-induced hydrologic 

alteration within a statistical framework (Botter et al., 2010; Kennard et al., 2010; FitzHugh, 

2014; Taylor et al., 2014; Kroll et al., 2015). Importantly, these studies evaluated changes in the 

natural flow regime without considering thresholds of alteration beyond which species may be 

adversely impacted (see Poff and Zimmerman, 2010; Kendy et al., 2012; Steinschneider et al., 
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2014), a unique feature considered in this study.  The strict preservation of the natural flow 

regime is often impractical or infeasible (Kendy et al., 2012; Kopf et al., 2015). Even if an 

ecosystem indicator worsens with flow alteration, stakeholders may still consider a maximum 

allowable degree of alteration. Thresholds expressed in terms of percent deviations from pre-dam 

conditions can be applied across sites exhibiting similar ecosystem and hydrologic behavior 

without the detailed site-specific information necessary for identifying flow magnitude 

thresholds. They have also been increasingly advocated because they preserve natural flow 

variability better than alternative policies, such as those requiring constant or seasonally varying 

minimum flows (e.g. Smakhtin et al., 2004; Vogel et al., 2007; Richter, 2009; Richter et al., 

2012; Razurel et al., 2015; Rheinheimer et al., 2016).  

While hypothesis testing has been increasingly applied to characterize changes in flow 

statistics deemed important for managing riverine ecosystems (e.g. FitzHugh, 2014; Taylor et al., 

2014; Kroll et al., 2015), reservoir operators are left with little guidance regarding how to use 

such tests for prescribing reservoir release operating rules. Hypothesis test results have potential 

societal consequences, as they can lead to unnecessary changes in operating rules that reduce 

reservoir benefits or avoidable ecological consequences when release rules are not changed. We 

apply a Bayesian decision-tree framework based on statistical decision theory (e.g. Wald, 1939; 

Berger, 1993) to incorporate the uncertainty associated with decisions concerning violations of 

alteration thresholds into evaluations of tradeoffs between flow benefits for off-stream 

(hydropower) and in-stream (ecosystem) users. Decision trees have been applied to other water 

resources problems concerned with uncertain environmental changes, including the potential 

ecological effects of effluent discharge (Mapstone, 1995), planning hydraulic infrastructure 

under uncertain future lake levels (e.g. Hobbs et al., 1997), building barriers for possible storm-
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surge increases (Rosner et al., 2014) and optimization of removal of barriers to fish passage 

(O’Hanley and Tomberlin, 2005). To highlight the value of our probabilistic framework, we 

compare our findings with results obtained using (i) non-probabilistic methods and (ii) null 

hypothesis significance testing (NHST), a widely-used approach that examines only the chance 

of falsely concluding a threshold violation, i.e. a type I error. For illustrative purposes, we 

compare flows at a downstream station with and without the reservoir in place using a Before-

After impact analysis. This experimental design ensures that differences between the two flow 

regimes arise from either random sampling variability or dam operations, thus avoiding the need 

to consider confounding factors that may explain differences between them.  

Our decision-oriented hypothesis testing approach can be applied to reservoirs and dams 

with a range of off-stream benefits, including water supply, hydropower, and flood control. 

However, in this study, we demonstrate the effects of seasonal flow alteration from a baseload 

hydropower dam. Over the next two decades, many hydropower dams are slated to be built in 

highly biodiverse basins with short streamflow records (Winemiller et al., 1996; Zarfl et al., 

2015) and little transparency about operating rules (e.g. Lauri et al., 2012). While studies 

examining hydropower-ecological tradeoffs under different dam operating rules have 

proliferated (e.g. Halleraker et al., 2007; Renöfalt et al., 2010; Yang and Cai, 2011; Jager, 2014), 

including ones revising operating rules when renewing licenses (e.g. Pearsall et al., 2005), few 

studies share our focus on the extent to which the uncertainty of differences between pre- and 

post-dam flows affect dam operating decisions.  

The remainder of the paper is structured as follows. First, we formulate a hypothesis test 

for examining the likelihood that changes in high- (annual Q5) and low-flow indicators (annual 

Q95) indicators exceed percent-deviation thresholds – and are not due to random sampling 
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variability. Next, we integrate a Bayesian decision tree framework, which considers the 

likelihood of under- and over-design interpreted from Type I and II hypothesis testing errors, 

respectively. We then describe the hypothetical baseload hydropower reservoir with which we 

demonstrate our method, before discussing limitations and possible extensions of our decision-

theoretic approach and offering concluding remarks.  

 

2. Testing for violations of hydrologic alteration thresholds  

This section describes our approach for examining whether changes to ecologically 

important AFDC quantiles violate percent-deviation thresholds. First, we present a hypothesis 

test that detects violations for individual AFDC quantiles. Then, we present a multiple 

comparison (field significance) test to determine the likelihood of one or more threshold 

violations associated with an ecologically critical AFDC quantile.   

2.1 Annual flow duration curves 

Another challenge with implementing hydrologic methods is choosing indicators of 

alteration that recognize the distinct ways in which different riverine species respond to 

hydrologic alteration, yet can easily be incorporated into reservoir operation rules. Flow duration 

curves (FDCs) indicate the probability that a daily flow of a given magnitude will be exceeded. 

An FDC may be thought of as a graphical signature which summarizes a river’s overall 

hydrologic behavior. They have been used in an extremely wide range of water resources 

applications, including hydropower design, habitat assessment, flood abatement, and water 

quality evaluation (Vogel and Fennessey, 1995; Castellarin et al., 2013). They underpin 

environmental flow management in data-poor regions, including India (Jain, 2015) and Sri Lanka 

(Eriyagama et al., 2016) and are useful in regions where other indicators inform environmental 



 

7 
 

flows management (e.g., Tennant et al., 1976; Renöfalt et al., 2010). While period-of-record 

FDCs computed from daily flows in pre- and post-dam periods offer a signature of the flow 

variability over an entire station record, they cannot assess changes in typical years between pre- 

and post-dam periods. In contrast, annual FDCs (AFDC’s), introduced by Vogel and Fennessey 

(1994), represent the variability of flows within a single water year. Sets of AFDC’s depict the 

within- and between-year hydrologic variability and can be used to construct confidence 

intervals for FDCs (Vogel and Fennessey, 1994). In addition, the median AFDC can reveal high- 

and low-flow conditions representative of a typical year. Figure 1 shows pre- and post-dam 

AFDCs from the stylized example presented in Section 4, in which we examine long-term 

decreases in typical annual values of high in-channel flows (Q5) and long-term increases in 

typical low flows (Q95) due to the flow homogenization effects of baseload hydropower. High 

in-channel flows are essential for flushing sediment and pollutants and are often correlated with 

ecologically critical flood flows. Meanwhile, low-flow increases can cause drought-tolerant, 

native species to be replaced with generalist species that favor conditions created by less 

seasonally variable flows (Carlisle et al., 2011; Mims and Olden; 2013, Nikghalb et al., 2016). 

The acute flat-lining effect visible in the post-dam flow plot indicates the turbine discharge 

capacity that constrains reservoir releases when storage is adequate. While AFDC’s do not 

indicate temporal flow sequences, hypothesis tests of AFDC’s can address some ecologically 

important timing issues if the intervals over which FDCs are computed match the timescale of a 

problem, e.g., using seasonal FDCs for changes in hydrologic conditions during spawning 

periods (Gao et al., 2009).  

[INSERT FIGURE 1] 

2.2  Threshold violations of individual AFDC quantiles 

 Our hypothesis test determines the likelihood that differences in an AFDC quantile 
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between pre- and post-dam periods in excess of a tolerable percent deviation threshold are not 

due to random sampling variability, but rather to dam operations, i.e. a proof by contradiction 

(Cohn and Lins, 2005). Conventional hypothesis tests with a null hypothesis of no change, i.e. no 

threshold violation, and an alternative hypothesis of change, i.e. a threshold violation, 

accommodate this dichotomy of “acceptable” and “unacceptable” changes well (Figure 2). If a 

threshold violation is not detected, then it implies we should keep existing dam operating rules. 

Conversely, a violation implies a need to change reservoir operations to ‘protect the 

environment’.  

Figure 2 shows that a type I error corresponds to the likelihood of detecting a threshold 

violation when, in fact, there is no violation. We denote this type I error probability 𝛼 =

𝑃(𝐶𝐴|𝑁𝐴), where 𝑃(𝐶𝐴) is the probability of concluding alteration, and 𝑃(𝑁𝐴) is the 

probability of no alteration. A type I error amounts to an overdesign error and implies that 

hydropower production would be reduced unnecessarily if a more ecosystem-friendly operating 

rule were chosen. The probability of a type II error indicates the likelihood of not detecting a 

threshold violation when there is one.  It amounts to an under-design error from an ecosystem 

protection perspective and signals the possibility of adverse ecosystem impacts. We denote this 

probability  = 𝑃(𝐶𝑁𝐴|𝐴), where 𝑃(𝐶𝑁𝐴) is the probability of concluding no alteration beyond 

a percent-deviation threshold from the test and 𝑃(𝐴) is the probability of a violation of an 

alteration threshold. Of perhaps greatest interest is the power of the hypothesis test 1-  which 

reflects our ability to detect alteration when present.  

[INSERT FIGURE 2] 

A two-sample hypothesis test comparing pre- and post-dam AFDC quantiles is needed to 

evaluate the likelihood of making decisions concerning violations of various alteration 
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thresholds. For instance, this test could compare the distributions of m different annual Q95 

values in the pre-dam period with n different annual Q95 values from the post-dam period. The 

overarching objective is to classify the difference between the pre- and post-dam AFDCs as 

either: (i) alteration within a tolerable threshold, i.e., “no alteration”, or (ii) alteration exceeding a 

tolerable threshold, i.e., “alteration”.  

Kroll et al. (2015) found two promising tests for testing for changes of any magnitude in 

annual flow duration curves. These two tests offer a viable starting point for devising a 

hypothesis test that can assess changes in thresholds of stakeholder-identified flow indicators. 

However, these two tests pose problems for assessing hydropower-ecosystem tradeoffs. First, 

their confidence interval (CI) test assumes that AFDC quantiles are normally distributed, which 

is often not the case downstream of hydropower dams due to turbine release constraints and 

other operational caveats (Botter et al., 2010; FitzHugh, 2014). Their nonparametric Kuiper test 

(Kuiper, 1960), which accommodates non-normal distributions, identifies the maximum positive 

and negative differences between the cumulative probabilities of pre- and post-dam flows to 

assess the likelihood of distributional change. While accounting for these two differences make it 

suitable for analyzing reservoir-induced annual flow regulation, it does not examine changes in 

pre-determined flow durations, indicators that are often used to assess flow alteration in 

environmental flows management (Kendy et al., 2012).   

In contrast, the nonparametric Mann-Whitney-Wilcoxon test can be used to evaluate 

differences between individual AFDC quantiles of interest without concern over distributional 

hypothesis of AFDC quantiles. A multiple comparisons test can then be used to draw 

conclusions about the overall likelihood of hydrologic alteration from tests applied to individual 

quantiles. Similar field significance approaches for estimating the overall likelihood of type I and 
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II errors from a series of hypothesis tests assessing changes in individual indicators of concern 

have been advocated for other infrastructure design problems recently (Reiff et al., 2016).  

2.3 Mann-Whitney-Wilcoxon test 

We first illustrate the Mann-Whitney-Wilcoxon (MWW) test for a simplified case in 

which any change in flow for a given AFDC exceedance probability constitutes alteration. This 

test assesses the likelihood that the difference between pre- and post-dam distributions of a given 

AFDC quantile, 𝑄𝑝𝑟𝑒 and 𝑄𝑝𝑜𝑠𝑡, belongs to either a “no alteration” class corresponding to a null 

hypothesis of no change in distribution, or an “alteration” class corresponding to an alternative 

hypothesis of changes in distribution. First, to compute the type I error, we can express the null 

hypothesis as 𝐻0: 𝑄𝑝𝑟𝑒 = 𝑄𝑝𝑜𝑠𝑡 and the alternative hypothesis as either 𝐻𝐴: 𝑄𝑝𝑟𝑒 > 𝑄𝑝𝑜𝑠𝑡 or 

𝐻𝐴: 𝑄𝑝𝑟𝑒 < 𝑄𝑝𝑜𝑠𝑡 depending on the direction of hypothesized change. In Section 2.4, we describe 

an adjustment to the test that enables us to examine threshold exceedance hypotheses. While our 

Before-After experimental design may suggest the need for a paired sample hypothesis test, such 

as the Wilcoxon signed-rank test, the MWW test can also be applied to independent, unpaired 

samples representing pre- and post-dam records of different lengths. See Yue and Wang (2002) 

for a detailed appraisal of this test for different sample distributions and properties. 

[INSERT FIGURE 3] 

Figure 3 shows an example of the distribution of AFDC quantiles corresponding to a 

possible post-dam decrease in a flow indicator. Two possible AFDC quantile outcomes, “no 

alteration” and “alteration”, each have probability distributions with locations defined using the 

MWW test statistic U. U describes the difference between the AFDC quantiles corresponding to 

the two samples of lengths m and n, respectively. To compute it, each flow value in a sample of 

length m corresponding to an AFDC quantile of interest m is paired with every flow 
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corresponding to the same AFDC quantile in the sample of length n, yielding m*n pairs.  The test 

statistic U summarizes the number of pairs for which the alternative hypothesis is true, which, in 

turn, indicates the extent to which a given AFDC is stochastically greater than the other. In 

contrast, a value of zero means that all post-dam flows corresponding to a given AFDC quantile 

are greater than all pre-dam observations, and is the strongest evidence possible against an 

alternative hypothesis of lower pre-dam flows. A value of (m*n)/2 would signal that the two 

samples cannot be distinguished from each other.  Mathematically, the U test statistic is 

computed as follows:  

𝑈 = ∑ ∑ 𝜑 (𝑄𝑝𝑟𝑒𝑖
− 𝑄𝑝𝑜𝑠𝑡𝑗

)

𝑛

𝑗=1

𝑚

𝑖=1

(1) 

where 𝜑 (𝑄𝑝𝑟𝑒𝑖
− 𝑄𝑝𝑜𝑠𝑡𝑗

) = 1 if 𝑄𝑝𝑟𝑒𝑖
− 𝑄𝑝𝑜𝑠𝑡𝑗

> 0 and is equal to 0 if 𝑄𝑝𝑟𝑒𝑖
− 𝑄𝑝𝑜𝑠𝑡𝑗

≤ 0. 

Another unique feature of this test is that Shieh et al. (2006) derived the probability distribution 

of U under both the null and alternative hypotheses. When both samples are larger than eight, a 

standardized U statistic, termed Z, may be approximated by a standard normal distribution under 

the null hypothesis:  

𝑍 =
(𝑈 − 𝜇0)

𝜎0
  (2) 

where 𝜇0 and 𝜎0 are the mean and standard deviation of the U statistic under the null hypothesis, 

and are both functions of only the known sample sizes m and n: 

𝜇0 =
𝑚 ∗ 𝑛

2
 (3) 

𝜎0 =
𝑚 ∗ 𝑛 ∗ (𝑚 + 𝑛 + 1)

12
(4) 

When the size of both samples is less than eight, an exact empirical distribution of U 

under the null hypothesis should be computed from the ranks using formulae given by Mann and 
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Whitney (1947). Bellera et al. (2010) describes applications of this test to small samples of 

unequal length. Type I error probability estimates from this test may be distorted if the variances 

of 𝑄𝑝𝑟𝑒and 𝑄𝑝𝑜𝑠𝑡 differ significantly and corrections to the null hypothesis assumption of equal 

variances are not made (Kasuya, 2001).    

In contrast with conditions under the null hypothesis, determining the probability 

distribution associated with U under the alternative hypothesis is much less straightforward 

because the distribution of U is unknown. Unless a Markov chain Monte Carlo method is applied 

(Lee, 2014), one must define an alternative hypothesis based on a given distributional 

assumption (Blair and Higgins, 1980; Shieh et al., 2006) or run Monte Carlo simulations (e.g. 

Neave and Granger, 1968; Yue and Wang, 2002; Kroll et al., 2015) to determine type II errors. 

Kroll et al. (2015) demonstrate that a normal distributional hypothesis associated with the 

estimated quantiles from an AFDC could not be rejected across 80 percent of all exceedance 

probabilities considered in a set of 20-year pre-dam and 10-year post-dam daily flow records at 

117 United States Geological Survey (USGS) stations. We have found that this assumption is 

especially suitable for quantiles near the median flow (Q50). In this initial study, we assume 

alternative hypotheses in which AFDC quantiles are well approximated by standard normal 

distributions and standardize both 𝑄𝑝𝑟𝑒 and 𝑄𝑝𝑜𝑠𝑡 with the pre-dam mean and standard deviation. 

In practice, transformations could normalize AFDC quantile distributions, if needed. We apply 

an analytical large-sample method from Shieh et al. (2006) based on standard normal 

distributional assumptions to estimate the probability of type II errors associated with a MWW 

test. Shieh et al. (2006) express the mean of the test statistic U under the alternative hypothesis, 

which we term 𝜇𝐴 , as a function of the two sample sizes and the difference between their sample 

means 𝜃: 
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𝜇𝐴 = 𝑚𝑛 ∗ Φ (
𝜃

√2
) (5) 

where ()  denotes the cdf of a standard normal variate. Shieh et al. (2006) give the standard 

deviation of U under the alternative hypothesis as: 

𝜎𝐴
2 = 𝑚 ∗ 𝑛 ∗ {Φ (

𝜃

√2
) ∗ [1 − Φ (

𝜃

√2
)] + (𝑚 + 𝑛 − 2) ∗ (𝐸 [{𝜙(𝑍 + 𝜃)}

2
] − [Φ (

𝜃

√2
)]

2

)} (6) 

where 𝑍 is a standard normal random variable defined in (2). To evaluate 2

A , we approximate 

the term  𝐸 [{Φ(𝑍 + 𝜃)}
2

] by numerically computing the average value of {Φ(𝑍 + 𝜃)}
2
 using 

the Z scores for quantiles ranging from 0.0005 to 0.9995. Using 𝜇𝐴 and 𝜎𝐴, we then estimate the 

power of the test (1 − 𝛽) as follows: 

1 − 𝛽 = 𝑃{𝑈 > 𝜇0 + 𝑧𝛼𝜎0 } = 𝜙 (
𝜇𝐴 − 𝜇0 − 𝑧𝛼𝜎0

𝜎𝐴
) (7) 

where 𝛼 is the type I error probability and 𝑧𝛼 is the 100(1 − 𝛼) percentile of the standard 

normal distribution. For a given value of 𝑧𝛼, the power 1 − 𝛽 rises as the difference between the 

means of the alternative and null distributions of U increases. Figure 4 illustrates the tradeoff 

between the likelihood of type I and type II errors, and shows that, if one is more concerned with 

designing a test with a low false positive (type I error) rate, there is a greater chance of obtaining 

false negatives (type II errors). In other words, the likelihood of over-protection and the 

likelihood of under-protection are inversely related. The concavity of this tradeoff curve 

increases with (i) the difference between pre- and post- dam flows and (ii) the length of the 

station record before and after dam is commissioned. 

[INSERT FIGURE 4] 
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2.4 Adapting the MWW test for use with percent deviation thresholds  

Next, we describe how to modify the MWW test to determine the likelihood that a typical 

pre-dam flow deviates from a typical post-dam flow by more than a given threshold. The MWW 

test cannot directly evaluate hypotheses regarding percent deviation thresholds because the 

values of the observations are transformed into ranks. Thus, for the MWW test to account for the 

percent deviation thresholds being examined, we must scale the pre-dam flows 𝑄𝑝𝑟𝑒 with the 

tolerated percent deviation before testing hypotheses that pre-dam flows differ from their post-

dam counterparts so that:  

𝑄𝑝𝑟𝑒−𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑄𝑝𝑟𝑒 ∗  (1 +  𝑑) (8)  

where d indicates the percent deviation threshold tolerated. The probability of type I and II errors 

of the threshold-adjusted MWW test indicate the likelihood that (i) the threshold will not be 

violated when the test suggests it will be and (ii) it will be violated when the tests suggests it will 

not be, respectively. With (8), we can test a hypothesis that the post-dam flows are greater than 

the pre-dam flows without specifying a given shift. Monotonic transformations can be applied to 

ensure 𝑄𝑝𝑟𝑒−𝑠𝑐𝑎𝑙𝑒𝑑 and 𝑄𝑝𝑜𝑠𝑡 have similar variances without changing the order of ranked 

observations from the two samples.  

[INSERT FIGURE 5] 

To illustrate the modification of the MWW test for percent deviation thresholds, we 

assume the post-dam values for a hypothetical high-flow AFDC quantile follow the same 

distribution as its pre-dam counterpart, except that they have been reduced by 30%. If we 

evaluate the presumptive flow standard from Richter et al. (2012), which specifies that a 

decrease exceeding 20% could cause adverse ecological impacts, we first scale the pre-dam 

flows by 0.8, i.e. d = - 0.2. Then, we perform a MWW test in which the null hypothesis states 
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that the scaled pre-dam flows are less than or equal to the post-dam flows, i.e. no violation of an 

alteration threshold, and the alternative hypothesis is that the scaled pre-dam high flows are 

greater than the post-dam high flows. In other words, we hypothesize a violation of the alteration 

threshold because the post-dam flows are still lower than the scaled pre-dam flows. The location 

of the mode of the post-dam flow distribution to the left of the pre-dam ones in Figure 5 indicates 

that the probability of a threshold violation not due to sampling uncertainty exceeds 50%. Again, 

monotonic transformations can be applied to ensure 𝑄𝑝𝑟𝑒−𝑠𝑐𝑎𝑙𝑒𝑑 and 𝑄𝑝𝑜𝑠𝑡 have similar 

variances without changing the order of ranked observations from which the test draws 

conclusions. 

2.5 Hypothesis tests of overall change in AFDCs 

Next, we assess the likelihood that dam operations cause violations of alteration 

thresholds for at least one ecologically critical AFDC quantile. Multiple comparison procedures 

assess the overall, or field, significance associated with the repeated application of a hypothesis 

test applied to independent sub-samples of a phenomenon (e.g. Thompson et al., 2011; Reiff et 

al., 2016). Assuming the high (Q5) and low flows (Q95) are statistically independent, the 

following test determines the likelihood of a violation for at least one of these two ecologically 

critical AFDC quantiles as follows:  

H0: No threshold violations 

HA:  At least one threshold violation 

 We then compute the probability of hypothesis testing errors for K independent AFDC 

quantiles: 

αoverall = 1 − ∏(1 − αk)

K

k=1

(9) 
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βoverall = 1 − ∏(1 − βk)

K

k=1

(10) 

 Type II errors βk are conditional upon the type I errors αk selected for each AFDC 

quantile hypothesis test, and vice versa, since a value of one uniquely determines the other. 

Future work may consider the impact of cross-correlations among individual hypothesis test 

results when determining the overall field significance (Douglas et al., 2000).   

3. Informing dam operation decisions with hypothesis test results  

In this section, we introduce our Bayesian decision-tree framework, which accounts for 

both type I and II errors associated with hypothesis tests regarding the exceedance of percent 

deviation thresholds when evaluating potential hydropower and ecological consequence of 

reservoir operation decisions. We also contrast this approach with common deterministic and 

probabilistic decision-making methods.  

3.1 Approaches for incorporating Type I and II errors in decisions 

In our post-hoc, or observed, power analysis, we determine the power 1 - 𝛽 

corresponding to a given α, estimated effect size 𝜃, and sample sizes m and n. We show the 

importance of carefully choosing among numerous methods for incorporating hypothesis test 

results into decisions. First, we apply null hypothesis significance testing (NHST), a common 

practice for making decisions in which null hypotheses of no change are rejected if the likelihood 

of a type I error falls below a critical probability set a priori, commonly 0.05 (e.g. Ioannidis, 

2005). If the type I error probability exceeds this statistical threshold, one concludes insufficient 

evidence for rejecting the null hypothesis. This need for evidence of change may lead to 

situations in which flow alteration only slightly exceeding a threshold is deemed insignificant for 

declaring a violation. Such a low type I error acceptance rate implies that over-protection regrets, 
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i.e. hydropower losses, are much more consequential than under-protection ones, an implied 

valuation which does not necessarily reflect the relative benefits of hydropower and ecosystems. 

Moreover, type II errors are not considered in this approach.   

A second approach involves setting the type I (or type II) error to an arbitrary a priori 

value that reflects stakeholder risk tolerances and valuations (e.g., Mapstone, 1995; Field et al., 

2004), and then determining the type II (or type I) error associated with it. Both errors are then 

used in a decision-tree framework. While some authors have called for a reversal of the “burden 

of proof” when the potential environmental damage is greater than the potential cost overruns 

stemming from protective actions (e.g. Field et al., 2004), we employ the conventional 

formulation in which a type I error signals overprotection.  

A third approach involves maximizing the overall tradeoff between two competing 

objectives by optimizing the values of type I and II error probabilities. This is especially suitable 

when a central decision-maker has a vested interest in both objectives or an external party aims 

to negotiate tradeoffs between stakeholders with competing interests. Examples of such a 

criterion include minimizing the overall expected cost (Field et al., 2004) and minimizing 

expected regret, i.e. the expected consequences of incorrect decisions (Rosner et al., 2014). The 

latter criterion is especially applicable when a decision-maker has a budget sufficient for 

changing the reservoir operating rules but wants to avoid unnecessary costs. In contrast, cost 

minimization may be more appropriate for minimizing the sum of hydropower and ecological 

“damage” costs (see Field et al. (2004) for an ecological conservation example). Here, we focus 

on minimizing the expected regrets associated with incorrect inferences.  

3.2      Linking hypothesis testing errors to decision regrets  

Statistical decision theory provides an avenue for incorporating type I and II errors into 
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Bayesian decision tree approaches for evaluating infrastructure design and operation decisions 

made when changes in environmental conditions are uncertain (e.g. Hobbs et al., 1997). A 

Bayesian approach is necessary because type I and II error probabilities express the likelihood of 

a decision conditional upon an unknown true state of nature. However, for decision-makers 

knowing the probability of a consequence conditioned upon a decision, is imperative. For 

instance, the probability of a type I error expresses the likelihood of concluding a threshold 

violation if there is not actually one, i.e. P(CA|NA) = P(Conclude Alteration | No Alteration). 

This is different from the probability of not having a threshold violation if we conclude 

significant alteration and thus decide to change dam operating rules. i.e. P(NA|CA) = P(No 

Alteration | Conclude Alteration).  The decision tree in Figure 6 further illustrates this concept. 

The square node indicates a dam operator decision and the circular nodes represent chance 

nodes, which reflect the likelihood of type I and II errors associated with the MWW test 

regarding the violation of alteration thresholds due to a previous dam-building decision. The 

ensuing branches identify the probability of making decisions leading to subsequent regrets 

associated with hydropower or ecological aspects of the project. Thus, Figure 6 integrates the 

hypothesis test outcomes with the consequences, or regret, associated with hydropower and 

ecological outcomes.  

[INSERT FIGURE 6] 

Figure 6 also shows that Bayes Theorem allows us to specify a prior probability of 

violating an alteration threshold and integrate it into a decision tree to obtain the final posterior 

probabilities. While prior probabilities based on stakeholder and expert beliefs can be 

incorporated using Bayes Theorem (Webb et al., 2015), we demonstrate this method with an 

arbitrary non-informative prior probability in which there is a 50% chance of violating an 
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alteration threshold. Bayes Theorem yields the probability of not violating an alteration threshold 

when deciding to change dam operating rules based on a conclusion of alteration 𝑃(𝑁𝐴|𝐶𝐴): 

𝑃(𝑁𝐴|𝐶𝐴) =
𝑃(𝐶𝐴|𝑁𝐴)𝑃(𝑁𝐴)

𝑃(𝐶𝐴)
 (11) 

where the probability of concluding alteration is: 

𝑃(𝐶𝐴) = 𝑃(𝐶𝐴|𝑁𝐴)𝑃(𝑁𝐴) + 𝑃(𝐶𝐴|𝐴)𝑃(𝐴) (12) 

P(NA|CA) can be interpreted as the hydropower regret probability because it reflects the 

likelihood of unnecessarily changing dam operating dams based on an incorrect conclusion of 

alteration. Substituting (12) into (11), we obtain: 

𝑃(𝑁𝐴|𝐶𝐴) =
𝑃(𝐶𝐴|𝑁𝐴)𝑃(𝑁𝐴)

𝑃(𝐶𝐴|𝑁𝐴)𝑃(𝑁𝐴) + 𝑃(𝐶𝐴|𝐴)𝑃(𝐴)
 (13) 

Since we are assuming 𝑃(𝑁𝐴) = 𝑃(𝐴) = 0.5, 𝑃(𝐶𝐴|𝑁𝐴) and 𝑃(𝐶𝐴|𝐴) can be removed 

from (13) and then we can use 𝛼 and 𝛽 from Figure 2 to solve for 𝑃(𝑁𝐴|𝐶𝐴):  

𝑃(𝑁𝐴|𝐶𝐴) =
𝛼

𝛼 + (1 − 𝛽)
(14) 

We also use Bayes Theorem to estimate probabilities for the other three possible 

combinations of flow alteration violation outcomes conditional upon conclusions from the 

MWW test. 
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With regret probabilities, we can compute the expected regrets (e.g. Rosner et al., 2014) 

of dam operations decisions. First, we compute the expected hydropower regret 𝐸𝑅𝐻𝑃 in terms of 

the difference in hydropower production between a “fraction-of-inflow” operating rule 𝐻𝑃𝐹𝑂𝐼, 

which ensures that the outflow does not excessively deviate from the inflow (see Section 4), and 

a reference run-of-river operating rule 𝐻𝑃𝑅𝑂𝑅 requiring daily releases to equal daily inflows: 

𝐸𝑅𝐻𝑃 = 𝑃(𝑁𝐴|𝐶𝐴) ∗ (𝐻𝑃𝐹𝑂𝐼 − 𝐻𝑃𝑅𝑂𝑅) (15) 

Substituting in the expression derived from the hypothesis test result in Figure 7 leads to:  

𝐸𝑅𝐻𝑃 =
𝛼

𝛼 + (1 − 𝛽)
∗ (𝐻𝑃𝐹𝑂𝐼 − 𝐻𝑃𝑅𝑂𝑅) (16) 

Hydropower production can be quantified in terms of revenue, energy generation, reliability or 

other relevant performance indicators.  

 Next, we compute the expected ecological regret 𝑅𝐸𝐶𝑂. The probability that a decision 

will lead to an undesirable ecological state is given by P(A|CNA) in Figure 7. When dam 

operation changes a measurable ecological indicator, 𝑃(𝐴|𝐶𝑁𝐴) serves as a weight for 

determining 𝐸𝑅𝐸𝐶𝑂 so that:  

𝐸𝑅𝐸𝐶𝑂 =
𝛽

(1 − 𝛼) + 𝛽
∗ (𝐸𝐸𝐶𝑂 − 𝐸𝐻𝑃) (17) 

Ecological indicators may include measures of ecological health, such as species 

abundance and diversity, or monetary values of a fishery or ecosystem services. We assume flow 

alteration uniformly affects all species and that a single stakeholder represents all ecological 

interests, even though species and ecosystem functions (and the stakeholders representing them) 

often have competing hydrologic interests (e.g. Szemis et al., 2012; Railsback et al., 2015; 

Kozak et al., 2015). When hydropower and ecological objectives are not commensurate, the 

impacts of dam operations on each objective can be measured relative to maximum possible 
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values, e.g. hydropower under 𝐻𝑃𝑅𝑂𝑅 as a percentage of the hydropower production 

under 𝐻𝑃𝐹𝑂𝐼. This way, we can identify the values of 𝛼 and 𝛽 that minimize the total expected 

regret 𝐸𝑅𝑇𝑂𝑇 for a given threshold set: 

𝐸𝑅𝑇𝑂𝑇 =
𝛼

𝛼 + (1 − 𝛽)
∗ (𝐻𝑃𝐹𝑂𝐼 − 𝐻𝑃𝑅𝑂𝑅) +

𝛽

(1 − 𝛼) + 𝛽
∗ (𝐸𝑅𝑂𝑅 − 𝐸𝐹𝑂𝐼) (18) 

  This approach differs from classic hydropower optimization models in which production 

is maximized given a set of constraints, including environmental flows (e.g. Cardwell et al., 

1996). Our approach is equivalent to selecting an optimal point on a receiving (relative) 

operating characteristic curve (ROC), a graphical technique for selecting thresholds for 

diagnostics based on binary classification systems (Swets, 1992). For an earth sciences example 

of ROC curves, see Figure 11 in Oommen et al. (2010). We apply this optimization routine to 

each individual AFDC quantile separately and then combine the optimal values of α and β to 

determine the overall probabilities of type I and II errors.  

[INSERT FIGURE 8] 

 Figure 8 illustrates the relationship between the hypothesis test errors and regret 

probabilities when the prior probability of alteration is 0.5. These complex tradeoffs, which stem 

from having inadequate information concerning the likelihood of alteration, show that the 

likelihood of regret due to either hydropower (panel A), or ecological (panel B) or both (panel C) 

generally decreases as both type I and II error likelihoods decrease. Consider the case of fixing 

the type I error probability at 5%, a common assumption in NHST. The hydropower regret will 

always be very low, though the likelihood of ecological regret (panel B) or the total regret 

likelihood (panel C) will be much higher. Making a type II error has a much greater impact on 

the ecosystem than on hydropower when the type I error is low.  
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4. Stylized baseload hydropower dam example 

4.1 Reservoir operations simulation model 

We illustrate our decision-tree framework for comparing the hydropower-ecosystem 

tradeoffs resulting from different reservoir operating rules using a stylized hydropower reservoir 

example to avoid accounting for systematic differences between pre- and post-dam periods other 

than dam operations (see the Supporting Information for details). We use a 37-year inflow series 

(1913-1949) from the USGS station (02080500) on the Roanoke River at Roanoke Rapids, North 

Carolina for daily inflows. The reservoir can store 22% of the mean annual inflow during this 

period. Water is released downstream from the reservoir via: (i) turbine outflows, (ii) an 

environmental flow bypass and (iii) spills during high-flow periods (Figure 9). Turbines are 

situated in an integral powerhouse built into the dam, and release water into the main channel 

below the dam. To avoid accounting for the operation of individual turbines, we assume they can 

release between 20% and 100% of the mean annual discharge (239 m3/s). Turbine releases are 

permitted whenever the sum of available storage in the conservation pool and the daily inflow 

exceeds 20% of the mean annual discharge. When low inflow and storage prevent power 

generation, a low-flow outlet releases 28.6 m3/s, the annual seven-day minimum discharge with a 

ten-year recurrence interval (7Q10), provided that sufficient storage remains. When the 

conservation storage pool is full, inflow passes downstream via a spillway with an infinite 

discharge capacity without any gates for controlling releases. Our hypothetical dam has an 

installed energy generating capacity of 49.4 MW, which can power as many as 49,400 homes in 

an industrialized region (Electricity Power Supply Association, 2017). However, its annual 

average generation is expected to be substantially lower since energy is not always produced at 
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the maximum rate due to water shortages, environmental flow constraints, and other operational 

issues. 

[INSERT FIGURE 9] 

4.2 Operating rules and flow alteration thresholds analyzed 

We compare a fraction-of-inflow (FOI) operating rule, which requires daily turbine 

releases to be between 40% and 180% of the inflow on the same day, with a run-of-river (RR) 

scheme that does not alter daily flows. Although it is unlikely that a large storage reservoir 

would be converted into a run-of-river facility, this comparison provides a valuable reference 

point for assessing the hydropower and ecosystem impacts of flow alteration. The percent 

deviations in daily inflows permitted are based on percent deviation thresholds for fish that 

Carlisle et al. (2011) detected in annual maximum and seven-day low flows collected at 237 

stations in the contiguous United States. We first evaluate flow alteration for a set of percent 

deviation thresholds (Threshold Set 1) based on Carlisle et al. (2011) in which the annual Q5 

flows cannot decrease by more than 60% and the annual Q95 AFDC flows cannot increase by 

more than 80%. While we recognize that changes to ecosystems from low and high flows are not 

equivalent to ones stemming from alterations to extreme high and low flows, we use them to 

illustrate the incorporation of empirical thresholds into our decision-making framework. Then, 

we replace these thresholds with a set in which the annual Q5 values cannot decrease by more 

than 30% and the annual Q95 values cannot increase by more than 50% (Threshold Set 2).  

5. Results 

5.1 Threshold Set 1 

The average annual hydropower production declines by just 13% when the reservoir 

switches from HPFOI (330 GWh, 3.30 x 106 kWh) to HPROR (286 GWh, 2.86 x 106 kWh). The 
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very low interannual flow variability (annual Cv = 0.22) at this site explains this mild reduction 

(see Vogel et al. (1998) for the Cv of annual flows in the U.S.). HPFOI reduces the average Q5 by 

37% and elevates the average Q95 by 66%, changes that are less severe than the 60% decrease in 

high flows and 80% increase in low flows that Threshold Set 1 tolerates. Both the large turbine 

discharge capacity and spills prevent the annual Q5 from decreasing below 40% of its pre-dam 

average. While Threshold Set 1 permits Q95 values to increase by 80%, reservoir storage is often 

insufficient for releases equal to 180% of the inflow to be made during these low-flow periods. 

These results clearly illustrate that changes in high and low flows under HPFOI do not exceed the 

deviations stipulated in Threshold Set 1. These results also highlight the extent to which turbine 

constraints affect the flow alteration impacts of reservoirs, and demonstrate that they supplement 

the storage and generation capacity metrics commonly used to appraise the ecological 

performance of hydropower dams (e.g. Kibler and Tullos, 2014). 

5.2 Threshold Set 2 

Next, we illustrate a case with stricter thresholds, a 30% high-flow decrease and a 50% 

low-flow increase. Even though these percent differences between HPROR (-37%) and HPFOI 

(66%) are both greater than permitted in Threshold Set 2, we must rule out the possibility that 

these violations arise from random sampling variability. When stakeholders agree to tolerate a 

20% type I error probability for both high- and low-flow alteration, i.e. 𝛼 = 0.2, the type II error 

probabilities for violating high- and low-flow alteration thresholds are 0.38 and 0.26, 

respectively. Next, we compute the probability of at least one violation of an alteration threshold 

at either the Q5 or Q95 AFDC quantile. The probability of at least one type I error is 0.36, and 

the probability of at least one Type II error is 0.54. Using (18), this translates to overall 

hydropower and ecological regret probabilities of 0.44 and 0.46, respectively. Even though the 
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average changes in the two AFDC quantiles exceed these posited thresholds, a total regret 

probability close to one indicates insufficient evidence of a threshold violation.  

Next, we compute the expected hydropower and ecological regrets with the hypothesis 

test error probabilities. Since the difference in hydropower production between HPFOI and HPROR 

is 44 GWh per year, the expected hydropower regret is 0.44 * 44 GWh = 19 GWh, less than 6% 

of the average annual hydropower output under HPFOI. In contrast, the likelihood of inducing 

adverse ecological impacts by not modifying dam operations is 46%. (Recall that we interpret 

ecological regret probability as an indicator of the likelihood of adverse ecological impacts in 

this hypothetical example.) Figure 10 shows that, if we assume a one-percent decrease in 

hydropower is of equal value to a one-percent increase in the likelihood of adverse ecological 

impacts, under-protection errors become much more consequential. In other words, our a priori 

type I error probability tolerance of 0.2 is too strict since HPROR only reduces hydropower 

production mildly (13%). The lighter gray points in Figure 10 indicate values for which 𝛼 = 0.2, 

whereas the darker “optimal” points denote the combination of type I and II error probabilities 

that minimize the percent regret for each objective. Each point in the expected percent regret 

plots corresponds to a point of the same color in the hypothesis test error tradeoff plots. The 

tradeoff curve optima indicate that we should accept very high probabilities of type I errors to 

minimize the total decision regret, as the ecological consequence of an incorrect decision to 

maintain hydropower production is much greater than the hydropower consequence of changing 

to a run-of-river rule. This example clearly illustrates the problem with arbitrarily setting type I 

error probability requirements. 

Table 1 below shows the importance of carefully selecting among the different 

hypothesis testing approaches presented in Section 3.1 as well as the overall importance of 
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hypothesis testing. Most notably, NHST applied with a critical type I error probability of 0.05 

suggests that these changes to high (p = 0.09) and low flows (p = 0.10) are not significant 

enough to warrant any action. (The overall probability of at least type I error of 0.18 is even 

higher). In contrast, the two approaches considering both type I and II errors indicate a need to 

protect the river, although the degree to which they each suggest protection varies considerably.  

[INSERT TABLE 1] 

Next, we examine the difference between expected regrets when different thresholds are 

tested. Figure 11 shows the range of optimal expected regrets for percent decrease thresholds of 

0-30% for high flows and for percent increase thresholds of 0-60% for low flows. The actual 

percent changes in high (-37%) and low flows (66%) exceed all these thresholds. Figure 11a 

shows that optimal solutions for the other thresholds examined also have expected ecological 

regrets much lower than their corresponding expected hydropower regrets because the potential 

ecological consequences are much greater on a percent-loss basis. In contrast, Figure 11b shows 

the optimal regrets for a scheme in which a 1% probability of a hydropower regret is weighted 

the same as a 1% probability of an ecological regret, i.e., a 13% hydropower loss is equal to a 

100% chance of incurring adverse ecological impacts. In other words, hydropower production is 

assumed to be worth nearly eight times as much as the ecosystem. Under this valuation, one can 

see that some high- and low-flow percent deviation thresholds have optimal points with a greater 

expected ecological regret and, hence, a larger type II error probability. As expected, Figure 11 

also shows that the regret probabilities rise as the percent difference between pre- and post-dam 

AFDC quantiles approach the stakeholder-identified percent deviation thresholds.  

[INSERT FIGURE 11] 

Since our one-tailed hypothesis test only examines the likelihood of thresholds being 
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exceeded, we exclude cases in which the sum of the two regret probabilities exceeds one. For 

this reason, the contours in Figure 11 may exceed 100%. When thresholds are not exceeded and 

hypotheses of threshold exceedance are tested, this test yields values of α and β where α + β > 1. 

A value greater than one indicates that the test has been applied in the wrong direction, e.g. the 

alternative hypothesis is that scaled pre-dam flows are greater than post-dam flows when they 

are, in fact, less than them. Yet, tests for which α + β > 1 indicate that the violation of an 

alteration threshold is very unlikely. Instead, they demonstrate a higher likelihood of hydropower 

regret, which has equally important implications for dam operation decisions. 

6. Discussion   

This paper makes an initial contribution toward the incorporation of the uncertainty 

associated with over- and under-design regrets associated with decisions regarding reservoir 

release rules which impact hydropower-ecosystem tradeoffs. Most importantly, we highlight the 

decision implications of different probabilistic approaches for incorporating the uncertainty of 

long-term hydrologic alteration in evaluations of tradeoffs between hydropower and ecosystem 

benefits of different operating rules for a large baseload hydropower reservoir. Our approach 

focuses on minimizing the regrets associated with reservoir release decisions made in the face of 

hydrologic uncertainty as opposed to the total cost-minimization approach introduced by Field et 

al. (2004).  One of the key differences between the regret- and cost-minimization approaches is 

that cost-minimization also considers hydropower costs when changing to 𝐻𝑃𝑅𝑂𝑅is the correct 

decision. This implies that a cost-minimization approach would be more likely to recommend 

operating rules conducive to hydropower production. Yet, further research is needed to compare 

the implications of these two approaches for evaluating hydropower-ecosystem tradeoffs and 
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other environmental management problems, including the introduction of constraints on the 

distribution of costs among stakeholders. 

Other nonparametric tests offer possibilities for extending our analysis. While we analyze 

changes in intra-annual variability through our assessments of changes to typical values of high 

and low flows, the nonparametric Siegel-Tukey test (Siegel and Tukey, 1960; see FitzHugh 

(2014) for an environmental flows application) could examine changes in interannual variability 

using AFDCs. In fact, interannual flow variability, especially extremely wet and dry years, 

controls the composition of riverine ecosystems in many settings (e.g. Nislow et al., 2002; 

Rivaes, 2015). Other more specialized nonparametric approaches could detect simultaneous 

changes in the central tendency and variability of environmental flow indicators (see Marozzi, 

2013).  In addition, nonparametric tests that evaluate changes in distributions, such as the Kuiper 

test that Kroll et al. (2015) apply to changes in AFDCs, could be modified to determine whether 

changes in AFDC quantiles have exceeded ecologically critical thresholds d.  

 Our test could easily be adapted to examine changes in flows on ecologically relevant 

dates, though serial correlations among flows on different dates may need to be addressed. While 

AFDCs describe the entire range of daily flows in each water year, many ecological functions 

depend on the timing and sequence of flows (Stewart-Koster et al., 2015), factors not considered 

within the context of AFDCs. Other studies of highly gauged rivers have recommended 

ecological flow targets based on percent deviations from sequential daily flow hydrographs (e.g. 

Steinschneider et al., 2014; McKay, 2015). Our framework can also assess changes to many 

other flow statistics, such as flashiness indices (e.g. Baker et al., 2004) describing the rate of 

change of sub-daily peaking flows (Haas et al., 2014), and even relevant non-flow indicators, 

such as habitat suitability indices (Bovee and Cochnauer, 1977).  
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One might question the purpose of testing for hydrologic alteration many years after a 

dam is built if the flows have already been altered to an extent that might adversely affect species 

with lifespans of no more than a few years. However, excessive hydrologic alteration may signal 

the ongoing or potential decline of an ecosystem since the post-dam ecological equilibrium may 

take some time to become established. Perkin et al. (2016) observed fewer native opportunistic 

species and more non-native generalist species downstream of a reservoir approximately a 

decade after its impoundment compared to the first few post-dam years. Taylor et al. (2014) 

detected fewer changes in pre-dam fish assemblages during a six-year post-impoundment period 

than they did during the ensuing seven years. While more research on the rates of these 

ecological transitions is needed, these two studies illuminate the value of performing hypothesis 

tests on post-dam flow records of approximately one decade. Moreover, even if dam operations 

adversely affect a riverine ecosystem within a few years, our hypothesis testing framework could 

determine whether dam operations must be changed to provide flow conditions enabling 

ecological restoration, or if other causes should be addressed instead. In fact, this hypothesis 

testing framework could be inverted to examine the achievement of pre-dam flow conditions, an 

increasing challenge given the proliferation of dam removal projects (O’Connor et al., 2015). 

Also, in data-poor regions, these hypothesis tests can be used to screen sites where more 

intensive ecological reconnaissance may be necessary. Ideally, such screening-level studies 

would also determine when flow alteration is the limiting factor constraining riverine ecosystems 

(e.g. McManamay et al., 2013; Knight et al., 2014).  

Finally, our testing procedure motivates efforts to estimate the economic value of 

environmental flows. In some cases, the value of fisheries provides a more objective measure of 

the benefits of environmental flows (e.g., Kozak et al., 2015) while other benefits, such as the 
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aesthetic and intrinsic values of riverine ecosystems, are more challenging to monetize. Most 

importantly, our framework can provide useful results regarding tradeoffs between hydropower 

and ecosystem management objectives even if they cannot be assessed commensurately. 

Decision trees can also produce tradeoff curves that decision-makers can consult subsequently, 

an increasingly advocated form of environmental planning decision support (e.g. Quinn et al., 

2017).  

7. Conclusions 

There is a growing interest in protecting riverine ecosystems downstream of dams using 

percent-deviation thresholds of hydrologic alteration (e.g. Poff et al., 1997; Vogel et al., 2007; 

Richter et al., 2012; McKay, 2015) since they require less field reconnaissance than flow 

magnitude-based river and reservoir management policies. When evaluating changes between 

pre- and post-dam periods, one wishes to consider the possibility that the exceedance of 

thresholds is partly due to sampling variability alone, which stems from o natural streamflow 

variability and the limited samples available contributes to the exceedance of thresholds. Our 

decision-theoretic approach removes the effects of sampling variability from reservoir operation 

decisions made for the purposes of maintaining hydropower production and/or conserving 

ecosystem health thus enabling us to focus exclusively on uncertain hydropower and ecosystem 

outcomes resulting from reservoir release decisions. We modify and extend a nonparametric 

hypothesis test to examine whether differences between pre- and post-dam flow of an annual 

FDC (AFDC) quantile exceed allowable percent deviation thresholds. While we apply this 

approach to AFDCs, we have also created a general framework for incorporating the uncertainty 

of environmental threshold exceedances into tradeoffs between off-stream reservoir benefits and 

in-stream water uses. Our stylized example highlights differences between our decision-theoretic 
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approach and conventional decision-making methods, which, in turn, motivates future efforts to 

consider the uncertainty of hydrologic alteration assessments carefully when addressing river 

basin conflicts.  
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Supporting Information: Simulation model for stylized reservoir example 

We illustrate our decision-tree framework for comparing the hydropower-ecosystem 

tradeoffs resulting from different reservoir operating rules using a stylized example inspired by 

the John H. Kerr Reservoir situated on the Roanoke River on the border of the U.S. states of 

North Carolina and Virginia. Streamflow information is available from the United States 

Geological Survey (USGS) station (02080500) on the Roanoke River at Roanoke Rapids, North 

Carolina downstream from the dam. A 37-year pre-dam record is available from the 1913-1949 

water years (Oct 1 – Sep 30), as construction began altering the flow in 1950 (Richter et al., 

1996). Dam-induced changes in streamflow at this station have also been profiled in studies 

evaluating the observed impact of the dam (e.g. Richter et al., 1996). While there are numerous 

ecological concerns downstream of the dam, the preservation of seasonally flooded hardwood 

forests has formed the crux of many conservation efforts (Richter et al., 1996/7). The potential 

impacts of revised operating rules proposed during a stakeholder-driven Federal Energy 

Regulatory Commission dam relicensing process required for privately operated dams in the 

United States (e.g. Pearsall et al., 2005) have also been investigated. To simulate the impact of 

the reservoir on post-dam flows, we treat this streamflow record as reservoir inflow. This 

approach enables us to avoid accounting for other possible systematic differences between pre- 

and post-dam periods. However, we apply the hypothesis test as if we did not know that we had 

done this.  

We make numerous assumptions and simplifications to the actual reservoir system to 

elucidate key features of our decision-making framework. The reservoir stores 1.27 x 109 m3 

(1,027,000 acre-feet) of water between the top of the dead storage zone at 268 ft (81.7 m) above 

sea level and the top of the conservation storage pool at 300 ft (91.4 m) above sea level (USACE, 
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1992). The dead storage pool, from which hydropower releases cannot be made, stores an 

additional 5.69 x 108 m3 (461,600 acre-feet). The conservation storage, which can be released for 

hydropower, is equal to approximately 20 percent of the mean annual inflow. In the conservation 

storage pool, the reservoir surface area rises from 19,700 acres (79.7 km2) at the top of the dead 

storage pool to 48,900 acres (197.9 km2) at the top of the conservation storage pool. To estimate 

the daily reservoir water level, we relate changes in storage with changes in depth using a power-

law relationship, which considers the storage the conservation pool provides as well as the 

reservoir surface area at the bottom and top of the conservation storage zone). While we include 

many design parameters from the actual reservoir reported in USACE (1992), the operations we 

simulate differ from the dam’s actual operations, which are driven by flood control and diurnal 

energy price variability (Pearsall et al., 2005). We also do not consider evaporation from the 

reservoir and assume that its storage capacity does not decrease over time due to sedimentation.  

Figure 8 in the main text displays a schematic diagram of releases through three 

mechanisms: (i) turbine outflows, (ii) an environmental flow bypass and (iii) spills during high-

flow periods. We express the minimum and maximum discharge capacity of the turbines as a 

percentage of the mean daily discharge to avoid accounting for individual turbine operation 

decisions. The John H. Kerr Dam powerhouse, which operates as a peaking facility, has nine 

turbines, whose collective discharge capacity is nearly four times the mean annual inflow at this 

site. However, such a large discharge capacity is unrealistic for a baseload hydropower plant. 

Instead, we assume that the turbines, which are situated in an integral powerhouse built into the 

dam, can release water at a rate up to the mean annual discharge. The turbines can be operated 

when the daily inflow plus the storage available in the conservation pool exceeds 20% of the 

turbine daily discharge capacity, since the dam may only operate just one or two turbines at a 
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given instant if storage in the reservoir is low. This minimum turbine discharge parameter 

enables us to avoid accounting for the operation of each individual turbine. We assume that all 

turbine outflows immediately re-enter the main channel of the river without any ramping rate 

restrictions.  

We also consider reservoir releases made via the spillway and an environmental flow 

bypass, i.e. a low-flow outlet that releases environmental flows equal to the annual seven-day 

minimum discharge with a ten-year recurrence interval (7Q10) when there is an insufficient 

combination of inflow and storage for hydropower generation. Unlike the actual John H. Kerr 

Reservoir, at which flood storage up to 320 ft (97.5 m) is released through a set of controlled 

gates with different discharge capacities, we assume that all water above the conservation storage 

pool (300 ft) passes downstream via a spillway with an infinite discharge capacity. We estimated 

the 7Q10 flow from the pre-dam record using the kappa distribution with the lmomco package in 

R (R Core Team, 2016). We computed seven-day low flows for each calendar year instead of 

Oct 1 – Sep 30 water years to include flows recorded during periods spanning the months of 

September and October.  

The gross elevation head that indicates the potential energy available for hydropower is 

computed as the difference between the reservoir water surface elevation on a given day and the 

tailwater elevation below the dam. We assume this elevation to be constant and set it to 62.2 m 

(204 ft), the midpoint of the 199 ft -209 ft range reported in USACE (1992). We assume that the 

net elevation head is 10% lower than this elevation difference to account for friction losses. The 

hydropower generated on a given day 𝐻𝑃𝑡, measured in kilowatt-hours (kWh), is computed as 

follows:  

𝐻𝑃𝑡 = 24 ∗ 9.807 ∗ 𝜀 ∗ 𝑄𝑡𝑢𝑟𝑏,𝑡 ∗ ℎ𝑛𝑒𝑡,𝑡 (A1) 
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where 𝜀 denotes the efficiency of hydropower production, which is assumed to be 80 percent at 

all times, 𝑄𝑡𝑢𝑟𝑏,𝑡 is the turbine outflow on each day (m3/s), and ℎ𝑛𝑒𝑡,𝑡 indicates the net head (m) 

on each day. The coefficients of 24 and 9.807 represent the number of hours in a day and the rate 

of gravitational acceleration at the Earth’s surface (m/s2), respectively.  
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Tables 

Decision 

Making 

Approach 

High flows (Q5) Low flows (Q95) Overall alteration 

Deterministic Alteration. Exceeds the 

30% decrease threshold, 

an adverse ecological 

impact will occur if 

operations are not 

changed. 

Alteration. Exceeds the 

50% increase threshold, 

an adverse ecological 

impact will occur if 

operations are not 

changed. 

Alteration. Thresholds 

at both sites are 

exceeded, an adverse 

ecological impact will 

occur if operations are 

not changed. 

Null hypothesis 

significance 

testing (p < 

0.05)  

No alteration.  = 0.09. 

Alteration insignificant, 

no significant risk of an 

adverse ecological 

impact.   

No alteration.  = 0.10, 

Alteration insignificant, 

no significant risk of an 

adverse ecological 

impact.   

No alteration.  = 0.18, 

Alteration insignificant, 

no significant risk of an 

adverse ecological 

impact.   

Fixing the type 

I error 

probability  at 

0.20, using 

decision tree 

Hydropower and 

ecological regret 

probabilities are 

similar.  

Even though  is much 

higher than 0.05,  

(0.38) indicates a high 

likelihood that test will 

not recommend 

changing the reservoir 

operating rule when 

necessary.  

Hydropower and 

ecological regret 

probabilities are 

similar.   

Even though  is much 

higher than 0.05,  

(0.26) indicates a high 

likelihood that test will 

not recommend 

changing the reservoir 

operating rule when 

necessary.  

Substantial regret 

probabilities, decision 

depends on relative 

hydropower and 

ecological values. 

While the hydropower 

and ecological regret 

probabilities are 0.44 

and 0.46, respectively, 

the greater potential 

ecological consequences 

of HPFOI make changing 

to HPROR worthwhile.  

Optimal  and 

 (minimizing 

total regret) 

 

The hydropower 

regret dominates 

because hydropower 

losses are less 

important than 

ecosystem losses.  is 

much higher (> 0.99) 

than  (< 0.01). The 

lower consequence of 

hydropower regrets 

makes a higher  much 

The hydropower 

regret dominates 

because hydropower 

losses are less 

important than 

ecosystem losses.  is 

much higher (> 0.99) 

than  (< 0.01). The 

lower consequence of 

hydropower regrets 

makes a higher  much 

The hydropower 

regret dominates 

because hydropower 

losses are much less 

important than 

ecosystem losses. Since 

 is very high for both 

high and low flows, it is 

also very high for 

overall alteration.  

Similarly, since  is 
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more tolerable. more tolerable. very low for both flows, 

it is very low for overall 

alteration. 

Table 1: Management implications of different decision-making approaches. 
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Figures  

 
Figure 1: Pre- and post-dam annual flow duration curves from the stylized example in Sec 5. 

 

Decision Rule 

 

Unknown Truth 

Alteration not above 

threshold  

No Alteration, NA 

Alteration above threshold 

Alteration, A 

Keep reservoir operation 

rules  

 

(Conclude No Alteration) 

CNA 

 

1 − 𝛼 

P(CNA|NA) 

Under-protection error 

(Type II error) 

 

𝛽 

P(CNA|A) 

Change reservoir operation 

rules 

 

(Conclude Alteration) 

CA 

Over-protection error 

(Type I error) 

 

𝛼 

P(CA|NA) 

1 − 𝛽 

P(CA|A) 

 

Figure 2: Confusion matrix for testing hypotheses of hydrologic change, defining unknown true 

outcomes, decision rules with table entries showing the likelihood of the various possible outcomes (i.e. 

type I and type II errors). 
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Figure 3: Mann-Whitney-Wilcoxon test: (a) Distributions of hypothetical pre- and post-dam AFDC 

quantiles/flow statistics and (b) null and alternative hypothesis distributions 

 

 

Figure 4: Tradeoff between type I and II errors for hypothetical records of different lengths. 
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Figure 5: Mann-Whitney-Wilcoxon test with a percent deviation threshold. 
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Figure 6: Bayesian decision tree for incorporating the uncertainty of hydrologic alteration into dam 

operating decisions 
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 Unknown Truth 

 

No alteration  

threshold violation 

 

P(NA) 

Alteration threshold 

violation 

 

P(A) 

Decision Rule No protection 

implemented  

 

P(CNA) 

 

P(NA|CNA) 

 
(1 − 𝛼)

(1 − 𝛼) + 𝛽
 

Ecosystem regret 

probability 

 

P(A|CNA) 

 
𝛽

(1 − 𝛼) + 𝛽
 

Protection 

Implemented  

P(CA) 

 

 

Hydropower regret 

probability 

 

P(NA|CA) 

 
𝛼

𝛼 + (1 − 𝛽)
 

 

P(A|CA) 

 
(1 − 𝛽)

𝛼 + (1 − 𝛽)
 

 

Figure 7: Regret probabilities for decision analysis in Figure 6 based on a non-informative prior 

probability (0.5) of alteration. 
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Figure 8: Relationship between hypothesis test error probabilities and decision regret probabilities 

(contours) 

 

Figure 9: Inflows and outflows of hypothetical reservoir  

A 

A B 

C 
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Figure 10: Tradeoffs between type I and II errors and regret probabilities for high- and low-flow 

alteration, Threshold Set 2. 

    

Figure 11: Optimal regret combinations when (a) a one-percent decrease in hydropower is weighted 

equally to a 1% increase in the likelihood of adverse ecological impacts, and (b) hydropower and 

ecological regret probabilities are weighted equally. 


