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Abstract

BaZrSs is a prototypical chalcogenide perovskite, an emerging class of unconventional
semiconductor. Recent results on powder samples reveal that it is a material with a direct band gap
of 1.7-1.8 eV, a very strong light-matter interaction, and a high chemical stability. Due to the lack
of quality thin films, however, many fundamental properties of chalcogenide perovskites remain
unknown, hindering their applications in optoelectronics. Here we report the fabrication of BaZrSs
thin films, by sulfurization of oxide films deposited by pulsed laser deposition. We show that these
films are n-type with carrier densities in the range of 101°-10%° cm. Depending on the processing
temperature, the Hall mobility ranges from 2.1 to 13.7 cm?/Vs. The absorption coefficient is > 10°
cm? at photon energy > 1.97 eV. Temperature dependent conductivity measurements suggest
shallow donor levels. By assuring that BaZrSs is a promising candidate, these results potentially
unleash the family of chalcogenide perovskites for optoelectronics such as photodetectors,

photovoltaics, and light emitting diodes.

KEYWORDS: chalcogenide perovskite, absorption coefficient, Hall effect, carrier mobility,

defects



Introduction

Semiconductors can be considered as the backbone of modern society. They have found
broad applications in computer chips, power electronics, optical sensors, light emitting diodes
(LEDs), solid-state lasers, and solar cells. Most conventional semiconductors are covalent
materials with four-fold coordination of both the cations and anions. During last decade, however,
the organic-inorganic halide perovskites have attracted considerable attention, as they rival the
conventional semiconductors for photovoltaics in an unprecedented way [1-8]. These are ionic
materials, which are characterized by a higher coordination maximizing the Coulomb attraction
between cations and anions. The strong ionicity is believed to minimize the possibility of forming
deep level anti-site defects responsible for non-radiative carrier recombination. Compared to
conventional semiconductors, the halide perovskites have unusually low carrier concentration (~
10%%/cm?®) and extremely long carrier lifetime (on the order of 1 1s) [9]. The power conversion
efficiency of solar cells made of halide perovskites has witnessed a stellar rate of increase, from

an initial PCE of 3.8% in 2009 [10] to above 25% in 2019 [11].

Specifically, perovskites refer to a class of crystalline compounds adopting the generic
chemical formula ABX3, where cation “B” has six nearest-neighbor anions. “X” and cation “A”
sits in a cavity formed by eight corner-shared BXs octahedra. They demonstrate a rich spectrum
of physical phenomena from 2D electron gas, ferroelectricity/piezoelectricity, ferromagnetism,
colossal magnetoresistance, multiferroicity, ionic conductivity, to superconductivity [12-17]. The
most commonly studied perovskites are the complex metal-oxides, where X is oxygen. Due to
their multifunctionality and highly tunable physical properties, the oxides are an extremely

important class of materials for technological applications.



Over the spectrum of covalency and iconicity, conventional semiconductors and
oxide/halide perovskites are two extremes. Covalent bonding is directional, making the electronic
and optical properties sensitive to bond distortions. In contrast, ionic bonding is often associated
with a strong electron correlation, as the dielectric screening is reduced by the loss of shared
valence electrons. Balancing ionicity with covalency therefore provides opportunities for
discovering semiconductors with properties and performances unattainable in conventional
semiconductors. In this regard, it is quite surprising that only limited effort has been devoted to

the development of materials intermediate between covalency and ionicity.

Recently, chalcogenide perovskites have emerged as a novel class of semiconductor, where
the anions are S and Se instead of O. They are more ionic than the conventional semiconductors
but less so than either oxides or halides. Despite being synthesized more than a half century ago,
these compounds have received little attention [18-22]. As a result, there is limited knowledge of
their physical properties [23, 24]. The situation changed only recently, after we theoretically
screened [25] 18 ABXs chalcogenide materials, predicting exciting semiconductor properties for
photovoltaics. For example, several of them were found to be direct bandgap semiconductors
combining both a strong light absorption and a good carrier mobility, which is a rare trait for
semiconductors and are hence particularly attractive for optoelectronic applications. Subsequent
experimental efforts have succeeded in synthesizing several of the prototypical chalcogenide
perovskites as well as related phases including BaZrSs, CaZrSs, SrTiSs, SrZrS3[26], and SrHfS3
[27, 28]. In particular, we further confirmed that BaZrSs possesses a distorted perovskite structure
with a ~1.7 eV [27] bandgap and strong light absorption, in good agreement with our theory. The

material was found to be exceptionally stable against pressure [29], moisture and oxidation [27].



The structural and physical properties show little degradation four years after the synthesis (see

Fig. S1 in the Supporting Information, SI)

Besides, Niu et al. [26] synthesized and characterized BaZrSs and SrZrSz. The latter has
two different phases, with 3-SrZrSs showing a bandgap of 2.13 eV and green light emission. They
further demonstrated a giant optical anisotropy in hexagonal BaTiSs crystal [30]. Meng et al. [31]
studied the BaZr1xTixSs alloy system, suggesting a limited concentration range before phase
separation takes place. Optical and thermoelectric properties of SrHfSes and Sr1-xSbxHfSes were
also studied [32]. Intense green luminescence characteristics were found in both undoped and
heavily n- and p-doped SrHfS3 [28]. On the theory front, Ruddlesden—Popper perovskite sulfides
A3B,S7 were proposed as a new family of ferroelectric photovoltaic materials in the visible [33].
Using machine learning, Agiorgousis et al. isolated Ba,AINbSs, Ba,GaNbSs, Ca,GaNbSs,
Sr2InNbSe, and Ba>SnHfSs, out of 450 chalcogenide double perovskites, as the most promising
photovoltaic materials [34]. Guided by computational screening of ternary sulfides, Kuhar et al.
also identified and synthesized LaY Sz with a strong light absorption and photoluminescence as a

promising candidate for photoelectrochemical water splitting [35].

While these studies reveal that chalcogenide perovskite and related compounds are indeed
a unique family of optoelectronic materials with promises, a humber of fundamental material
properties such as the carrier type, concentration and mobility, optical absorption coefficient, and
defect properties remain largely unexplored. This is due in large part to the lack of thin film
samples, as most experiments have focused on powder or single crystal bulk samples. Lack of the
thin film samples thus not only limits our basic understanding, but also becomes an obstacle

against device applications.



In this paper, we report the first fabrication of BaZrSz thin films, by sulfurization of BaZrOs
precursor films deposited by pulsed laser deposition. We show that films fabricated by this method
are n-type with carrier density in the range of 101°-102° cm. The Hall mobility ranges from 2.1 to
13.7 cm?/Vs depending on processing temperature. The optical absorption coefficient is greater
than 10° cm? at photon energy greater than 1.97 eV. Temperature dependent conductivity
measurements suggest shallow donor levels. Although further optimization is needed, our present

results suggest that BaZrSs thin films are promising for optoelectronic applications.
Experimental

Synthesis of BaZrS3 thin films

BaZrOs thin films with 100 nm thickness were deposited on sapphire substrates via a PLD-
450 Pulsed Laser Deposition (PLD) system at 800°C. Oxygen partial pressure of 2.0 Pa was
introduced into the deposition chamber with a background vacuum level higher than 10° Pa. The
laser frequency and energy was set to be 5 Hz and 250 mJ, respectively. The as-deposited BaZrO3
films were then loaded into a 2" quartz tube furnace for sulfurization. The sulfurization procedure
lasted for 4 hours in an Hy/N. atmosphere at 900, 950, 1000, and 1050 °C, respectively.
Sulfurization was also done at 1050 °C for 2 hours for the samples used for photodetector
measurements. CS; was introduced at 800°C as the sulfur source, through Hz/N2 gas bubbling at a

flow rate of 20-25 standard cubic centimeters per minute (sccm).

A Rigaku Ultima IV X-ray diffraction (XRD) system with an operational X-ray tube power
of 1.76 KW (40 kV, 44 mA) and Cu target source was used to acquire the X-ray diffraction pattern
(XRD) for investigating the crystal structure. The XRD measurements were performed under

theta/2 theta scanning mode and continuous scanning type with a step size of 0.02°. A Renishaw



inVia Raman Microscope was used to measure the room temperature Raman and
Photoluminescence (PL) spectra with a 1200 I/mm grating, 50x objective lens, and 514 nm laser.
Time resolved PL (TRPL) on the BaZrSs film was done using an amplified ultrafast excitation
laser (repetition rate 250 kHz) with a pulse duration of <200 fs and a wavelength of 400 nm. TRPL
was collected with a microscope objective with an NA of 0.2 and spectrally and temporally
detected on a Hamamatsu streak camera with a time-resolution of 32 ps. A Labsphere RSA-HP-
8453 reflectance spectroscopy accessory attached to Agilent 8453 ultra-violet/visible (UV-vis)
spectroscopy system was used to obtain the absorption spectrum. Surface morphology and energy-
dispersive X-ray elemental analysis was performed using a Focused lon Beam-Scanning Electron

Microscope (FIB-SEM) — Carl Zeiss AURIGA CrossBeam with an Oxford EDS system.

Atomic resolution imaging

Atomically resolved high-angle annular dark field (HAADF) scanning transmission
electron microscopy (STEM) images were acquired on a FEI Titan Themis Cube with an X-FEG
electron gun and a DCOR aberration corrector operating at 300 kV. The semi convergence angle
used was 30.1 mrad. The inner and outer collection angles for the STEM images (B1 and 2) were
54 and 143 mrad, respectively. The beam current was about 20 pA for the ADF imaging. All
imagings were performed at room temperature. The EDX elemental mapping was acquired using

the SuperEDX system equipped with four detector configurations.

Device fabrication and optical and transport measurements.

A two-terminal device was fabricated for photodetector measurements. Au electrodes were

deposited using an e-beam evaporator through a mask with a thickness of 50 nm and a gap of 100



um between the electrodes. A Keithley 2425 source/meter was used as a voltage source and a
Keithley 6485 picoammeter was used as the current meter for 1-V measurements under dark and
illumination conditions. The illumination was provided by a diode laser at a wavelength of 532
nm with a power of 46 mW and spot size of 5 mm. For Hall effect measurements, the sample was
cut into a Hall bar with dimension of 6 mmx 1 mm, and directly wired using silver paste. The
transport data were acquired using a Quantum Design Physical Property Measurement System
(PPMS) interfaced to a Keithley 2425 source/meter and two Keithley 2182 voltmeters. The

schematic drawing of the devices are shown in Figure S2 of the Supporting Information.
Results and discussion

Structural characterizations: The XRD pattern of a BaZrSz thin film sulfurized at 1050 °C is
shown in Figure 1(a). It can be seen that the film is polycrystalline with no preferential orientation.
The peaks can be matched to those of the standard file JCPDS 00-015-0327, showing that the
sample possesses an orthorhombic distorted perovskite structure with Pnma space group. The
extremely intense peak is the (0001) peak from the sapphire substrate. In Figure 1(b), the Raman
spectrum of the BaZrSz film measured at room temperature is shown. Five broad peaks can be
observed between 50-400 cm™~?, which are identified as B{;, As, B,, BY;, and B, modes. The
peak positions match with the theoretical predictions [27, 29] and published experimental reports
[26, 27]. Figures 2(a) -2(d) show the SEM images of BaZrSs thin films sulfurized from 900 °C to
1050 °C for 4 hours, respectively. It can be seen clearly that the films are polycrystalline, with the
grain sizes increasing with increasing sulfurization temperature. As shown in Fig. 2(e), the grain
size increases from 0.43 +£0.01 um at 900 °C to 1.19 +£0.06 um at 1050 °C. Such grain sizes are

in the optimal range for certain optoelectronic applications such as photovoltaics. A typical EDX



spectrum of the BaZrSs film synthesized at 1050 °C is shown in Figure 2(f). The atomic ratio of
Ba: Zr: S is found to be 1: 1.17: 2.91, close to the stoichiometric composition. The sulfur
concentration ranges from 56.9 to 57.8% at 6 different locations measured on the same film,
suggesting a small inhomogeneity accompanied by a slight sulfur deficiency (Table S1 in
Supporting Information). The sulfur deficiency is likely caused by sulfur vacancies [27], due to
the high processing temperature. We notice that this is analogous to oxygen vacancies commonly
observed in oxide perovskites [36-39]. At lower sulfurization temperatures, the S:Ba composition
ratio decreases, as shown in Fig. S5 in SI. However, this should not be interpreted as increasing
sulfur vacancies, but instead incomplete conversion of BaZrOs [19]. Further investigations using
aberration-corrected scanning transmission electron microscope (STEM) are shown in Fig. 2(g-i).
The atomically resolved high-angle annular dark field (HAADF) image in Fig. 2(g) reveals a well-
crystallized structure much resembles ABOs perovskites, consistent with the orthorhombic
perovskite phase observed in the XRD measurements. Meanwhile, individual S, Zr, and Ba atomic
column signals are clearly identified by the atom-by-atom EDX elemental mapping in another
region of the crystal view along a different zone axis (Fig.2(h)) , as shown in Fig. 2(i). These
atomic resolution characterizations indicate that each grain maintains well crystalline structures,

demonstrating the high quality of the as-synthesized BaZrSz polycrystalline thin film.

Optical characterizations:

The band gaps of BaZrSz with distorted perovskite structure have been theoretically calculated to
be around 1.7-1.85 eV [25, 27, 31, 40-41] and experimentally verified to be within the same range
[26, 27, 31]. In Figure 3(a), the UV-Vis absorption spectrum as a function of photon energy is
plotted for the BaZrSs thin film synthesized at 1050 °C. The thin film geometry allows the
extraction of the absorption coefficient a. It can be seen that o rises rapidly in the range of 1.7-1.8

9



eV, and exceeds 10° cm™ at photon energy > 1.97 eV. This confirms the strong light absorption of
the BaZrSz. The band gap energy can be estimated from the Tauc plot in Fig. 3(b). The value is
found to be 1.82 eV, slightly higher than our previously reported value for powder samples. The
PL spectrum shows a broad peak centered at 1.81 eV, with a width of ~ 200 meV, in good
agreement with the absorption measurement. The time resolved PL is shown in Fig. 3(c). A bi-
exponential fitting [42, 43] is found to accurately describes the data. Two time constants extracted
are t1= 40 ns and 2= 400 ns, which suggest that the sample may be inhomogeneous, e.g., photo-
carrier separation at domain boundaries could account for the slower recombination with a longer

T.

Transport measurements

To quantify the characteristics of carrier transport, Hall measurements were performed on
the four samples with sulfurization temperatures ranging from 900 to 1050 °C. All samples showed
n-type conductivity, suggesting that the dominant carriers are electrons. This is likely due to the
sulfur vacancies, as each of them will contribute to 2 excess electrons. The carrier density obtained
from the Hall effect measurements ranges from 1.06>10%° to 4.7>10%° cm3, as shown in Fig 4(a),
suggesting substantially high doping levels. The conductivity is in the range of 3.52 to 588 S/cm.
Combing these results, the Hall mobility can be calculated and plotted as a function of sulfurization
temperature in Fig. 4(c). It can be seen that the Hall mobility increases monotonically with
increasing sulfurization temperature. This is expected as higher processing temperature leads to
larger grain size and higher crystallinity, both suppresses carrier scattering. The mobility at 1050
°C is found to be 13.7 cm?/Vs. This value is comparable to that of halide perovskites, such as
MAPbI3 [44]. The limiting factor seems to be the carrier concentration. We expect that with proper

passivation and reduction of carrier density, this value can be improved by an order of magnitude.
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Conductivity was measured as a function of temperature to elucidate the origin of the carriers.
It can be seen that the conductivity increases with increasing temperature. Although the limited
temperature and conductivity range makes differentiating transport mechanisms difficult, the

conductivity vs. temperature can be best fitted by the Efros-Shklovskii variable range hopping
model, where G = G,exp (— f%) [45]. Onthe other hand, a fitting using Arrhenius Law shows
B

a slightly larger deviation from experimental data (Fig. S7 in SI). An activation energy is extracted
to be 1.7 meV. This behavior may be understood as related to the average ionization energy of the
donor levels to the conduction band edge, assuming a narrow distribution of density of states for
such levels resulting from sulfur vacancies. Our results suggest that sulfur vacancies act as shallow
defect levels that are readily ionized at room temperature. Further systematic studies are needed to
identify and quantify the defects in BaZrSs thin films, and pinpoint the carrier transport

mechanisms.
Photodetector measurements

To investigate the suitability of the BaZrSs films for optoelectronic applications,
photodetector devices were fabricated using the samples sulfurized at 1050 °C. The I-V curves in
the dark and under illumination are plotted in Fig. 5. For the sample sulfurized at 1050 °C for 4
hrs, the difference between the 1-V curves in the dark and under illumination is small, due to the
large carrier concentration of 2.7x10%° cm® (Fig. 5(a)). Postulating that prolonged high
temperature processing leads to sulfur vacancy formation, increasing the carrier concentration, we
reduced the sulfurization time in an attempt to enhance the photo-response. As can be seen from
Fig. 5(b), reducing the sulfurization time to 2 hrs significantly increases the sample resistivity and

decreases the dark current by three orders of magnitude, suggesting that carrier density due to

11



sulfur vacancy is greatly reduced. We are not able to perform Hall effect measurement to determine
the carrier concentration on this sample due to its high resistance. Nevertheless, as seen in Fig.
5(b), the photo-response is significantly enhanced, with an ON/OFF ratio of 20 at the bias voltage
of 2 V. These results indicate that for better photodetector performance, it is crucial to suppress
the dark current by further reducing the carrier concentration. We suggest that p-type doping (e.g.
by Y or La) or sulfurization at high pressure can be considered to passivate the sulfur vacancy

states.
Conclusion

In conclusion, we have fabricated BaZrSs chalcogenide perovskite thin films using
sulfurization of oxide films deposited by PLD. The films show exceptionally strong light
absorption with an absorption coefficient > 10° cm™ at photon energy > 2 eV. The films are n-type
with good carrier mobility of ~ 13.7 cm?/Vs. The films are defect tolerant with shallow donors
possibly originating from sulfur vacancies. Combined with its earth abundancy, high stability and
non-toxicity, BaZrSs is a promising candidate for optoelectronics such as photodetectors,
photovoltaics and light emitting diodes. As importantly, the findings here open the door for
fabricating other high quality chalcogenide perovskite thin films for both fundamental studies and

device applications.
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Figure captions

Figure 1. (a) An X-ray diffraction pattern of a BaZrSs film sulfurized at 1050°C. The extremely
intense peak comes from the (0001) peak of the sapphire substrate; (b) A Raman spectrum of the
BaZrSs film measured at 300K.

Figures 2. (a)-(d) Typical SEM images of BaZrSs thin films sulfurized at temperatures of (a) 900,
(b) 950, (c) 1000 and (d) 1050 °C, respectively. (¢) The measured average grain size as a function
of sulfurization temperature for BaZrSs thin films, obtained from corresponding SEM images. (f)
An EDX spectrum of the BaZrSs film sulfurized at 1050 °C. The atomic ratio of Ba: Zr: S is found
to be 1: 1.17: 2.91. Inset is an SEM image of the EDX measurement area. (g) Atomically resolved
HAADF image of a BaZrSs thin film sulfurized at 900 °C. Inset is the Fast Fourier Transformation
(FFT) of the image. (h) Atomically resolved HAADF image of another region of the sample
viewed in a different zone axis. (i) EDX atom-by-atom elemental mapping corresponding to the
center part of the area shown in (h).

Figure 3. (a) The UV-vis absorption spectrum; (b) Red curve: the Tauc plot derived from the
absorption spectrum; Black curve: the PL spectrum; (c) Time resolved PL spectrum of the BaZrSs
thin film sulfurized at 1050 °C for 4 hrs. Time constants 11 and T2 are found to be 40 ns and 400
ns, respectively from the bi-exponential fitting.

Figure 4. (a) Carrier density, (b) conductivity, and (c) Hall mobility of BaZrSs thin films as a
function of sulfurization temperature for samples sulfurized for 4 hrs, obtained from the Hall effect
measurements. (d) Conductivity plotted in logarithmic scale as a function of T=%/2 for the BaZrSs
film sulfurized at 1050 °C for 4 hrs.

Figure 5. The I-V curves of the photodetector devices measured in the dark (black curves) and
under illumination (red curves) for the BaZrSs films sulfurized at (a) 1050 °C for 4 hrs, and (b)
1050 °C for 2 hrs.
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