
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Dax Tutorial
Many-Core Code Sprint

September 19, 2012

SAND2012-7796P

Dax: A Toolkit for Accelerated
Visualization

Mapping on
Fields

Topology
Generation

Connectivity
Reconstruction

The Dax Toolkit brings together parallel modules to supplement combinable
visualization algorithms.

Extracted cells
of large gradient and
compacted points Simplical subdivision

with quadratic
smoothing

Surface improvements through connection construction.

Contour with subsequent
vertex welding, coarsening,
subdivision, and curvature
estimation

GETTING STARTED

Prerequisites

 git

 CMake (2.8.8 or newer recommended)

 Boost 1.48.0

 CUDA Toolkit 4+ (for CUDA backend)

 Thrust 1.4 or 1.5 (comes with CUDA)

Getting Dax

 Clone from one of the git repositories
 http://public.kitware.com/daxtoolkit.git

 https://github.com/Kitware/DaxToolkit.git

git clone http://public.kitware.com/daxtoolkit.git

Configuring Dax

 Create a build directory

 Run ccmake (or cmake-gui) pointing back to source directory

git clone http://public.kitware.com/daxtoolkit.git
mkdir daxBuild
cd daxBuild
ccmake ../daxtoolkit

Important Configuration Parameters

Variable Description

DAX_ENABLE_CUDA Turn this ON to enable CUDA backend. Requires
CUDA Toolkit and Thrust.

DAX_ENABLE_OPENMP Turn this ON to enable OpenMP backend.
Requires Thrust and OpenMP compiler support
(not Clang).

DAX_ENABLE_TESTING Turn on header, unit, and benchmark tests.

DAX_USE_64BIT_IDS Enable 64bit index support. Using this with CUDA
backend generally requires a Tesla card.

DAX_USE_DOUBLE_PRECISION Enable using double as the representation type
for dax::Scalar. Using this with CUDA backend
generally requires a Tesla card.

CMAKE_BUILD_TYPE Debug, RelWithDebInfo, or Release

CMAKE_INSTALL_PREFIX Location to install headers

Building Dax

 (Technically optional but a good check for your system.)

 Run make (or use your favorite IDE)

 Run tests (“make test” or “ctest”)

 Parallel builds (-j flag) work, too.
git clone http://public.kitware.com/daxtoolkit.git
mkdir daxBuild
cd daxBuild
ccmake ../daxtoolkit
make
ctest

Installing Dax

 (Optional but good if your project doesn’t use CMake)

 make install target

git clone http://public.kitware.com/daxtoolkit.git
mkdir daxBuild
cd daxBuild
ccmake ../daxtoolkit
make
ctest
make install

More Information

 We know, documentation is sparse

 http://daxtoolkit.org
 Click down to “Using Dax”

 Doxygen: http://daxtoolkit.org/Doc/classes.html

http://daxtoolkit.org/Doc/classes.html
http://daxtoolkit.org

BASIC COMMON SUPPORT TYPES
AND FUNCTIONS

Basic Types

 #include <dax/Types.h>

 dax::Id
 Integer/index type

 dax::Scalar
 Floating point

 Use of core C types (int, float, double, etc.) discouraged.

Basic Tuples

 #include <dax/Types.h>

 dax::Id3, dax::Vector2, dax::Vector3, dax::Vector4

 Operator [] overloaded for component access

 Operators +, -, *, / overloaded for component-wise arithmetic

 make_Id3(), make_Vector2(), make_Vector3(), etc.

 dax::dot()

 Generic dax::Tuple<int>

Vector Traits

 #include<dax/VectorTraits.h>

 template<class VectorType> struct VectorTraits
 NUM_COMPONENTS

 GetComponent()

 SetComponent()

Basic Math

 #include <dax/math/Compare.h>
 dax::math::Min(x,y), dax::math::Max(x,y)

 #include <dax/math/Precision.h>
 dax::math::Nan(), dax::math::Infinity(),

dax::math::NegativeInfinity(), dax::math::Epsilon()

 dax::math::IsNan()

 dax::math::IsInf(), dax::math::IsFinite()

 dax::math::FMod(), dax::math::Remainder(),
dax::math::RemainderQuotient(), dax::math::ModF()

 dax::math::Ceil(), dax::math::Floor(), dax::math::Round()

 #include <dax/math/Sign.h>
 dax::math::Abs(), dax::math::IsNegative(),

dax::math::CopySign()

Basic Math

 #include <dax/math/Exp.h>
 dax::math::Pow() , dax::math::Sqrt(), dax::math::RSqrt() ,

dax::math::Cbrt(), dax::math::RCbrt()

 dax::math::Exp(), dax::math::Exp2(), dax::math::ExpM1(),
dax::math::Exp10()

 dax::math::Log(), dax::math::Log2(), dax::math::Log10(),
dax::math::Log1P()

 #include <dax/math/Trig.h>
 dax::math::Pi()

 dax::math::Sin(), dax::math::Cos(), dax::math::Tan()

 dax::math::ASin(), dax::math::ACos(), dax::math::ATan() ,
dax::math::ATan2()

 dax::math::SinH(), dax::math::CosH(), dax::math::TanH() ,
dax::math::ASinH(), dax::math::ACosH(), dax::math::ATanH()

Basic Vector Operations

 #include <dax/math/VectorAnalysis.h>
 dax::math::MagnitudeSquared(), dax::math::Magnitude(),

dax::math::RMagnitude()

 dax::math::Normal(), dax::math::Normalize()

 dax::math::Cross()

 dax::math::TriangleNormal()

Basic Small Matrix Operations

 #include <dax::math::Matrix.h>
 class dax::math::Matrix<Type, numRow, numCol>

 Access components by matrix(row,col) or matrix[row][col]

 Specialty types dax::math::Matrix2x2, dax::math::Matrix3x3,
dax::math::Matrix4x4

 dax::math::MatrixRow(matrix, rowIndex),
dax::math::MatrixColumn(matrix, colIndex)

 dax::math::MatrixSetRow(matrix,rowIndex,rowValues),
dax::math::MatrixSetColumn(matrix,colIndex,colValues)

 dax::math::MatrixMultiply(leftFactor, rightFactor)

 dax::math::MatrixIdentity()

 dax::math::MatrixTranspose()

 dax::math::MatrixInverse()

 dax::math::MatrixDeterminant()

Other Linear and Numeric Algorithms

 #include <dax/math/Matrix.h>
 dax::math::SolveLinearSystem()

 #include <dax/math/Numerical.h>
 dax::math::NewtonsMethod()

SYSTEM OVERVIEW

Execution
Environment

Control
Environment

Dax Framework

dax::cont dax::exec

Execution
Environment

Control
Environment

Grid Topology
Array Handle
Invoke

Dax Framework

dax::cont dax::exec

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework

dax::cont dax::exec

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke W

o
rklet

Dax Framework

dax::cont dax::exec

Execution
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control
Environment

Grid Topology
Array Handle
Invoke

Device
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet
Dax Framework

dax::cont dax::exec

Export Macros

 DAX_CONT_EXPORT Functions/methods for control environment.
 Think __host__ in CUDA.

 DAX_EXEC_EXPORT Functions/methods for execution
environment.
 Think __device__ in CUDA.

 DAX_EXEC_CONT_EXPORT Either environment.

CREATING WORKLETS IN THE
EXECUTION ENVIRONMENT

Creating Worklets

 Replace this slide with a series of instructions on how to create
worklets. Describe the types of worklets, subclassing the worklet
classes to make functors, signatures, and whatever else is relevant.

Execution Cell Types

 Some worklets can receive a cell as a parameter

 Usually the cell type is templated, but can be specified directly
 Cell classes defined in dax/exec/Cell*.h

 No shared superclass, but all implement at a minimum
 Constants NUM_POINTS and TOPOLOGICAL_DIMENSIONS

 GetNumberOfPoints()

 GetPointIndex(vertexIndex)

 GetPointIndices()

 Returns a Tuple defined by the typedef Cell::PointConnectionsType

 Currently supported cells: Vertex, Line, Triangle, Quadrilateral,
Voxel, Tetrahedron, Wedge, Hexahedron

Cell Operations

 #include <dax/exec/ParametricCoordintes.h>
 dax::exec::ParametricCoordinates<CellType>::Center()

 dax::exec::ParametricCoordinates<CellType>::Vertex()

 dax::exec::ParametricCoordinatesToWorldCoordinates()

 dax::exec::WorldCoordinatesToParametericCoordinates()

 #include <dax/exec/Interpolate.h>
 dax::exec::CellInterpolate()

 #include <dax/exec/Derivative.h>
 dax::exec::CellDerivative()

Errors in the Execution Environment

 All worklet classes have a RaiseError() method
 this->RaiseError("Precondition failed");

 Will cause an exception with that message to be thrown in the control
environment from whence the worklet was invoked

 But, you cannot catch the error while still in the execution environment

 In fact, execution might not immediately stop

 #include <dax/exec/Assert.h>
 DAX_ASSERT_EXEC(condition, worklet)

 Behaves like the POSIX assert except that it throws this error rather than
crashing the program to a halt

 DAX_ASSERT_EXEC(vertexIndex < 8, this)

INVOKING ALGORITHMS ON DATA
IN THE CONTROL ENVIRONMENT

Catching Errors

 Dax throws errors in anomalous conditions
 Thrown class always a subclass of dax::cont::Error

 If the error originated in control environment, then a subclass of
dax::cont::ErrorControl

 If the error came from a worklet in the execution environment, then it will be
dax::cont::ErrorExecution

try
{
...
}

catch (dax::cont::Error error)
{
std::cout << "Dax encountered an error: "

<< error.GetMessage() << std::endl;
}

DeviceAdapter

 The DeviceAdapter is an interface between control and execution
environments. Adapts to different devices/compilers.

 Easiest way to select is to define DAX_DEVICE_ADAPTER

 Use one of the following (before including any Dax header)
 #define DAX_DEVICE_ADAPTER DAX_DEVICE_ADAPTER_SERIAL

 #define DAX_DEVICE_ADAPTER DAX_DEVICE_ADAPTER_OPENMP

 #define DAX_DEVICE_ADAPTER DAX_DEVICE_ADAPTER_CUDA

 If you select none, a reasonable default will be selected for you

 There are other ways to select (and create) a DeviceAdapter
 Won’t be talking about them today

ArrayHandle

 dax::cont::ArrayHandle<type> manages an “array” of data
 Acts like a reference-counted smart pointer to an array

 Manages transfer of data between control and execution

 Can allocate data for output

 Relevant methods
 GetNumberOfValues()

 CopyInto()

 ReleaseResources(), ReleaseResourcesExecution()

 Functions to create an ArrayHandle
 dax::cont::make_ArrayHandle(const T *array, dax::Id size)

 dax::cont::make_ArrayHandle(const std::vector<T> vector)

 Both of these do a shallow (reference) copy.

 Do not let the original array be deleted or vector to go out of scope!

Other Important ArrayHandle
Features We’re Skipping

 ArrayContainerControl template parameter
 Selects array layout for zero-copy semantics

 Supports implicit arrays

 Yes, we have a container for vtkDataArray

 Generic array interface through an ArrayPortal
 In principle like an STL iterator, but simpler

UniformGrid

 #include <dax/cont/UniformGrid.h>

 dax::cont::UniformGrid<> (template parameters default)
 Get/SetExtent(), Get/SetOrigin(), Get/SetSpacing()

 GetNumberOfPoints(), GetNumberOfCells()

 ComputePointIndex(dax::Id3), ComputeCellIndex(dax::Id3)

 ComputePointLocation(dax::Id)

 ComputeCellLocation(dax::Id)

 ComputePointCoordinates(dax::Id or dax::Id3)

 GetPointCoordinates()

UnstructuredGrid

 #include <dax/cont/UnstructuredGrid.h>

 dax::cont::UnstructuredGrid<CellType>
 Get/SetCellConnections()

 Stored in ArrayHandle<dax::Id>, one entry per cell vertex

 Get/SetPointCoordinates()

 Stored in ArrayHandle<dax::Vector3>, one entry per point

 Note that GetPointCoordinates() is match in UniformGrid

 GetNumberOfPoints(), GetNumberOfCells()

Invoking Worklets

 At this point, give instructions on using the schedule function to run
worklets on data.

PUTTING IT ALL TOGETHER

 This would be a good point for a complete example starting from
creating a worklet to making a program that runs it on some data.

