

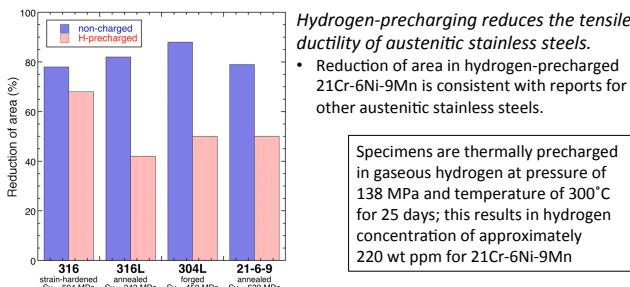
Exceptional service in the national interest

Fatigue Crack Initiation in Hydrogen-Precharged Austenitic Stainless Steel

Chris San Marchi, Brian P. Somerday, Sandia National Laboratories, Livermore CA
 Kevin A. Nibur, Hy-Performance Materials Testing LLC, Bend OR

Abstract

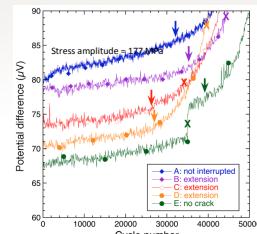
- Fatigue is a concern for high-pressure gaseous hydrogen fueling infrastructure
- Effects of gaseous hydrogen on fatigue crack initiation are relatively unknown; additional test methods for accelerated testing in hydrogen environments are needed
- Fatigue life is measured for 21Cr-6Ni-9Mn austenitic stainless steel after thermal precharging with hydrogen
- Tension-tension fatigue of circumferentially notched specimens is used to simulate component structures
- Direct current potential difference (DCPD) is used to probe crack initiation


Materials and Tensile properties

Composition of 21Cr-6Ni-9Mn austenitic stainless steel used in this study

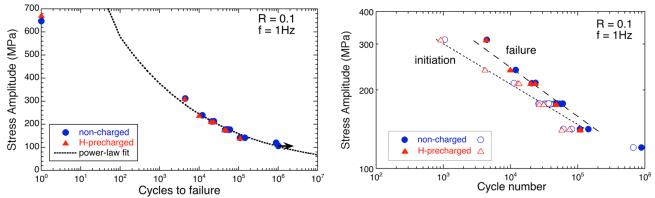
Fe	Cr	Ni	Mn	Si	C	N	S	P
Bal	20.45	6.15	9.55	0.52	0.033	0.265	0.0013	0.018

Tensile properties of 21Cr-6Ni-9Mn; from 14mm diameter bar


Condition	Yield strength (MPa)	Tensile Strength (MPa)	Elongation (%)	Reduction of Area (%)	Notched Strength (MPa)
Non-charged	539	881	61	79	1438
H-precharged	669	957	55	50	1495

References: (1) San Marchi et al. *Intern J Hydrogen Energy* 33 (2007) 889; (2) Switzer et al. 2012 International Hydrogen Conference (Moran WY).

Fatigue Properties


- Circumferentially notched specimens with stress concentration factor $K_t \sim 6$ (specimen consistent with notched tensile specimen from ASTM G142)
- Stress ratio $R = 0.1$ and frequency $f = 1$ Hz

Measured potential difference as a function of cycle number for interrupted tests

- Test interrupted (at 'X'); specimen heat tinted to mark extent of fatigue crack extension; test continued to failure
- Tests B, C and D show crack extension on heat-tinted fracture surface
- Test E shows no crack extension
- Crack initiation is identified by vertical arrows for each test

Fatigue life curves for tension-tension fatigue of notched specimens

- Monotonic tests are plotted with stress amplitude of 45% of notched tensile strength
- Curve fit to data for non-charged condition
- For maximum stress greater than net-section yield, initiation is 20-25% of cycle life
- For maximum stress less than yield, initiation is about 55-65% of cycle life
- Lines for trend only

Conclusions

- Hydrogen precharging of 21Cr-6Ni-9Mn reduces tensile ductility by about 40%, consistent with reductions reported for other austenitic stainless steels
- The fatigue-life curve (Wöhler curve) is not significantly affected by hydrogen precharging for notched specimens in tension-tension fatigue
- Crack initiation can be detected with DCPD monitoring, which shows initiation to represent from 20 to 70% of the fatigue life for this testing configuration
- Hydrogen precharging does not affect crack initiation

Acknowledgements: the assistance of Jeff Campbell (hydrogen-precharging) and Ken Lee (experimental testing) of Sandia National Laboratories, Livermore CA is gratefully acknowledged.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2012-0000P