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Project Results and Discussion:

Task 1. Technical development work in the areas of module thermal modeling, dynamic
soiling prediction, degradation analysis methods, and data management planning for IEC
61853 test results.

Subtask 1.1 Integrate Degradation Tools into PVLIB

This task is intended to publicize and disseminate new methods being used to estimate
performance degradation of PV systems. Work in this task was completed in Q1 of FY20. A
tutorial and a set of python examples were developed to demonstrate four different methods that
can be applied to normalized PV performance data to calculate a degradation rate. This calculation
is difficult because the normalized data still contains diurnal and seasonal biases that can cause
simple trend fitting methods to have significant uncertainties. Specifically, we provided examples
for (1) linear regression with ordinary least squares (simple method), (2) classical seasonal
decomposition, (3) seasonal and trend decomposition using locally weighted scatterplot smoothing
(LOWESS), (4) Holt-Winters triple exponential smoothing, autoregressive integrated moving
average (ARIMA) and robust principal component analysis (RPCA). A detailed summary of the
calculation process is included along with linked jupyter notbooks with calculation examples. The
content is available here: https://pvpmc.sandia.gov/pv-research/pv-lifetime-proj ect/pv-
degradation-modeling/ .

We have also made an investigation into how different degradation profiles can affect plant
economics related to module cleaning schedules. Typical O&M practices assume a fixed cleaning
frequency per year for a particular location. Although this is usually considered as an adequate
first approximation, such assumptions do not take into account that the value of recovered energy
changes with time, due to the system's health state and, in particular, degradation. Therefore, due
to the lower energy yield with time, revenues will also be reduced making the impact of cleaning
less effective, considering also that the economic parameters will also change (e.g. inflation).
Furthermore, it should be considered that, in some geographical locations, the electricity price is
subject to a daily market-based competition. This means that the price of electricity sold by the PV
system producer to the grid may vary over time, depending on supply and demand. In these
markets, an escalation in the price of electricity can, at least partially, counterbalance the effects
of degradation and rise in cleaning costs, increasing revenues, and therefore incentivize the
cleanings. Taking these factors into account, along with the influence of discount rate, one could
expect that the optimum cleaning schedule that maximizes the revenues and minimizes the costs
would vary with the year of operation. In order to verify this hypothesis, a sensitivity analysis was
performed to investigate the impact of different PV degradation rate patterns on the profitability
of cleaning schedules taking into account the variability of economic parameters and soiling
profiles extracted from a 1 MW PV plant in Spain [1]. The economic parameters were realistically
modeled to vary annually, and the effects of their variation was thoroughly discussed. Different
degradation rate patterns were considered enabling the cleaning schedule optimization over time
using the levelized cost of electricity (LCOE) and net present value (NPV) metrics as criteria. An
example is shown in the Figure below, where the revenue per cleaning is demonstrated for different
degradation rate scenarios. The cleaning frequency should be increased (i.e. becomes profitable)
when the revenue per cleaning is greater than the cost of cleaning.
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Figure 1. The optimum cleaning frequency fbr a PV system varies with the time of operation. The profitability of each cleaning is
affected by the pattern of PV degradation rate and the variability of electricity price and cleaning costs.

Subtask 1.2 Manage and standardize IEC 61853 module characterization data warehouse

Sandia and contractor PV Performance Labs Germany have been working to develop open source
standard data formats and functions to work with data measured for compliance with IEC 61853 -
1, 2, 3, and 4. This set of standards defines how to measure PV module performance over a range
of irradiance and temperature conditions, how to measure angle of incidence and spectral
sensitivities and apply these data to energy ratings in a number of climates that are included in the
standard.

We have acquired IEC 61853-1 matrix data from a set of nine modules that are included in the PV
Lifetime project. This data is being used to illustrate and demonstrate the tools being developed
in this task. These same modules are currently being tested at CFV Labs for angle-of-incidence
characteristics and temperature behavior following test protocols in IEC 61853-2. Results of these
tests will be made public along with the results of IEC 61853-1, which are available on the PVPMC
website (https://pvpmc.sandia.gov/pv-research/pv-lifetime-project/pv-lifetime-modules/).

We completed a Sandia report (Driesse and Stein, 2020) that describes recommendations for using
the IEC 61853 power measurements matrix data to simulate PV performance. It includes useful
and practical observations on how to interpolate and extrapolate using these data while maintaining
high levels of accuracy. We include a performance and accuracy comparison of different
published methods and provide a description of a newly developed method that improves on the
previously published models, especially in predicting performance at very low light levels, where
many of the previously published models fail to perform well. We have prepared a manuscript to
submit to a peer reviewed journal but have not submitted it yet.



Calibration of the Sandia Model from the IEC 61853-1 Performance Matrix

Introduction.-

PV module electrical performance ratings are most commonly represented by a single set of values
for current, voltage and maximum power given at standard test conditions (STC) of 25°C, 1000
W/m2 and AM1.5 spectrum. These are typically determined indoors on a solar simulator under
controlled conditions. Traditionally, point measurements are translated to other operating
conditions using simple, linear translation models such as PVForm [2] or PVWatts [3]. The IEC
61853-1 [4] performance matrix expands upon this point measurement to include 21 additional
points in irradiance/temperature space. While covering a wider range of operating conditions, a
challenge still exists in the choice of translation method for this matrix. Driesse and Stein [5]
illustrate these challenges by applying a variety of translation methods to a series of matrices.

In contrast, outdoor measurements tend to encompass a continuum of operating conditions rather
than the tidy, discrete points prescribed by IEC 61853-1. In addition to irradiance and temperature,
these measurements also commonly span a range of other variables affecting PV performance,
principally spectrum, solar incident angle and wind speed. The Sandia Array Performance Model
[6], a semi-empirical set of four principal equations, was originally developed to reduce outdoor
data into a set of coefficients that represent module performance at STC and to perform energy
predictions or ratings under arbitrary weather conditions. Here, we have demonstrated the
applicability of the Sandia Model to fit IEC 61853-1 matrix data from indoor testing and translate
it to arbitrary operating conditions.

Sandia Array Performance Model Overview:

The Sandia Array Performance Model consists of four primary equations describing short circuit
current, open circuit voltage, current at MPP and voltage at MPP. Since the performance matrices
were generated indoors on a flash tester, the impact of variable environmental conditions that
would ordinarily be seen in outdoor testing can be eliminated from the model. Specifically, terms
for solar spectrum (air mass), reflection losses (AOI) and wind speed can be eliminated. Further,
as indoor testing was performed in a temperature chamber under isothermal conditions, the back-
of-module to cell temperature translation may also be eliminated.

The equation for short circuit current is the core component of the model

G a r
Isc = Isco [ 73,-.19 ] I_1- + eirsc[Tc — To]](JO

Effective irradiance, used for all remaining calculations, is given by

Ee =
Isco[1+ Cr1sc[Tc — To]]

Isc

The remaining primary equations then are;



Voc = Voco + Ns6(Tc)ln(k) + flvoc[Tc — To]

Imp = Impo[CoE, + C1Efl[1 + el Imp[Tc TO]]

Vmp Vmpp + C2ATATc)ln(k) + C3N,[8(Tc)110 A2 + flymp[Tc — To]

wherei5(T,), the thermal voltage per cell, is given by

6(Tc) = q

nk[7'c + 273.15]

Data Sets:

Nine PV Lifetime modules were characterized at CFV Solar under contract to Sandia.
Additionally, data for one CdTe module previously characterized at CFV was extracted from a
publicly available report published by First Solar [7]. Characterization was performed indoors on
a Halm AAA+ flash solar simulator with integral isothermal temperature control. Results included
the full IEC61853-1 matrix, plus five additional points at low irradiance/high temperature. The
reported results also included temperature coefficients determined separately at 1000W/m2,
between 15 — 75°C in 5°C increments.

Model Calibration Method:

The original calibration method for the Sandia model relied on piecewise solution of each primary
equation, using data sets tightly constrained to specific outdoor environmental conditions.
Separate thermal tests were required to determine temperature coefficients prior to calibrating the
primary equations. The newer and preferred method utilizes simultaneous solution of each
primary equation via multivariate regression analysis and does not require a separate thermal test
[8]. In this method, all coefficients of each primary equation are solved without constraint. This
method is well-suited to demonstrate calibration and translation of the IEC 61853-1 matrix with
no additional inputs.



Inputs:
• Isc
• Irradiance
• Module Temp.

Solve for;
• I sco
• adsc

Calculate;
• Effective Irradiance

lnputs:
• Isc
• Module Temp.

Solve for;
• Imp.
• a-Imp
• Co, C1

Solve for;
• \ loco
• p-Voc
• diode factor

diode factor

Solve for;
• \Iwo
• 13-Vmp
• c2, 3

/Inputs:
• Inv
• Module Temp

lnputs:
• Vac
• Module Temp
# cells in series

lnputs:
• Vmp
• Module Temp.
• # cells in series

Figure 2. Schematic representation of the simultaneous solution method to the Sandia Array Performance Model. At each
solution point, model coefficients are determined without constraint to specific environmental conditions, i.e. STC.

Model Calibration Results:

/

Sandia applied in-house calibration tools to fit the matrix data to the SAPM, with no assumption
of STC values or temperature coefficients. Output was compared to values reported by CFV in
accordance with IEC standards. Select STC values are shown below in Table 1.

Table 1. SAPM model parameters at STC compared with measurements

Model

Source

CS6K-275M VBHN325SA 16 FS-4112-3

Meas SAPM % Diff Meas SAPM % Diff Meas SAPM % Diff

Pmp [W] 277 276 -0.36 322 323 0.31 118 118 0.00

Isc [A] 9.30 9.24 -0.65 5.90 5.92 0.34 1.81 1.80 -0.55

Voc [V] 38.3 38.3 0.00 70.2 70.2 0.00 90.3 90.4 0.11

Imp [V] 8.81 8.75 -0.68 5.51 5.52 0.18 1.65 1.65 0.00

Vmp [V] 31.5 31.5 0.00 58.5 58.5 0.00 71.6 71.6 0.00

Pmp [%/°C] -0.42 -0.41 0.01 -0.30 -0.29 0.01 -0.29 -0.31 -0.02

a Isc [%/°C] 0.04 0.04 0 0.03 0.03 0 0.06 0.06 0

Voc [%/°C] -0.31 -0.31 0 -0.24 -0.24 0 -0.28 -0.29 -0.01

a Imp [%/°C] -0.02 -0.01 0.01 0.00 0.00 0 0.03 0.04 0.01

p Vmp [%/°C] -0.40 -0.40 0 -0.29 -0.29 0 -0.32 -0.34 -0.02

n 1.10 n/a 1.08 n/a 1.33 n/a



FF [%] 77.9 77.9 0.00 77.8 77.7 -0.1 72.3 72.5 0.2

With one exception (Panasonic) STC ratings were biased negative when determined from SAPM
compared to the single point values. Differences in power were generally 0.5% or less (1-2 watts
for most modules in this study). Differences in voltage were negligible. Most of the differences
in power were attributable to differences in current. Temperature coefficients were nearly
indistinguishable.
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Figure 3. Typical summary plots for one module (CS6K-275M) showing measured data (dots) translated
to 25°C compared to model fits (solid lines). a). and b). are direct model output while c) and d) are
calculated quantities.
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Figure 4. Measured vs. Modeled power for three example modules included in Table 1. a). Canadian
Solar, b). Panasonic, c). First Solar.

Subtask 1.3: Support new test standard for module thermal response coefficients

The project team has participated in the working group led by Kyumin Lee of Array Technologies
in the revision of IEC61853-2, which includes procedures for measuring and analyzing module
thermal response coefficients. Initially we met for monthly calls starting in the summer of 2019.
These calls have stopped in the past quarter due to the working group leader changing jobs.

Subtask 1.4: Develop and validate open-source, transient module temperature model
This task was completed during the last reporting period. We developed a simple transient module
temperature model that only requires parameters that are available on a standard module spec
sheet. The model is based on a weighted moving average of steady-state temperature calculations
where the weighting is influenced by the current wind speed and the specific area mass of the
module (kg/m2). This relationship was established using detailed thermal finite element models.
The model is validated against field measurements and has been published in the Journal of



Photovoltaics (Prilliman et al., 2020). In addition, NREL's System Advisor Model is
implementing the model in its next release.

Subtask 1.5: Develop and validate open-source, module technology specific shade response
model
We have made good progress on this task. Building on a new pvlib-python function:
singlediode.bishop88_v_from_i(), we have validation 1 shade 03

developed a simulation package that can easily
simulate effects of shade, partial shade, and other IV
related losses on cells, modules, and strings. We are
in the process now of validating the model by
applying controlled partial shading to individual
cells in a module (using a neutral density transparent
film) and measuring IV curves using our Spire 4600
SPL flash simulator. The figure to the right shows a

_
2C-51

— 5C-S1
— 10C-S1

sample of modeled IV curves from shading 1, 2, 5, io 25 io
and 10 cells in a module (all same cell substring).
We will compare these results to flash test measurements and report the
This model will allow us to simulate module specific shade responses more
cell, shingled cells, thin-film, etc.).

Subtask 1.6: Dynamic soiling and snow models added to PVLIB

35

results in the next quarter.
accurately (e.g., half-

At WCPEC in 2018, Humboldt State University researchers Liza Boyle and Merissa Coello
presented a soiling model which uses particulate matter (PM) concentrations in air (specifically
PM 2.5 and PM10) to model the amount of particulate deposited upon PV modules at a given tilt
angle. These data are available for certain locations from the Environmental Protection Agency.
PV soiling models have long been desired by modelers to predict losses in energy due to soiling.
To popularize soiling models and encourage further soiling model development, we validated the
Humboldt State soiling model with data collected by Sandia and implemented the Humboldt model
in MATLAB. The model was added to the MATLAB version of PVLIB after several reviews. The
Humboldt model is now part of the official PVLIB MATLAB code base and is available on
GitHub.

Following the model being added to PVLIB MATLAB, a contributor coded up the model and
added it to pvlib-python. Subsequently, we discovered that they had made several errors in
translating the code and we submitted two pull requests to fix the problem and provide new tests
and a tutorial example (Figure 5). These will be included in the next release.
• M. Prilliman, J. S. Stein, and D. Riley, "Transient Weighted Moving Average Model of

Photovoltaic Module Back-Surface Temperature," Journal of Photovoltaics, vol. 10, no. 4, pp.
1053-1060, 2020, doi: 10.1109/WHOTOV.2020.2992351.

• A. Driesse and J. S. Stein, "From IEC 61853 power measurements to PV system simulations,"
Sandia National Laboratories, 2020, vol. SAND2020-3877.

• L. Micheli, M. Theristis, D. L Talavera, F. Almonacid, J. S. Stein, E. F. Fernandez, "Photovoltaic
cleaning frequency optimization under different degradation rate patterns," in preparation for
Elsevier, Renewable Energy, 2020.
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Figure 5. Top figure shows daily soiling ratio and rainfall output from the soiling.hsu() model. Bottom
figure is from Coello and Boyle (2019). The red-line scenarios match perfectly, which indicates that the
model implementation is correct.

We continue to investigate and compare a variety of commercial soiling sensors in New Mexico
(Kipp and Zonen's DustIQ, Atonometrics' Mars, and Fracsun's Ares units). We are currently
investigating some problems with the data from some of the units.

Task 2: Stakeholder Engagement Activities

Subtask 2.1: PVPMC Website

The PVPMC website continues to provide key information about PV performance modeling and
events. We added new datasets of IEC 61853-1 Performance results for a set of nine PV modules
that are part of the PV Lifetime project as well as a tutorial on calculating PV system degradation
rates using a variety of trend fitting methods. We also added a list of papers that cite or use PVLIB
MATLAB and pvlib-python. We continue to maintain the site and add new information for the
community.

Subtask 2.2: PVPMC Workshops

The 14th PVPMC Workshop (cosponsored by GroundWork Renewables and to be held in Salt
Lake City on May 19-20, 2020) had to be canceled due to the COVID-19 pandemic. Instead,
Sandia, GroundWork Renewables and CFV Labs have begun hosting a PVPMC Webinar series to
allow speakers who were scheduled to present at the canceled live event an opportunity to present
their modeling results in a timely manner



The first webinar in this series covered Solar Resource Assessment topics and was held on June
24, 2020. We had a consistent audience of —300 attendees for the entire two-hour session. Talks
were prerecorded to minimize the risk of technical problems and then speakers joined as panelists
to provide live question and answer sessions after each of the five talks. The webinar was recorded
and is available to view on the PVPMC website (https://pvpmc.sandia.gov/resources-and-
events/events/2020-pvpmc-webinars/). PDFs of the slides presented are also available for
download.

The next webinar will be help on August 5, 2020 and the topic will be PV Performance Modeling
Method Updates. We plan to continue these webinars approximately every month through the
summer and fall of 2020.

Subtask 2.3: PVLIB Support.

PVLIB for Matlab and pvlib-python are managed on GitHub. Most of the current development
has been focused in the pvlib-python package. We had two code releases in the current reporting
period: 0.7.1 (January 17, 2020) and 0.7.2 (April 22, 2020). These releases included several
enhancements that are related to this project:

(1) singlediode.bishop88_v_from_i() implements a PV cell IV model that includes reverse
bias cell behavior that allows modeling of partial shading of PV module and arrays along
with other mismatch effects.

(2) soiling.hsu() implements the Humbolt State University soiling model. This was
contributed by someone outside the project and we subsequently found several errors in
the implementation. We have submitted two pull requests that will be included in the next
release. They fix the errors in the first release and add additional documentation and
examples for using the function.

Cliff Hansen from Sandia is one of the main developers and maintainers of pvlib-python. A recent
look at the GitHub repository shows that there are 25 pull requests, the repository is used by 118
other repositories, is being watched by 73 people, and has been forked 376 times. The project is
also a NumFocus affiliated project.

We compiled a list of 257 references that cite or use PVLIB or pvlib-python in the literature and
posted the list by year of publication on the PVPMC website
(https://pvpmc.sandia.gov/applications/pv_lib-toolbox/). This is direct evidence of the impact that
this open source code is making on the field. We plan to update the list each year.

Subtask 2.4: Represent US at Task 13 meetings

Dr. Stein is the Subtask 1 leader for the IEA PVPS Task 13 Experts group. In this role he oversees
working groups in the following areas:

1. New Module Concepts, Designs, and Materials
2. Bifacial Photovoltaic Modules and Concepts
3. Performance of New Photovoltaic System Designs
4. Service Life Prediction



During the latest reporting period Dr. Stein presented at the Spring virtual meeting as the in-person
meeting planned in Pietå, Sweden in March 2020 was canceled due to the COVID-19 pandemic.
The Fall 2020 meeting in Korea has also been canceled and will be help virtually September 29 to
October 1, 2020. Sandia will also participate in an IEA PVPS Task 13 Workshop being held as a
parallel event of the EU PVSEC virtual conference to be held on September 10, 2020.

For Subtask 1.1, Dr. Stein and Dr. Gernot Oreski have been organizing an international report
entitled: "Designing New Materials for Photovoltaics: Opportunities for Lowering Cost and
Increasing Performance through Advanced Material Innovations" which will be ready for IEA
review during the Fall of 2020. We have arranged for several important contributions to the report
from US DOE funded projects (e.g., DuraMAT).

For Subtask 1.2, Dr. Stein has compiled a complete draft of a report entitled: "Bifacial Photovoltaic
Modules and Systems: Experience and Results from International Research and Pilot
Applications". Technical contributions for this report will be reported for Sandia's bifacial project.

For Subtask 1.3, Dan Riley has contributed a report section on characterizing and modeling AC
modules. He will present this content at a virtual workshop being held in September as part of the
EU PVSEC.

For Subtask 2.3, Bruce King and Joshua Stein have contributed several sections to the report
entitled: "Climatic Rating of Photovoltaic Modules: Different Technologies in Various Operating
Conditions."

For Subtask 3.2, Joshua Stein has done reviews for sections related to UVF imaging.

Subtask 2.5: Enhance PV Performance Model Validation Data

This task is planned to start later in FY20.

Participants and Collaborators:

• Joshua S. Stein PhD., Principle Investigator, Sandia National Laboratories
o Technical lead for the PVPMC workshops
o Representative to the IEA PVPS Task 13 (Subtask 1 lead)

• Daniel Riley, Technical Staff, Sandia National Laboratories
o Lead researcher on the PV soiling model development for MATLAB and python.

• Marios Theristis, Postdoctoral Researcher, Sandia National Laboratories
o PV degradation modeling

• Cliff Hansen, Technical Staff, Sandia National Laboratories
o PVLIB package management and maintenance.

• Cameron Stark, Technologist, Sandia National Laboratories
o Cameron left our group in June 2020 for another depai inent at Sandia.

• Anton Driesse, Contractor, PV Performance Labs Germany
o IEC61853 module database and function development

• Matthew Prilliman, Graduate Student Intern (ASU), Sandia National Laboratories
o Transient module temperature model development and validation



• Liza Boyle, Professor, Humboldt State University
o She volunteered her time to review our implementation of her soiling model in

MATLAB and python.
• Merissa Coello, Undergrad, Humboldt State University

o She translated her soiling model to PVLIB MATLAB

• Sophia Archibeque, Undergrad Student Intern (UNM), Sandia National Laboratories
o She has just joined the team and is working on python data analysis and

documentation of PV performance model validation data.
• Karen Yang, Undergrad, Student Intern (UI-CU), Sandia National Laboratories

o She has been validating satellite irradiance datasets for sites in the US including
RTC locations.

• Michael Hopwood, Undergrad Student Intern (UCF), Sandia National Laboratories
o He has developed an IV simulation module in python that allows modeling IV

curves with losses (e.g., shading, Rs, Rsh, etc.)

Publications this period:

• M. Prilliman, J. S. Stein, and D. Riley, "Transient Weighted Moving Average Model of
Photovoltaic Module Back-Surface Temperature," Journal of Photovoltaics, vol. 10, no. 4, pp.
1053-1060, 2020, doi: 10.1109/JPHOTOV.2020.2992351.

• A. Driesse and J. S. Stein, "From IEC 61853 power measurements to PV system simulations,"
Sandia National Laboratories, 2020, vol. SAND2020-3877.

• L. Micheli, M. Theristis, D. L Talavera, F. Almonacid, J. S. Stein, E. F. Fernandez, "Photovoltaic
cleaning frequency optimization under different degradation rate patterns," in preparation for
Elsevier, Renewable Energy, 2020.

Plans for Next Reporting Period:

• Prepare and submit IEC 61853 modeling comparison to journal
• Publish more model validation datasets to PVPMC website
• Prepare PVLIB tutorial to present at PearlPV Training School in October.
• Participate in virtual IEA PVPS Task 13 meeting in September
• Continue to organize PVPMC Webinars
• Complete editing and reviewing assignments for IEA PVPS Task 13 Reports

Changes/Problems :

We would like to add a new task to this project that aims to improve the way that satellite irradiance
products are validated against field measurements. We obtained satellite data from Solargis for
the RTC sites, NREL, and Livermore, CA. We have two summer interns working to develop
better methods for comparing this data to ground truth. We intend to publish a report with results
by the fall of 2020.
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