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Outline	
  

§  Past	
  /	
  Background	
  
§  Lightweight	
  Kernel	
  (LWK)	
  as	
  an	
  opAmizaAon	
  layer	
  

§  Present	
  
§  KiRen	
  LWK	
  

§  Future	
  
§  LWK	
  as	
  tool	
  for	
  runAme	
  <-­‐>	
  OS	
  <-­‐>	
  HW	
  co-­‐design	
  

§  Closing	
  thoughts	
  



Paragon 
• Tens of users 
• First periods 

processing MPP 
• World record 

performance 
• Routine 3D 

simulations 
• SUNMOS lightweight 

kernel 

ASCI Red 
• Production MPP 
• Hundreds of users 
• Red & Black 

partitions 
•  Improved 

interconnect 
• High-fidelity coupled 

3-D physics 
• Puma/Cougar 

lightweight kernel 

Cplant 
• Commodity-based 

supercomputer 
• Hundreds of users 
• Enhanced simulation 

capacity 
• Linux-based OS 

licensed for 
commercialization 

• ~2000 nodes 

Red Storm 
• Prototype Cray XT 
• Custom interconnect 
• Purpose built RAS 
• Highly balanced and 

scalable 
• Catamount 

lightweight kernel 
 
 

nCUBE2 
• Sandia’s first large 

MPP 
• Achieved Gflops 

performance on 
applications 

 

1990 

1993 

1997 

1999 
2004 

Sandia	
  Massively	
  Parallel	
  Systems	
  



Sandia	
  Lightweight	
  Kernel	
  Targets	
  

§  Massively-­‐parallel,	
  distributed-­‐memory	
  machine	
  with	
  a	
  
Aghtly-­‐coupled	
  network	
  

§  ScienAfic	
  and	
  engineering	
  modeling	
  and	
  simulaAon	
  
applicaAons	
  

§  Enable	
  fast	
  message	
  passing	
  and	
  execuAon	
  
§  Small	
  memory	
  footprint	
  
§  DeterminisAc	
  performance	
  
§  Emphasize	
  efficiency	
  over	
  funcAonality	
  
§  Maximize	
  performance	
  delivered	
  to	
  applicaAon	
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Reasons	
  for	
  a	
  Specialized	
  Approach	
  
§  Maximize	
  available	
  compute	
  node	
  resources	
  

§  Maximize	
  CPU	
  cycles	
  delivered	
  to	
  applicaAon	
  
§  Minimize	
  Ame	
  taken	
  away	
  from	
  applicaAon	
  process	
  
§  No	
  daemons	
  
§  No	
  paging	
  
§  DeterminisAc	
  performance	
  

§  Maximize	
  memory	
  given	
  to	
  applicaAon	
  
§  Minimize	
  amount	
  of	
  memory	
  used	
  for	
  message	
  passing	
  
§  StaAc	
  kernel	
  size	
  

§  Maximize	
  memory	
  bandwidth	
  
§  Use	
  large	
  pages	
  to	
  avoid	
  TLB	
  misses,	
  speed	
  TLB	
  miss	
  handling	
  

§  Maximize	
  network	
  resources	
  
§  Physically	
  conAguous	
  memory	
  layout	
  
§  Simple	
  address	
  translaAon	
  and	
  validaAon,	
  no	
  pinning	
  

§  Increase	
  reliability	
  
§  RelaAvely	
  small	
  amount	
  of	
  source	
  code	
  
§  Reduced	
  complexity	
  
§  Support	
  for	
  small	
  number	
  of	
  devices	
   5	
  



LWK	
  Overview	
  

§  POSIX-­‐like	
  environment	
  
§  Inverted	
  resource	
  management	
  
§  Low	
  noise	
  OS	
  noise/jiRer	
  
§  Straight-­‐forward	
  network	
  stack	
  (e.g.,	
  no	
  pinning)	
  
§  Simplicity	
  leads	
  to	
  reliability	
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OS	
  Noise	
  MaRers	
  for	
  Tightly	
  
Synchronized	
  ApplicaAons	
  

§  Impact	
  of	
  noise	
  increases	
  with	
  scale	
  (basic	
  probability)	
  
§  Idle	
  noise	
  measurements	
  can	
  distort	
  reality	
  

§  Not	
  asking	
  OS/network/mem	
  to	
  do	
  anything	
  
§  Micro-­‐benchmark	
  !=	
  real	
  applicaAon	
  

Process 0 
Process 1 
Process 2 
Process 3 

Time è 

Allreduce Allreduce Allreduce 

See “The Case of the Missing Supercomputer Performance”, Petrini, et al. 



Red	
  Storm	
  Catamount	
  
Noise	
  InjecAon	
  Experiments	
  

§  Result:	
  
Noise	
  duraAon	
  is	
  more	
  
important	
  than	
  frequency	
  

§  OS	
  should	
  break	
  up	
  work	
  into	
  
many	
  small	
  &	
  short	
  pieces	
  

§  Opposite	
  of	
  current	
  efforts	
  
§  Linux	
  DynaAcks	
  

§  Cray	
  CNL	
  with	
  10	
  Hz	
  Amer	
  had	
  
to	
  revert	
  back	
  to	
  250	
  Hz	
  due	
  
to	
  OS	
  noise	
  duraAon	
  issues	
  



Noise	
  Becomes	
  Issue	
  at	
  Large	
  Node	
  Counts;	
  
O>en	
  Suddenly	
  

Latency for Dissemination-based Collectives (e.g., Allreduce) 

Figure Credit: Hoefler, et al., 
“Characterizing the Influence of System Noise to Large-Scale Applications by Simulation 



OS	
  Noise	
  MiAgaAon	
  Techniques	
  
are	
  Well	
  Understood	
  
§  Unsynchronized	
  systems	
  

§  Tune	
  OS	
  to	
  have	
  balanced	
  noise	
  paRern,	
  short	
  detours	
  
§  Isolate	
  OS	
  work	
  to	
  set	
  of	
  sequestered	
  cores	
  
§  Non-­‐blocking	
  collecAves	
  
§  Algorithm	
  changes,	
  be	
  more	
  asynchronous,	
  overlap	
  

§  Systems	
  with	
  global	
  clock	
  
§  Co-­‐schedule	
  OS	
  acAviAes	
  across	
  enAre	
  system	
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Scaling	
  Differences:	
  Linux	
  !=	
  Linux	
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Light	
  Weight	
  Linux	
  Experiments	
  

§  LWOS/LWK	
  environments	
  are	
  known	
  to	
  be	
  a	
  necessary,	
  but	
  not	
  
sufficient,	
  condiAon	
  for	
  good	
  scalability	
  

§  We	
  took	
  Red	
  Sky’s	
  OS	
  (heavy-­‐weight	
  OS)	
  and	
  modified	
  it	
  to	
  include	
  
light-­‐weight	
  OS	
  features	
  
§  Installed	
  on	
  Red	
  Sky	
  test	
  bed,	
  Red	
  Dune	
  (single	
  rack)	
  
§  Lower-­‐frequency	
  Amer	
  interrupts	
  (from	
  1000	
  Hz	
  to	
  250	
  Hz)	
  
§  Balanced	
  Amer	
  interrupt	
  handling,	
  i.e.	
  no	
  single	
  core	
  taking	
  all	
  Amer	
  

interrupts	
  
§  Fewer	
  system	
  daemons	
  
§  No	
  periodic	
  system	
  health	
  monitoring	
  processes	
  

§  What	
  impact	
  does	
  this	
  “LWOS”	
  have	
  on	
  some	
  of	
  the	
  suspect	
  
applicaAon?	
  
§  AMG	
  MPI_ALLREDUCE	
  issue	
  at	
  8K	
  PEs	
  
§  Charon	
  scaling	
  above	
  512	
  PEs	
  



Effect	
  of	
  “LWOS”	
  on	
  Charon	
  

Cielo Red Sky HWOS LWOS 
0.1068 0.1546 0.1231 0.1111 

•  Charon Performance at 512 PEs is significantly improved, 9.7%, when  
comparing HWOS and LWOS on Red Dune test bed 

•  LWOS performance approaches that seen on Cielo 
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LWK	
  Memory	
  Management	
  
§  Simple,	
  staAc	
  virtual	
  to	
  physical	
  mapping	
  

§  Eliminates	
  non-­‐determinism	
  
§  Enables	
  straighqorward	
  use	
  of	
  large	
  page	
  sizes	
  
§  Enables	
  opAmizaAon	
  in	
  network	
  stack	
  
§  Physical	
  memory	
  managed	
  by	
  user-­‐level	
  process	
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… 
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LWK	
  Virtual	
  Memory	
  Regions	
  
§  User	
  address	
  space	
  divided	
  into	
  virtual	
  

memory	
  regions:	
  
§  Text	
  
§  Data	
  
§  Heap	
  
§  Stack	
  

§  Each	
  region	
  is	
  mapped	
  to	
  a	
  conAguous	
  
region	
  of	
  physical	
  memory	
  
§  Straighqorward	
  to	
  use	
  large	
  pages	
  
§  PCT	
  in	
  user-­‐space	
  sets	
  up	
  the	
  mapping	
  

§  All	
  virtual<-­‐>physical	
  mapping	
  occurs	
  
before	
  applicaAon	
  starts	
  
§  No	
  demand	
  paging	
  
§  No	
  memory	
  oversubscripAon	
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Stack 

Kernel 

Heap 

Data 

Text 

UNIX Heap 
Grows Up 

Anonymous 
mmap() grows 
down 



SeaStar	
  Network	
  Performance	
  
Benefited	
  from	
  LWK	
  Memory	
  Mgmt.	
  
§  LWK’s	
  staAc,	
  conAguous	
  memory	
  layout	
  simplifies	
  network	
  stack	
  and	
  HW	
  

§  No	
  pinning/unpinning	
  overhead	
  
§  Send	
  address/length	
  to	
  SeaStar	
  NIC	
  
§  NIC	
  does	
  not	
  need	
  TLB	
  or	
  page	
  table	
  walk	
  engine	
  

LWK 
31% better 

LWK 
21% better 

LWK 
28% better 

LWK  
31% better 

LWK 
8% better 

XT4/SeaStar Catamount vs. Cray Compute Node Linux 
Host-based Network Stack (Generic Portals) 



SMARTMAP	
  Intra-­‐node	
  Op3miza3on	
  
Eliminates	
  Unnecessary	
  Memory	
  Copies	
  

§  Basic	
  Idea:	
  Each	
  process	
  on	
  a	
  node	
  maps	
  the	
  memory	
  of	
  
all	
  other	
  processes	
  on	
  the	
  same	
  node	
  into	
  its	
  virtual	
  
address	
  space	
  

§  Enables	
  single	
  copy	
  process	
  to	
  process	
  message	
  passing	
  
(vs.	
  mul3ple	
  copies	
  in	
  tradi3onal	
  approaches)	
  

P0 P1 P2 P3 

P0 P0 P0 P0 

P1 P1 P1 P1 

P2 P2 P2 P2 

P3 P3 P3 P3 

P0 P1 P2 P3 

MPI Processes P0-P3 
Vi

rtu
al

 A
dd

re
ss

 S
pa

ce
 

Virt Addr 0 

Top of Virt 
Addr Space 

SMARTMAP Example 

Single copy impact 

MPI Exchange 

See SC-08 paper 



SHMEM	
  over	
  SMARTMAP/XPMEM	
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HP Blade / Linux 

HP Blade / Kitten 

Cray XE / Linux 
(Stock CLE) 

See PGAS-11 paper 



Catamount	
  I/O	
  Forwarding	
  
§  Based	
  on	
  libsysio,	
  user	
  level	
  VFS	
  layer	
  (on	
  SourceForge)	
  
§  Stdio,	
  liblustre,	
  and	
  ramfs	
  drivers	
  for	
  libsysio	
  

§  Portals	
  used	
  for	
  all	
  off-­‐node	
  communicaAon	
  

§  Custom	
  Glibc	
  port	
  
§  Every	
  compute	
  node	
  was	
  a	
  Lustre	
  client	
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Outline	
  

§  Past	
  /	
  Background	
  
§  Lightweight	
  Kernel	
  (LWK)	
  as	
  an	
  opAmizaAon	
  layer	
  

§  Present	
  
§  KiRen	
  LWK	
  

§  Future	
  
§  LWK	
  as	
  tool	
  for	
  runAme	
  <-­‐>	
  OS	
  <-­‐>	
  HW	
  co-­‐design	
  

§  Closing	
  thoughts	
  



KiRen	
  Lightweight	
  Kernel	
  

§  IniAal	
  development	
  funded	
  by	
  Sandia	
  LDRD	
  FY08-­‐FY10	
  

§  EvoluAon	
  of	
  Sandia’s	
  line	
  of	
  LWKs	
  
§  BeRer	
  meet	
  user,	
  vendor,	
  and	
  researcher	
  expectaAons	
  for	
  naAve	
  LWK	
  
§  Leverage	
  virtualizaAon	
  when	
  full-­‐featured	
  OS	
  funcAonality	
  needed	
  

§  Guiding	
  Principles	
  
§  The	
  applicaAon/runAme	
  knows	
  best	
  
§  Be	
  determinisAc	
  whenever	
  possible	
  
§  Repurpose	
  rather	
  than	
  reimplement	
  
§  Fit	
  into	
  Linux	
  ecosystem	
  (use	
  Linux	
  API+ABI	
  where	
  possible)	
  
	
  

21	
  



KiRen	
  Targets	
  

§  Target	
  1)	
  DOE’s	
  exisAng	
  scienAfic	
  compuAng	
  applicaAon	
  
workloads	
  running	
  on	
  extreme-­‐scale,	
  distributed-­‐memory	
  
supercomputers	
  with	
  a	
  Aghtly-­‐coupled	
  interconnect	
  

§  Target	
  2)	
  Build	
  a	
  good	
  plaqorm	
  for	
  HPC	
  OS	
  research	
  
§  Easy	
  to	
  work	
  with	
  codebase,	
  relaAvely	
  easy	
  to	
  understand	
  
§  Allow	
  more	
  effort	
  to	
  be	
  directed	
  at	
  research	
  issue	
  being	
  explored,	
  

rather	
  than	
  working	
  around	
  Linux	
  issues	
  (e.g.,	
  memory	
  pinning)	
  
§  Give	
  HPC-­‐focused	
  opAmizaAons	
  a	
  reasonable	
  shot	
  at	
  being	
  deployed	
  

(me	
  being	
  opAmisAc)	
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KiRen	
  Basic	
  Architecture	
  

§  POSIX-like environment 
§  Inverted resource management 
§  Low noise OS noise/jitter 
§  Straight-forward network stack (e.g., no pinning) 
§  Less to go wrong, easier to harden 



KiRen	
  Kernel	
  ImplementaAon	
  
§  Monolithic,	
  C	
  code,	
  GNU	
  toolchain,	
  Kbuild	
  configuraAon	
  
§  Supports	
  x86-­‐64	
  architecture	
  only,	
  considering	
  port	
  to	
  ARM	
  

§  Boots	
  on	
  standard	
  PC	
  architecture,	
  Cray	
  XT,	
  and	
  in	
  virtual	
  machines	
  
§  Boots	
  idenAcally	
  to	
  Linux	
  (KiRen	
  bzImage	
  and	
  init_task)	
  

§  Repurposes	
  basic	
  funcAonality	
  from	
  Linux	
  
§  Hardware	
  bootstrap	
  
§  Basic	
  OS	
  kernel	
  primiAves	
  (lists,	
  locks,	
  wait	
  queues,	
  etc.)	
  
§  PCI,	
  NUMA,	
  ACPI,	
  IOMMU,	
  …	
  
§  Directory	
  structure	
  similar	
  to	
  Linux,	
  arch	
  dependent/independent	
  dirs	
  

§  Custom	
  address	
  space	
  management	
  and	
  task	
  management	
  
§  User-­‐level	
  API	
  for	
  managing	
  physical	
  memory,	
  building	
  virtual	
  address	
  

spaces	
  
§  User-­‐level	
  API	
  for	
  creaAng	
  tasks,	
  which	
  run	
  in	
  virtual	
  address	
  spaces	
  
§  User-­‐level	
  API	
  for	
  migraAng	
  tasks	
  between	
  cores	
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KiRen	
  Thread	
  Support	
  
§  KiRen	
  user-­‐applicaAons	
  link	
  with	
  standard	
  GNU	
  C	
  library	
  

(Glibc)	
  and	
  other	
  system	
  libraries	
  installed	
  on	
  the	
  Linux	
  build	
  
host	
  

§  FuncAonality	
  added	
  to	
  KiRen	
  to	
  support	
  Glibc	
  NPTL	
  POSIX	
  
threads	
  implementaAon	
  
§  Futex()	
  system	
  call	
  (fast	
  user-­‐level	
  locking)	
  
§  Basic	
  support	
  for	
  signals	
  
§  Match	
  Linux	
  implementaAon	
  of	
  thread	
  local	
  storage	
  
§  Support	
  for	
  mulAple	
  threads	
  per	
  CPU	
  core,	
  preempAvely	
  scheduled	
  

§  KiRen	
  supports	
  runAmes	
  that	
  work	
  on	
  top	
  of	
  POSIX	
  threads	
  
§  GOMP	
  OpenMP	
  implementaAon	
  
§  Qthreads	
  
§  Probably	
  others	
  with	
  a	
  liRle	
  effort	
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KiRen	
  Network	
  Stack	
  
§  Based	
  on	
  Linux	
  Open	
  Fabrics	
  Alliance	
  (OFA)	
  Infiniband	
  stack	
  

§  Added	
  “Linux	
  CompaAbility	
  Layer”	
  to	
  support	
  Linux	
  drivers	
  
§  Supports	
  user-­‐level	
  IB	
  verbs	
  host-­‐to-­‐host	
  communicaAon	
  
§  Uses	
  RDMACM,	
  small	
  hacks	
  to	
  avoid	
  need	
  for	
  IP	
  
§  OpenMPI	
  Point-­‐to-­‐Point	
  performance	
  

§  2.8	
  Gbytes/s	
  for	
  large	
  messages	
  (naAve	
  2.8	
  Gbytes/s)	
  
§  Latency	
  needs	
  tuning:	
  2.9	
  us	
  one-­‐way	
  latency	
  (naAve	
  ~1.3	
  us)	
  

§  Runs	
  on	
  Gato	
  IB	
  cluster	
  at	
  Sandia	
  
§  16	
  nodes,	
  each	
  with	
  QDR	
  ConnectX	
  	
  
§  Each	
  node	
  2	
  socket	
  Intel	
  X5570	
  (Nehalem-­‐class,	
  2.93	
  GHz),	
  24	
  GB	
  mem	
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KiRen	
  Job	
  Launch	
  
§  SimplisAc	
  runAme	
  over	
  IB	
  verbs	
  
§  Parallel	
  applicaAon	
  launcher	
  (PAL)	
  runs	
  on	
  Linux	
  service	
  node	
  
§  PAL	
  pushes	
  applicaAon	
  to	
  PCT	
  running	
  on	
  compute	
  node	
  
§  PCT	
  sets	
  up	
  address	
  space	
  and	
  starts	
  applicaAon	
  
§  stdout	
  redirected	
  to	
  PAL	
  console	
  
§  Usage	
  Example:	
  

gato> pal -cpu 8 -nl 0xa000001..0xa00000f ./test_HPCCG 100 100 100!
<8>(user-100) Total Time/FLOPS/MFLOPS               = 83.5877/1.14432e+12/13690.!

<8>(user-100) DDOT  Time/FLOPS/MFLOPS               = 66.5237/7.152e+10/1075.1.!
<8>(user-100)      Minimum DDOT MPI_Allreduce time (over all processors) = 0.410764!
<8>(user-100)      Maximum DDOT MPI_Allreduce time (over all processors) = 65.6042!
<8>(user-100)      Average DDOT MPI_Allreduce time (over all processors) = 17.4922!

<8>(user-100) WAXPBY Time/FLOPS/MFLOPS              = 2.78471/1.0728e+11/38524.7.!
<8>(user-100) SPARSEMV Time/FLOPS/MFLOPS            = 14.2008/9.6552e+11/67990.5.!
<8>(user-100) SPARSEMV MFLOPS W OVRHEAD             = 3831.21.!

<8>(user-100) SPARSEMV PARALLEL OVERHEAD Time       = 237.814 ( 94.3651 % ).!
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KiRen	
  I/O	
  Forwarding	
  
§  Paper	
  design,	
  no	
  implementaAon	
  yet	
  
§  KiRen	
  reflects	
  off-­‐node	
  I/O	
  calls	
  to	
  user-­‐space	
  

§  Avoids	
  need	
  for	
  custom	
  Glibc	
  port	
  
§  Only	
  control	
  reflected,	
  no	
  extra	
  buffer	
  copies	
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KiRen	
  Virtual	
  Machine	
  Support	
  

•  Lightweight	
  Kernels	
  (LWK)	
  tradiAonally	
  have	
  
limited,	
  fixed	
  funcAonality	
  

•  KiRen	
  LWK	
  addresses	
  this	
  limitaAon	
  by	
  
embedding	
  a	
  virtual	
  machine	
  monitor	
  
(collaboraAon	
  with	
  Northwestern	
  Univ.	
  and	
  
Univ.	
  of	
  New	
  Mexico)	
  

•  Allows	
  users	
  to	
  “boot”	
  full-­‐featured	
  guest	
  
operaAng	
  systems	
  on-­‐demand	
  

•  System	
  architected	
  for	
  low	
  virtualizaAon	
  
overhead;	
  takes	
  advantage	
  of	
  KiRen’s	
  
simple	
  memory	
  management	
  

•  Conducted	
  large	
  scale	
  experiments	
  on	
  Red	
  
Storm	
  using	
  micro-­‐benchmarks	
  and	
  two	
  full	
  
applicaAons,	
  CTH	
  and	
  Sage	
  



KiRen/Palacios	
  Scalable	
  VirtualizaAon	
  
Experiments	
  on	
  Red	
  Storm	
  XT4	
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See VEE-11 paper 



Outline	
  

§  Past	
  /	
  Background	
  
§  Lightweight	
  Kernel	
  (LWK)	
  as	
  an	
  opAmizaAon	
  layer	
  

§  Present	
  
§  KiRen	
  LWK	
  

§  Future	
  
§  LWK	
  as	
  tool	
  for	
  runAme	
  <-­‐>	
  OS	
  <-­‐>	
  HW	
  co-­‐design	
  

§  Closing	
  thoughts	
  



The	
  OS	
  is	
  in	
  the	
  Middle	
  
§  Architectures	
  are	
  changing	
  

underneath	
  OS	
  
§  RunAme	
  systems	
  and	
  

applicaAons	
  are	
  changing	
  
above	
  OS	
  	
  

§  LWK	
  can	
  no	
  longer	
  be	
  just	
  
an	
  opAmizaAon	
  layer	
  
§  Too	
  much	
  changing!	
  

§  Need	
  OS	
  capability	
  for	
  
design	
  space	
  exploraAon	
  
§  Explore	
  interfaces	
  
§  Use	
  novel	
  HW	
  capabiliAes	
  

§  Linux	
  generally	
  gets	
  in	
  way	
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KiRen	
  is	
  a	
  Tool	
  for	
  Co-­‐design	
  

§  Focusing	
  on	
  interfaces	
  between	
  RunAme	
  <-­‐>	
  OS	
  <-­‐>	
  HW	
  
§  KiRen	
  is	
  a	
  good	
  starAng	
  point	
  –	
  a	
  deconstructed	
  OS	
  J	
  
§  Expect	
  two	
  way	
  interacAon	
  between	
  layers	
  necessary	
  
§  Persistent	
  vs.	
  Ephemeral;	
  Global	
  vs.	
  Local	
  

§  New	
  ASCR	
  X-­‐Stack	
  2	
  XPRESS	
  project	
  starAng	
  up	
  
§  Involves	
  Indiana,	
  LSU,	
  Houston,	
  Oregon,	
  RENCI,	
  ORNL	
  
§  Sandia	
  is	
  lead,	
  major	
  contribuAon	
  is	
  LXK	
  OS,	
  derived	
  from	
  KiRen	
  
§  RunAme	
  target	
  of	
  project	
  is	
  HPX-­‐4,	
  but	
  also	
  targeAng	
  other	
  runAmes	
  

(SPR,	
  OCR,	
  …)	
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VirtualizaAon	
  is	
  another	
  Tool	
  
	
  

§  VirtualizaAon	
  uses	
  in	
  exascale	
  Ameframe	
  
§  Backwards	
  compaAbility	
  for	
  legacy	
  applicaAons	
  
§  As	
  a	
  development	
  environment	
  (e.g.	
  emulate	
  exa-­‐system	
  on	
  laptop)	
  
§  Portable	
  containers	
  for	
  applicaAon	
  environments	
  
§  “Virtual	
  Future	
  Machine”	
  (VFM)	
  concept	
  

§  Recent	
  virtualizaAon	
  acAviAes	
  
§  Integrated	
  Palacios	
  with	
  SST	
  to	
  accelerate	
  simulaAon	
  
§  Developing	
  high-­‐performance	
  virtual	
  networking	
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Results	
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Operating 
System 

Round-trip Task Migration Time 
(task migrates from core A to B 

and back) 

Linux 2.6.35.7 4435 ns 

Kitten 1.3 2630 ns 
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Conclusion	
  

§  Past: 	
  LWK	
  as	
  an	
  opAmizaAon	
  layer	
  
§  Present: 	
  KiRen	
  is	
  a	
  modern	
  LWK	
  foundaAon	
  
§  Future:	
   	
  LWK	
  enabling	
  co-­‐design	
  in	
  X-­‐stack	
  R&D	
  

§  Happy	
  to	
  discuss	
  collaboraAon	
  ideas	
  
§  Improving	
  lightweight	
  Linux	
  so>ware	
  stack	
  
§  IncorporaAng	
  virtualizaAon	
  layer	
  in	
  Appro’s	
  so>ware	
  stack	
  
§  Bringup	
  LXK/HPX	
  on	
  large-­‐scale	
  Appro	
  systems	
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