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= Past / Background
= Lightweight Kernel (LWK) as an optimization layer

= Present
= Kitten LWK

= Future
= LWK as tool for runtime <-> OS <-> HW co-design

® Closing thoughts




Sandia Massively Parallel Systems = @&,

2004

1999

Red Storm

* Prototype Cray XT
* Custom interconnect
* Purpose built RAS
* Highly balanced and
o scalable

Cplant » Catamount
« Commodity-based lightweight kernel

« Production MPP supercomputer
Paragon « Hundreds of users * Hundreds of users
* Tens of users * Red & Black * Enhanced simulation
* First periods partitions capacity
= processing MPP * Improved * Linux-based OS
nCUBE2 « World record interconnect licensed for
« Sandia’s first large performance * High-fidelity coupled commercialization
MPP * Routine 3D 3-D physics * ~2000 nodes
* Achieved Gflops simulations e Pumal/Cougar
performance on « SUNMOS lightweight lightweight kernel

applications kernel
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Sandia Lightweight Kernel Targets

= Massively-parallel, distributed-memory machine with a
tightly-coupled network

= Scientific and engineering modeling and simulation
applications

= Enable fast message passing and execution
= Small memory footprint

= Deterministic performance

= Emphasize efficiency over functionality

= Maximize performance delivered to application
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Reasons for a Specialized Approach @#s.

= Maximize available compute node resources
= Maximize CPU cycles delivered to application
Minimize time taken away from application process
No daemons
No paging
Deterministic performance
= Maximize memory given to application
Minimize amount of memory used for message passing
Static kernel size
= Maximize memory bandwidth
Use large pages to avoid TLB misses, speed TLB miss handling
= Maximize network resources
Physically contiguous memory layout
Simple address translation and validation, no pinning

= |ncrease reliability
= Relatively small amount of source code
= Reduced complexity

= Support for small number of devices 5
I —————————————



LWK Overview

Basic Architecture

Memory Management
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Privileged Hardware Physical Application

Memory Virtual
Memory

=  POSIX-like environment

= Inverted resource management

= Low noise OS noise/jitter

= Straight-forward network stack (e.g., no pinning)
= Simplicity leads to reliability



OS Noise Matters for Tightly h) s,
Synchronized Applications

Time =

Process 0[]

Process1 [ 7]
Process 2

Process3 [ 7]

Allreduce Allreduce Allreduce

= |mpact of noise increases with scale (basic probability)

= |dle noise measurements can distort reality

= Not asking OS/network/mem to do anything
= Micro-benchmark != real application

See “The Case of the Missing Supercomputer Performance”, Petrini, et al.




Red Storm Catamount
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Noise Injection Experiments

2500 Nodes, 2.5% Total Noise, Variable Duration
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Result:
Noise duration is more
important than frequency

OS should break up work into
many small & short pieces

Opposite of current efforts
= Linux Dynaticks

Cray CNL with 10 Hz timer had
to revert back to 250 Hz due
to OS noise duration issues



Noise Becomes Issue at Large Node Counts;
Often Suddenly

Latency for Dissemination-based Collectives (e.g., Allreduce)
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Figure Credit: Hoefler, et al.,
“Characterizing the Influence of System Noise to Large-Scale Applications by Simulation



OS Noise Mitigation Techniques ) %,
are Well Understood

= Unsynchronized systems

= Tune OS to have balanced noise pattern, short detours
= |solate OS work to set of sequestered cores
= Non-blocking collectives

= Algorithm changes, be more asynchronous, overlap

= Systems with global clock

= Co-schedule OS activities across entire system




Scaling Differences: Linux != Linux h
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Light Weight Linux Experiments T .

= LWOS/LWK environments are known to be a necessary, but not
sufficient, condition for good scalability
= We took Red Sky’s OS (heavy-weight OS) and modified it to include
light-weight OS features
= |Installed on Red Sky test bed, Red Dune (single rack)
= Lower-frequency timer interrupts (from 1000 Hz to 250 Hz)

= Balanced timer interrupt handling, i.e. no single core taking all timer
interrupts

= Fewer system daemons
= No periodic system health monitoring processes

= What impact does this “LWOS” have on some of the suspect
application?
= AMG MPI_ALLREDUCE issue at 8K PEs
= Charon scaling above 512 PEs




Effect of “LWOS” on Charon h) i,

» Charon Performance at 512 PEs is significantly improved, 9.7%, when
comparing HWOS and LWOS on Red Dune test bed
 LWGQOS performance approaches that seen on Cielo

Red Sky ___|HWOS ____|LWOS

0.1068 0.1546 0.1231 0.1111

Original Charon Test Result

Charon
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LWK Memory Management ) i,

= Simple, static virtual to physical mapping
= Eliminates non-determinism
= Enables straightforward use of large page sizes
= Enables optimization in network stack
= Physical memory managed by user-level process

General-Purpose OS, Demand Paging LWK Static Mapping
—
Page 3 Page 3 Page3 <«—— Page3
Page 2 Page 2 Page2 <«——> Page2
Page 1 Page 1 Page1 <«—— Page1
Page 0 Page 0 Page0  <«——> Page0
Physical Application Physical Application
Memory Virtual Memory Virtual
Memory Memory




LWK Virtual Memory Regions ) &

Laboratories

= User address space divided into virtual
memory regions:

Kernel = Text
= Data
= Heap
Stack Anonymous = Stack
mmap() grows . . .
down = Each region is mapped to a contiguous
region of physical memor
Heap l egion of physical memory
T = Straightforward to use large pages
UNIX Heap = PCT in user-space sets up the mapping
Grows Up . . .
Data = All virtual<->physical mapping occurs
before application starts
Text = No demand paging

= No memory oversubscription
15




SeaStar Network Performance ) s
Benefited from LWK Memory Mgmt.

= LWK’s static, contiguous memory layout simplifies network stack and HW
= No pinning/unpinning overhead
= Send address/length to SeaStar NIC
= NIC does not need TLB or page table walk engine

XT4/SeaStar Catamount vs. Cray Compute Node Linux
Host-based Network Stack (Generic Portals)
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SMARTMAP Intra-node Optimization
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Eliminates Unnecessary Memory Copies

= Basic Idea: Each process on a node maps the memory of

all other processes on the same node into its virtual

address space

= Enables single copy process to process message passing

(vs. multiple copies in traditional approaches)

MPI Exchange
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See SC-08 paper
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SHMEM over SMARTMAP/XPMEM @&
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See PGAS-11 paper 18



Catamount I/O Forwarding ) S,

= Based on libsysio, user level VFS layer (on SourceForge)

= Stdio, liblustre, and ramfs drivers for libsysio

= Portals used for all off-node communication
= Custom Glibc port
= Every compute node was a Lustre client

App User-level
lwrite()

Glibc

libsysio

Yod Driver Yod / Stdio
liblustre Lustre
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= Past / Background
= Lightweight Kernel (LWK) as an optimization layer

= Present
= Kitten LWK

= Future
= LWK as tool for runtime <-> OS <-> HW co-design

® Closing thoughts
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Kitten Lightweight Kernel gD~

= |nitial development funded by Sandia LDRD FY08-FY10

= Evolution of Sandia’s line of LWKs
= Better meet user, vendor, and researcher expectations for native LWK

= Leverage virtualization when full-featured OS functionality needed

= Guiding Principles
* The application/runtime knows best
= Be deterministic whenever possible

= Repurpose rather than reimplement
= Fitinto Linux ecosystem (use Linux API+ABI where possible)

21
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Kitten Targets

= Target 1) DOE’s existing scientific computing application
workloads running on extreme-scale, distributed-memory
supercomputers with a tightly-coupled interconnect

= Target 2) Build a good platform for HPC OS research
= Easy to work with codebase, relatively easy to understand

= Allow more effort to be directed at research issue being explored,
rather than working around Linux issues (e.g., memory pinning)

= Give HPC-focused optimizations a reasonable shot at being deployed
(me being optimistic)

22



Kitten Basic Architecture

i\

Memory Management
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Privileged Hardware Physical
Memory

= POSIX-like environment
= |nverted resource management
= Low noise OS noisel/jitter

= Straight-forward network stack (e.g., no pinning)

= Less to go wrong, easier to harden

Virtual

Memory

Application
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Kitten Kernel Implementation

= Monolithic, C code, GNU toolchain, Kbuild configuration
= Supports x86-64 architecture only, considering port to ARM

= Boots on standard PC architecture, Cray XT, and in virtual machines

= Boots identically to Linux (Kitten bzlmage and init_task)

"= Repurposes basic functionality from Linux
= Hardware bootstrap
= Basic OS kernel primitives (lists, locks, wait queues, etc.)

= PCl, NUMA, ACPI, IOMMU, ...
= Directory structure similar to Linux, arch dependent/independent dirs

= Custom address space management and task management
= User-level APl for managing physical memory, building virtual address
spaces
= User-level API for creating tasks, which run in virtual address spaces

= User-level API for migrating tasks between cores "
I —————————————
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Kitten Thread Support

= Kitten user-applications link with standard GNU C library
(Glibc) and other system libraries installed on the Linux build
host

" Functionality added to Kitten to support Glibc NPTL POSIX
threads implementation
= Futex() system call (fast user-level locking)
= Basic support for signals
= Match Linux implementation of thread local storage
= Support for multiple threads per CPU core, preemptively scheduled

= Kitten supports runtimes that work on top of POSIX threads
= GOMP OpenMP implementation

= Qthreads
= Probably others with a little effort

25




Kitten Network Stack Lt

= Based on Linux Open Fabrics Alliance (OFA) Infiniband stack
= Added “Linux Compatibility Layer” to support Linux drivers
= Supports user-level IB verbs host-to-host communication
= Uses RDMACM, small hacks to avoid need for IP
= OpenMPI Point-to-Point performance

2.8 Gbytes/s for large messages (native 2.8 Gbytes/s)
Latency needs tuning: 2.9 us one-way latency (native ~1.3 us)

= Runs on Gato IB cluster at Sandia
= 16 nodes, each with QDR ConnectX
= Each node 2 socket Intel X5570 (Nehalem-class, 2.93 GHz), 24 GB mem

26




Kitten Job Launch e

= Simplistic runtime over IB verbs

= Parallel application launcher (PAL) runs on Linux service node
= PAL pushes application to PCT running on compute node

= PCT sets up address space and starts application

= stdout redirected to PAL console

= Usage Example:

gato> pal -cpu 8 -nl 0xa000001..0xa00000f ./test HPCCG 100 100 100

<8>(user-100) Total Time/FLOPS/MFLOPS = 83.5877/1.14432e+12/13690.
<8>(user-100) DDOT Time/FLOPS/MFLOPS = 66.5237/7.152e+10/1075.1.
<8>(user-100) Minimum DDOT MPI Allreduce time (over all processors) = 0.410764
<8>(user-100) Maximum DDOT MPI Allreduce time (over all processors) = 65.6042
<8>(user-100) Average DDOT MPI Allreduce time (over all processors) = 17.4922
<8>(user-100) WAXPBY Time/FLOPS/MFLOPS = 2.78471/1.0728e+11/38524.7.

14.2008/9.6552e+11/67990.5.
3831.21.
237.814 ( 94.3651 % ).

<8>(user-100) SPARSEMV Time/FLOPS/MFLOPS
<8>(user-100) SPARSEMV MFLOPS W OVRHEAD
<8>(user-100) SPARSEMV PARALLEL OVERHEAD Time

X

27



Kitten 1/O Forwarding )

= Paper design, no implementation yet
= Kitten reflects off-node |/O calls to user-space

= Avoids need for custom Glibc port
= Only control reflected, no extra buffer copies

Linux

User-level

Glibc iofwd

Jwieo m
 ..

App




Kitten Virtual Machine Support

Lightweight Kernels (LWK) traditionally have
limited, fixed functionality

Kitten LWK addresses this limitation by
embedding a virtual machine monitor
(collaboration with Northwestern Univ. and
Univ. of New Mexico)

Allows users to “boot” full-featured guest
operating systems on-demand

System architected for low virtualization
overhead; takes advantage of Kitten’s

simple memory management

Conducted large scale experiments on Red
Storm using micro-benchmarks and two full
applications, CTH and Sage

!

User Space

Kernel Space

.
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Guest
Operating System

(RedHat, Catamount, Windows)
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Lightweight Kernel
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Virtual Machine
Monitor

.
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Time (seconds)

Kitten/Palacios Scalable Virtualization (&&=,
Experiments on Red Storm XT4

400

350

250 r

200 r

150

100 |
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Native is Catamount running on ‘bare metal’, Guest is Catamount
running as a guest operating system managed by Kitten/Palacios
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Measured < 5% virtualization overhead for both applications

See VEE-11 paper
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= LWK as tool for runtime <-> OS <-> HW co-design

® Closing thoughts




The OS is in the Middle U

= Architectures are changing
underneath OS

= Runtime systems and

T _ Apps & Miniapps
applications are changing Libraries for co-design
above OS ——

. TS, SPR/HPX/OCR
= |LWK can no longer be just untime system for co-design
an optimization layer _
_ oS Kitten
= Too much changing! for co-design
= Need OS capability for
. . SST
design space exploration Hardware

for co-design

= Explore interfaces
= Use novel HW capabilities

= Linux generally gets in way
32
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Kitten is a Tool for Co-design

= Focusing on interfaces between Runtime <-> OS <-> HW
= Kitten is a good starting point — a deconstructed 0S ©
= Expect two way interaction between layers necessary
= Persistent vs. Ephemeral; Global vs. Local

= New ASCR X-Stack 2 XPRESS project starting up
= |nvolves Indiana, LSU, Houston, Oregon, RENCI, ORNL
= Sandia is lead, major contribution is LXK OS, derived from Kitten

= Runtime target of project is HPX-4, but also targeting other runtimes
(SPR, OCR, ...)

33



Virtualization is another Tool h

= Virtualization uses in exascale timeframe
= Backwards compatibility for legacy applications
= As a development environment (e.g. emulate exa-system on laptop)

= Portable containers for application environments
= “Virtual Future Machine” (VFM) concept

= Recent virtualization activities
" |ntegrated Palacios with SST to accelerate simulation
= Developing high-performance virtual networking

Sandia
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Laboratories
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Size (bytes)

I
Kitten CLE
Operating System

mmmm Static Kernel Size

Kitten > 10x smaller
memory footprint

OS needs to be
hardened against
faults, keep running for
app-level resilience

ROSS Workshop Paper
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Round-trip Task Migration Time

Og e;?;::g (task migrates from core A to B
Y and back)
Linux 2.6.35.7 4435 ns
Kitten 1.3 2630 ns

Kitten integrated SST/gem5 to enable
rapid prototyping and reproducibility
SimuTools’12 Paper

SST CPU and Memory Model
Implemented by Palacios VM

SST MPI Process

~

' N\
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Conclusion )

= Past: LWK as an optimization layer
= Present: Kitten is a modern LWK foundation
= Future: LWK enabling co-design in X-stack R&D

= Happy to discuss collaboration ideas

= |Improving lightweight Linux software stack
= |ncorporating virtualization layer in Appro’s software stack
= Bringup LXK/HPX on large-scale Appro systems
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