
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

OS	
 Issues	
 for	
 HPC:	

Past,	
 Present,	
 Future	

Kevin	
 Pedre8	

Scalable	
 System	
 So>ware	

Sandia	
 NaAonal	
 Laboratories	

Albuquerque,	
 NM	

ktpedre@sandia.gov	

	

SAND2012-7203P

Outline	

§  Past	
 /	
 Background	

§  Lightweight	
 Kernel	
 (LWK)	
 as	
 an	
 opAmizaAon	
 layer	

§  Present	

§  KiRen	
 LWK	

§  Future	

§  LWK	
 as	
 tool	
 for	
 runAme	
 <-­‐>	
 OS	
 <-­‐>	
 HW	
 co-­‐design	

§  Closing	
 thoughts	

Paragon
• Tens of users
• First periods

processing MPP
• World record

performance
• Routine 3D

simulations
• SUNMOS lightweight

kernel

ASCI Red
• Production MPP
• Hundreds of users
• Red & Black

partitions
•  Improved

interconnect
• High-fidelity coupled

3-D physics
• Puma/Cougar

lightweight kernel

Cplant
• Commodity-based

supercomputer
• Hundreds of users
• Enhanced simulation

capacity
• Linux-based OS

licensed for
commercialization

• ~2000 nodes

Red Storm
• Prototype Cray XT
• Custom interconnect
• Purpose built RAS
• Highly balanced and

scalable
• Catamount

lightweight kernel

nCUBE2
• Sandia’s first large

MPP
• Achieved Gflops

performance on
applications

1990

1993

1997

1999
2004

Sandia	
 Massively	
 Parallel	
 Systems	

Sandia	
 Lightweight	
 Kernel	
 Targets	

§  Massively-­‐parallel,	
 distributed-­‐memory	
 machine	
 with	
 a	

Aghtly-­‐coupled	
 network	

§  ScienAfic	
 and	
 engineering	
 modeling	
 and	
 simulaAon	

applicaAons	

§  Enable	
 fast	
 message	
 passing	
 and	
 execuAon	

§  Small	
 memory	
 footprint	

§  DeterminisAc	
 performance	

§  Emphasize	
 efficiency	
 over	
 funcAonality	

§  Maximize	
 performance	
 delivered	
 to	
 applicaAon	

4	

Reasons	
 for	
 a	
 Specialized	
 Approach	

§  Maximize	
 available	
 compute	
 node	
 resources	

§  Maximize	
 CPU	
 cycles	
 delivered	
 to	
 applicaAon	

§  Minimize	
 Ame	
 taken	
 away	
 from	
 applicaAon	
 process	

§  No	
 daemons	

§  No	
 paging	

§  DeterminisAc	
 performance	

§  Maximize	
 memory	
 given	
 to	
 applicaAon	

§  Minimize	
 amount	
 of	
 memory	
 used	
 for	
 message	
 passing	

§  StaAc	
 kernel	
 size	

§  Maximize	
 memory	
 bandwidth	

§  Use	
 large	
 pages	
 to	
 avoid	
 TLB	
 misses,	
 speed	
 TLB	
 miss	
 handling	

§  Maximize	
 network	
 resources	

§  Physically	
 conAguous	
 memory	
 layout	

§  Simple	
 address	
 translaAon	
 and	
 validaAon,	
 no	
 pinning	

§  Increase	
 reliability	

§  RelaAvely	
 small	
 amount	
 of	
 source	
 code	

§  Reduced	
 complexity	

§  Support	
 for	
 small	
 number	
 of	
 devices	
 5	

LWK	
 Overview	

§  POSIX-­‐like	
 environment	

§  Inverted	
 resource	
 management	

§  Low	
 noise	
 OS	
 noise/jiRer	

§  Straight-­‐forward	
 network	
 stack	
 (e.g.,	
 no	
 pinning)	

§  Simplicity	
 leads	
 to	
 reliability	

Policy
Maker
(PCT)

A
pp

lic
at

io
n

1

libmpi.a
Libc.a

A
pp

lic
at

io
n

N

libmpi.a
Libc.a

Policy Enforcer/HAL (QK)

Privileged Hardware

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

Basic Architecture Memory Management

OS	
 Noise	
 MaRers	
 for	
 Tightly	

Synchronized	
 ApplicaAons	

§  Impact	
 of	
 noise	
 increases	
 with	
 scale	
 (basic	
 probability)	

§  Idle	
 noise	
 measurements	
 can	
 distort	
 reality	

§  Not	
 asking	
 OS/network/mem	
 to	
 do	
 anything	

§  Micro-­‐benchmark	
 !=	
 real	
 applicaAon	

Process 0
Process 1
Process 2
Process 3

Time è

Allreduce Allreduce Allreduce

See “The Case of the Missing Supercomputer Performance”, Petrini, et al.

Red	
 Storm	
 Catamount	

Noise	
 InjecAon	
 Experiments	

§  Result:	

Noise	
 duraAon	
 is	
 more	

important	
 than	
 frequency	

§  OS	
 should	
 break	
 up	
 work	
 into	

many	
 small	
 &	
 short	
 pieces	

§  Opposite	
 of	
 current	
 efforts	

§  Linux	
 DynaAcks	

§  Cray	
 CNL	
 with	
 10	
 Hz	
 Amer	
 had	

to	
 revert	
 back	
 to	
 250	
 Hz	
 due	

to	
 OS	
 noise	
 duraAon	
 issues	

Noise	
 Becomes	
 Issue	
 at	
 Large	
 Node	
 Counts;	

O>en	
 Suddenly	

Latency for Dissemination-based Collectives (e.g., Allreduce)

Figure Credit: Hoefler, et al.,
“Characterizing the Influence of System Noise to Large-Scale Applications by Simulation

OS	
 Noise	
 MiAgaAon	
 Techniques	

are	
 Well	
 Understood	

§  Unsynchronized	
 systems	

§  Tune	
 OS	
 to	
 have	
 balanced	
 noise	
 paRern,	
 short	
 detours	

§  Isolate	
 OS	
 work	
 to	
 set	
 of	
 sequestered	
 cores	

§  Non-­‐blocking	
 collecAves	

§  Algorithm	
 changes,	
 be	
 more	
 asynchronous,	
 overlap	

§  Systems	
 with	
 global	
 clock	

§  Co-­‐schedule	
 OS	
 acAviAes	
 across	
 enAre	
 system	

10	

Scaling	
 Differences:	
 Linux	
 !=	
 Linux	

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

'# &%#)($# %!*&# '(*$# (&+'%#
,#-.#/01#23456#

7/89#/01#"#-.#7::;<=3>-4#?<@A#

/01# 7;;2ABC=ADEFGH#

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

(&#)($# $!%'#
*#+,#-./#01234#

5617+28#"#+,#9+:1;#-./#9<=>#

?:6>7#

@177<>7#

A1<:1;;#

A1<:#

B;;7>CDE>#

!"#

!""#

!"""#

!# !"# !""# !"""# !""""# !"""""#

!"
#$
%&
'(
)$
*+

),
$-)

.-
$

/$&0$1!2$34-5-$

61#$7)45$%.4'89:;$$29<=>;$?9$@AB$@AB$
@AB$?'4<4.)$?-&'()CD

$%&'(#

)&*#+,-#

!"!#

!"$#

!"%#

!"&#

!"'#

!"(#

!")#

$# $!# $!!# $!!!# $!!!!# $!!!!!#

!
"#
$#
%&
"'
(%
)&
"*+
,*&

-"

."/01"2345'"

673-(4"

*+,#-./#

01+23#

?

!

Light	
 Weight	
 Linux	
 Experiments	

§  LWOS/LWK	
 environments	
 are	
 known	
 to	
 be	
 a	
 necessary,	
 but	
 not	

sufficient,	
 condiAon	
 for	
 good	
 scalability	

§  We	
 took	
 Red	
 Sky’s	
 OS	
 (heavy-­‐weight	
 OS)	
 and	
 modified	
 it	
 to	
 include	

light-­‐weight	
 OS	
 features	

§  Installed	
 on	
 Red	
 Sky	
 test	
 bed,	
 Red	
 Dune	
 (single	
 rack)	

§  Lower-­‐frequency	
 Amer	
 interrupts	
 (from	
 1000	
 Hz	
 to	
 250	
 Hz)	

§  Balanced	
 Amer	
 interrupt	
 handling,	
 i.e.	
 no	
 single	
 core	
 taking	
 all	
 Amer	

interrupts	

§  Fewer	
 system	
 daemons	

§  No	
 periodic	
 system	
 health	
 monitoring	
 processes	

§  What	
 impact	
 does	
 this	
 “LWOS”	
 have	
 on	
 some	
 of	
 the	
 suspect	

applicaAon?	

§  AMG	
 MPI_ALLREDUCE	
 issue	
 at	
 8K	
 PEs	

§  Charon	
 scaling	
 above	
 512	
 PEs	

Effect	
 of	
 “LWOS”	
 on	
 Charon	

Cielo Red Sky HWOS LWOS
0.1068 0.1546 0.1231 0.1111

•  Charon Performance at 512 PEs is significantly improved, 9.7%, when
comparing HWOS and LWOS on Red Dune test bed

•  LWOS performance approaches that seen on Cielo

!"!#

!"$#

!"%#

!"&#

!"'#

!"(#

!")#

$# $!# $!!# $!!!# $!!!!# $!!!!!#

!
"#
$#
%&
"'
(%
)&
"*+
,*&

-"

."/01"2345'"

673-(4"

*+,#-./#

01+23#

Original Charon Test Result

LWK	
 Memory	
 Management	

§  Simple,	
 staAc	
 virtual	
 to	
 physical	
 mapping	

§  Eliminates	
 non-­‐determinism	

§  Enables	
 straighqorward	
 use	
 of	
 large	
 page	
 sizes	

§  Enables	
 opAmizaAon	
 in	
 network	
 stack	

§  Physical	
 memory	
 managed	
 by	
 user-­‐level	
 process	

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

General-Purpose OS, Demand Paging LWK Static Mapping

LWK	
 Virtual	
 Memory	
 Regions	

§  User	
 address	
 space	
 divided	
 into	
 virtual	

memory	
 regions:	

§  Text	

§  Data	

§  Heap	

§  Stack	

§  Each	
 region	
 is	
 mapped	
 to	
 a	
 conAguous	

region	
 of	
 physical	
 memory	

§  Straighqorward	
 to	
 use	
 large	
 pages	

§  PCT	
 in	
 user-­‐space	
 sets	
 up	
 the	
 mapping	

§  All	
 virtual<-­‐>physical	
 mapping	
 occurs	

before	
 applicaAon	
 starts	

§  No	
 demand	
 paging	

§  No	
 memory	
 oversubscripAon	

15	

Stack

Kernel

Heap

Data

Text

UNIX Heap
Grows Up

Anonymous
mmap() grows
down

SeaStar	
 Network	
 Performance	

Benefited	
 from	
 LWK	
 Memory	
 Mgmt.	

§  LWK’s	
 staAc,	
 conAguous	
 memory	
 layout	
 simplifies	
 network	
 stack	
 and	
 HW	

§  No	
 pinning/unpinning	
 overhead	

§  Send	
 address/length	
 to	
 SeaStar	
 NIC	

§  NIC	
 does	
 not	
 need	
 TLB	
 or	
 page	
 table	
 walk	
 engine	

LWK
31% better

LWK
21% better

LWK
28% better

LWK
31% better

LWK
8% better

XT4/SeaStar Catamount vs. Cray Compute Node Linux
Host-based Network Stack (Generic Portals)

SMARTMAP	
 Intra-­‐node	
 Op3miza3on	

Eliminates	
 Unnecessary	
 Memory	
 Copies	

§  Basic	
 Idea:	
 Each	
 process	
 on	
 a	
 node	
 maps	
 the	
 memory	
 of	

all	
 other	
 processes	
 on	
 the	
 same	
 node	
 into	
 its	
 virtual	

address	
 space	

§  Enables	
 single	
 copy	
 process	
 to	
 process	
 message	
 passing	

(vs.	
 mul3ple	
 copies	
 in	
 tradi3onal	
 approaches)	

P0 P1 P2 P3

P0 P0 P0 P0

P1 P1 P1 P1

P2 P2 P2 P2

P3 P3 P3 P3

P0 P1 P2 P3

MPI Processes P0-P3
Vi

rtu
al

 A
dd

re
ss

 S
pa

ce

Virt Addr 0

Top of Virt
Addr Space

SMARTMAP Example

Single copy impact

MPI Exchange

See SC-08 paper

SHMEM	
 over	
 SMARTMAP/XPMEM	

18	

HP Blade / Linux

HP Blade / Kitten

Cray XE / Linux
(Stock CLE)

See PGAS-11 paper

Catamount	
 I/O	
 Forwarding	

§  Based	
 on	
 libsysio,	
 user	
 level	
 VFS	
 layer	
 (on	
 SourceForge)	

§  Stdio,	
 liblustre,	
 and	
 ramfs	
 drivers	
 for	
 libsysio	

§  Portals	
 used	
 for	
 all	
 off-­‐node	
 communicaAon	

§  Custom	
 Glibc	
 port	

§  Every	
 compute	
 node	
 was	
 a	
 Lustre	
 client	

19	

QK

App

libsysio

Linux

User-level

Glibc

write()

Yod Driver

liblustre

Yod / Stdio

Lustre

Outline	

§  Past	
 /	
 Background	

§  Lightweight	
 Kernel	
 (LWK)	
 as	
 an	
 opAmizaAon	
 layer	

§  Present	

§  KiRen	
 LWK	

§  Future	

§  LWK	
 as	
 tool	
 for	
 runAme	
 <-­‐>	
 OS	
 <-­‐>	
 HW	
 co-­‐design	

§  Closing	
 thoughts	

KiRen	
 Lightweight	
 Kernel	

§  IniAal	
 development	
 funded	
 by	
 Sandia	
 LDRD	
 FY08-­‐FY10	

§  EvoluAon	
 of	
 Sandia’s	
 line	
 of	
 LWKs	

§  BeRer	
 meet	
 user,	
 vendor,	
 and	
 researcher	
 expectaAons	
 for	
 naAve	
 LWK	

§  Leverage	
 virtualizaAon	
 when	
 full-­‐featured	
 OS	
 funcAonality	
 needed	

§  Guiding	
 Principles	

§  The	
 applicaAon/runAme	
 knows	
 best	

§  Be	
 determinisAc	
 whenever	
 possible	

§  Repurpose	
 rather	
 than	
 reimplement	

§  Fit	
 into	
 Linux	
 ecosystem	
 (use	
 Linux	
 API+ABI	
 where	
 possible)	

	

21	

KiRen	
 Targets	

§  Target	
 1)	
 DOE’s	
 exisAng	
 scienAfic	
 compuAng	
 applicaAon	

workloads	
 running	
 on	
 extreme-­‐scale,	
 distributed-­‐memory	

supercomputers	
 with	
 a	
 Aghtly-­‐coupled	
 interconnect	

§  Target	
 2)	
 Build	
 a	
 good	
 plaqorm	
 for	
 HPC	
 OS	
 research	

§  Easy	
 to	
 work	
 with	
 codebase,	
 relaAvely	
 easy	
 to	
 understand	

§  Allow	
 more	
 effort	
 to	
 be	
 directed	
 at	
 research	
 issue	
 being	
 explored,	

rather	
 than	
 working	
 around	
 Linux	
 issues	
 (e.g.,	
 memory	
 pinning)	

§  Give	
 HPC-­‐focused	
 opAmizaAons	
 a	
 reasonable	
 shot	
 at	
 being	
 deployed	

(me	
 being	
 opAmisAc)	

22	

A
pp

lic
at

io
n

1

libmpi.a

Standard
Libc.a

Guest
OS

G
ue

st
 O

S
1

Policy Enforcer/HAL/Hypervisor
(Kitten Kernel + Palacios)

Privileged Hardware

Policy
Maker

(init_task)

…

Page 3

Page 2

Page 1

Page 0

…

Page 3

Page 2

Page 1

Page 0

Physical
Memory

Application
Virtual

Memory

Memory Management

KiRen	
 Basic	
 Architecture	

§  POSIX-like environment
§  Inverted resource management
§  Low noise OS noise/jitter
§  Straight-forward network stack (e.g., no pinning)
§  Less to go wrong, easier to harden

KiRen	
 Kernel	
 ImplementaAon	

§  Monolithic,	
 C	
 code,	
 GNU	
 toolchain,	
 Kbuild	
 configuraAon	

§  Supports	
 x86-­‐64	
 architecture	
 only,	
 considering	
 port	
 to	
 ARM	

§  Boots	
 on	
 standard	
 PC	
 architecture,	
 Cray	
 XT,	
 and	
 in	
 virtual	
 machines	

§  Boots	
 idenAcally	
 to	
 Linux	
 (KiRen	
 bzImage	
 and	
 init_task)	

§  Repurposes	
 basic	
 funcAonality	
 from	
 Linux	

§  Hardware	
 bootstrap	

§  Basic	
 OS	
 kernel	
 primiAves	
 (lists,	
 locks,	
 wait	
 queues,	
 etc.)	

§  PCI,	
 NUMA,	
 ACPI,	
 IOMMU,	
 …	

§  Directory	
 structure	
 similar	
 to	
 Linux,	
 arch	
 dependent/independent	
 dirs	

§  Custom	
 address	
 space	
 management	
 and	
 task	
 management	

§  User-­‐level	
 API	
 for	
 managing	
 physical	
 memory,	
 building	
 virtual	
 address	

spaces	

§  User-­‐level	
 API	
 for	
 creaAng	
 tasks,	
 which	
 run	
 in	
 virtual	
 address	
 spaces	

§  User-­‐level	
 API	
 for	
 migraAng	
 tasks	
 between	
 cores	

24	

KiRen	
 Thread	
 Support	

§  KiRen	
 user-­‐applicaAons	
 link	
 with	
 standard	
 GNU	
 C	
 library	

(Glibc)	
 and	
 other	
 system	
 libraries	
 installed	
 on	
 the	
 Linux	
 build	

host	

§  FuncAonality	
 added	
 to	
 KiRen	
 to	
 support	
 Glibc	
 NPTL	
 POSIX	

threads	
 implementaAon	

§  Futex()	
 system	
 call	
 (fast	
 user-­‐level	
 locking)	

§  Basic	
 support	
 for	
 signals	

§  Match	
 Linux	
 implementaAon	
 of	
 thread	
 local	
 storage	

§  Support	
 for	
 mulAple	
 threads	
 per	
 CPU	
 core,	
 preempAvely	
 scheduled	

§  KiRen	
 supports	
 runAmes	
 that	
 work	
 on	
 top	
 of	
 POSIX	
 threads	

§  GOMP	
 OpenMP	
 implementaAon	

§  Qthreads	

§  Probably	
 others	
 with	
 a	
 liRle	
 effort	

25	

KiRen	
 Network	
 Stack	

§  Based	
 on	
 Linux	
 Open	
 Fabrics	
 Alliance	
 (OFA)	
 Infiniband	
 stack	

§  Added	
 “Linux	
 CompaAbility	
 Layer”	
 to	
 support	
 Linux	
 drivers	

§  Supports	
 user-­‐level	
 IB	
 verbs	
 host-­‐to-­‐host	
 communicaAon	

§  Uses	
 RDMACM,	
 small	
 hacks	
 to	
 avoid	
 need	
 for	
 IP	

§  OpenMPI	
 Point-­‐to-­‐Point	
 performance	

§  2.8	
 Gbytes/s	
 for	
 large	
 messages	
 (naAve	
 2.8	
 Gbytes/s)	

§  Latency	
 needs	
 tuning:	
 2.9	
 us	
 one-­‐way	
 latency	
 (naAve	
 ~1.3	
 us)	

§  Runs	
 on	
 Gato	
 IB	
 cluster	
 at	
 Sandia	

§  16	
 nodes,	
 each	
 with	
 QDR	
 ConnectX	
 	

§  Each	
 node	
 2	
 socket	
 Intel	
 X5570	
 (Nehalem-­‐class,	
 2.93	
 GHz),	
 24	
 GB	
 mem	

26	

KiRen	
 Job	
 Launch	

§  SimplisAc	
 runAme	
 over	
 IB	
 verbs	

§  Parallel	
 applicaAon	
 launcher	
 (PAL)	
 runs	
 on	
 Linux	
 service	
 node	

§  PAL	
 pushes	
 applicaAon	
 to	
 PCT	
 running	
 on	
 compute	
 node	

§  PCT	
 sets	
 up	
 address	
 space	
 and	
 starts	
 applicaAon	

§  stdout	
 redirected	
 to	
 PAL	
 console	

§  Usage	
 Example:	

gato> pal -cpu 8 -nl 0xa000001..0xa00000f ./test_HPCCG 100 100 100!
<8>(user-100) Total Time/FLOPS/MFLOPS = 83.5877/1.14432e+12/13690.!

<8>(user-100) DDOT Time/FLOPS/MFLOPS = 66.5237/7.152e+10/1075.1.!
<8>(user-100) Minimum DDOT MPI_Allreduce time (over all processors) = 0.410764!
<8>(user-100) Maximum DDOT MPI_Allreduce time (over all processors) = 65.6042!
<8>(user-100) Average DDOT MPI_Allreduce time (over all processors) = 17.4922!

<8>(user-100) WAXPBY Time/FLOPS/MFLOPS = 2.78471/1.0728e+11/38524.7.!
<8>(user-100) SPARSEMV Time/FLOPS/MFLOPS = 14.2008/9.6552e+11/67990.5.!
<8>(user-100) SPARSEMV MFLOPS W OVRHEAD = 3831.21.!

<8>(user-100) SPARSEMV PARALLEL OVERHEAD Time = 237.814 (94.3651 %).!

	

27	

KiRen	
 I/O	
 Forwarding	

§  Paper	
 design,	
 no	
 implementaAon	
 yet	

§  KiRen	
 reflects	
 off-­‐node	
 I/O	
 calls	
 to	
 user-­‐space	

§  Avoids	
 need	
 for	
 custom	
 Glibc	
 port	

§  Only	
 control	
 reflected,	
 no	
 extra	
 buffer	
 copies	

28	

Kitten

 App

Linux

User-level

Glibc I/O Daemon

Lustre

Panasas

NFS

iofwd

write()

Buffer

KiRen	
 Virtual	
 Machine	
 Support	

•  Lightweight	
 Kernels	
 (LWK)	
 tradiAonally	
 have	

limited,	
 fixed	
 funcAonality	

•  KiRen	
 LWK	
 addresses	
 this	
 limitaAon	
 by	

embedding	
 a	
 virtual	
 machine	
 monitor	

(collaboraAon	
 with	
 Northwestern	
 Univ.	
 and	

Univ.	
 of	
 New	
 Mexico)	

•  Allows	
 users	
 to	
 “boot”	
 full-­‐featured	
 guest	

operaAng	
 systems	
 on-­‐demand	

•  System	
 architected	
 for	
 low	
 virtualizaAon	

overhead;	
 takes	
 advantage	
 of	
 KiRen’s	

simple	
 memory	
 management	

•  Conducted	
 large	
 scale	
 experiments	
 on	
 Red	

Storm	
 using	
 micro-­‐benchmarks	
 and	
 two	
 full	

applicaAons,	
 CTH	
 and	
 Sage	

KiRen/Palacios	
 Scalable	
 VirtualizaAon	

Experiments	
 on	
 Red	
 Storm	
 XT4	

 0

 50

 100

 150

 200

 250

 300

 350

 400

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging
 0

 200

 400

 600

 800

 1000

 64 128 256 512 1024 2048 4096

T
im

e
 (

se
co

n
d
s)

Nodes

Native
Guest, Nested Paging

Guest, Shadow Paging

CTH Hydrocode (SNL App) Sage Hydrocode (LANL App)

Native is Catamount running on ‘bare metal’, Guest is Catamount
running as a guest operating system managed by Kitten/Palacios

Measured < 5% virtualization overhead for both applications
See VEE-11 paper

Outline	

§  Past	
 /	
 Background	

§  Lightweight	
 Kernel	
 (LWK)	
 as	
 an	
 opAmizaAon	
 layer	

§  Present	

§  KiRen	
 LWK	

§  Future	

§  LWK	
 as	
 tool	
 for	
 runAme	
 <-­‐>	
 OS	
 <-­‐>	
 HW	
 co-­‐design	

§  Closing	
 thoughts	

The	
 OS	
 is	
 in	
 the	
 Middle	

§  Architectures	
 are	
 changing	

underneath	
 OS	

§  RunAme	
 systems	
 and	

applicaAons	
 are	
 changing	

above	
 OS	
 	

§  LWK	
 can	
 no	
 longer	
 be	
 just	

an	
 opAmizaAon	
 layer	

§  Too	
 much	
 changing!	

§  Need	
 OS	
 capability	
 for	

design	
 space	
 exploraAon	

§  Explore	
 interfaces	

§  Use	
 novel	
 HW	
 capabiliAes	

§  Linux	
 generally	
 gets	
 in	
 way	

32	

Hardware

OS

Apps &
Libraries

Runtime System

SST
for co-design

Kitten
for co-design

SPR / HPX / OCR
for co-design

Miniapps
for co-design

KiRen	
 is	
 a	
 Tool	
 for	
 Co-­‐design	

§  Focusing	
 on	
 interfaces	
 between	
 RunAme	
 <-­‐>	
 OS	
 <-­‐>	
 HW	

§  KiRen	
 is	
 a	
 good	
 starAng	
 point	
 –	
 a	
 deconstructed	
 OS	
 J	

§  Expect	
 two	
 way	
 interacAon	
 between	
 layers	
 necessary	

§  Persistent	
 vs.	
 Ephemeral;	
 Global	
 vs.	
 Local	

§  New	
 ASCR	
 X-­‐Stack	
 2	
 XPRESS	
 project	
 starAng	
 up	

§  Involves	
 Indiana,	
 LSU,	
 Houston,	
 Oregon,	
 RENCI,	
 ORNL	

§  Sandia	
 is	
 lead,	
 major	
 contribuAon	
 is	
 LXK	
 OS,	
 derived	
 from	
 KiRen	

§  RunAme	
 target	
 of	
 project	
 is	
 HPX-­‐4,	
 but	
 also	
 targeAng	
 other	
 runAmes	

(SPR,	
 OCR,	
 …)	

33	

VirtualizaAon	
 is	
 another	
 Tool	

	

§  VirtualizaAon	
 uses	
 in	
 exascale	
 Ameframe	

§  Backwards	
 compaAbility	
 for	
 legacy	
 applicaAons	

§  As	
 a	
 development	
 environment	
 (e.g.	
 emulate	
 exa-­‐system	
 on	
 laptop)	

§  Portable	
 containers	
 for	
 applicaAon	
 environments	

§  “Virtual	
 Future	
 Machine”	
 (VFM)	
 concept	

§  Recent	
 virtualizaAon	
 acAviAes	

§  Integrated	
 Palacios	
 with	
 SST	
 to	
 accelerate	
 simulaAon	

§  Developing	
 high-­‐performance	
 virtual	
 networking	

34	

Results	

35	

Operating
System

Round-trip Task Migration Time
(task migrates from core A to B

and back)

Linux 2.6.35.7 4435 ns

Kitten 1.3 2630 ns

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Ba
nd

w
id

th
 (M

B/
s)

MPI Message Size (Bytes)

Palacios CPU, 500 Mhz NIC (158 sec.)
Gem5 CPU, 500 Mhz NIC (3732 sec.)

Palacios CPU, 250 Mhz NIC (193 sec.)
Gem5 CPU, 250 Mhz NIC (6416 sec.)

SST CPU and Memory Model
Implemented by Palacios VM

Palacios
Interface

Component

SST MPI Process

Portals4 NIC
Component

Router
Component

Palacios
Interface

Component
SST Core

Connections to
Other Router
Components

Palacios
Virtual Machine

Provides CPU and Memory "Model" for
SST Simulation

24x Simulation
Speedup

SimuTools’12 Paper ROSS Workshop Paper

Kitten integrated SST/gem5 to enable
rapid prototyping and reproducibility 0 B

100 MB

200 MB

300 MB

400 MB

500 MB

600 MB

700 MB

800 MB

900 MB

Kitten CLE

Si
ze

 (b
yt

es
)

Operating System

Static Kernel Size
Dynamic Kernel Size

Kitten > 10x smaller
memory footprint

OS needs to be
hardened against
faults, keep running for
app-level resilience

Conclusion	

§  Past: 	
 LWK	
 as	
 an	
 opAmizaAon	
 layer	

§  Present: 	
 KiRen	
 is	
 a	
 modern	
 LWK	
 foundaAon	

§  Future:	
 	
 LWK	
 enabling	
 co-­‐design	
 in	
 X-­‐stack	
 R&D	

§  Happy	
 to	
 discuss	
 collaboraAon	
 ideas	

§  Improving	
 lightweight	
 Linux	
 so>ware	
 stack	

§  IncorporaAng	
 virtualizaAon	
 layer	
 in	
 Appro’s	
 so>ware	
 stack	

§  Bringup	
 LXK/HPX	
 on	
 large-­‐scale	
 Appro	
 systems	

36	

Acknowledgments	

§  Ron	
 Brightwell	
 (SNL)	

§  Doug	
 Doerfler	
 (SNL)	

§  Kurt	
 Ferreira	
 (SNL)	

37	

QuesAons	
 and	
 Discussion	

38	

