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Introduction
The Goals of this lecture

e Provide broad introduction to Polynomial Chaos-based forward UQ
o Propagate uncertainties from inputs to model prediction
e Only parametric uncertainties covered here, no model uncertainty

e What you should take away from this lecture

¢ An understanding of Polynomial Chaos expansions to represent random
variables

e An understanding of intrusive and non-intrusive uncertainty propagation
methods

o An appreciation for some of the challenges and associated mitigation
approaches in forward UQ

o While this overview is broad, it is definitely not exhaustive
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Introduction

Qutline
© Introduction
® Spectral Representation of Random Variables
® Forward Propagation of Uncertainty

@ Sensitivity Analysis

@ Addressing Challenges for PCE-based Uncertainty Quantification
Representing Arbitrary RVs
Sparse Quadrature Approaches for High-Dimensional Systems
Taking Advantage of Sparsity in the System
Choice of Observables in Oscillatory / Long Time Horizon Systems
Stochastic Domain Decomposition Approaches
Data Decomposition Approaches
Systems with Inherent Stochasticity

® Summary

@ References
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PCES

Polynomial Chaos Expansions (PCEs)

Representation of random variables with PCEs

Convergence

Galerkin projection
Basis types
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PCES

One-Dimensional Hermite Polynomials

wo(X) 1

k
QZ}k(X) _ (—1)keX2/2;76_XZ/2, k=1,2,...

¢1(X):Xa 1/}2(X):X2717 w3(x):X373Xa

The Hermite polynomials form an orthogonal basis over [—oo, oo] with
respect to the inner product

W) = <= [ wbntw(ae = a (o)

where w(x) is the weight function

w(x) = e /2
7)(2 . . .
Note that 9\/27/2 is the density of a standard normal random variable
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PCES
One Dimensional Polynomial Chaos Expansion

Consider:

w

P
u=">" ukk(€)
k=0

»

w

e u: Random Variable (RV)
represented with 1D PCE

e ux: PC coefficients (deterministic)
e . 1D Hermite polynomial of bo o3 W e 20

. z.rdg;:SSian N U =05+ 0.2¢1() + 0.1¢2(¢)

Prob. Dens. [-]

A random quantity is represented with an expansion consisting of functions of
random variables multiplied with deterministic coefficients

e Set of deterministic PC coefficients fully describes RV
e Separates randomness from deterministic dimensions
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PCES
Multidimensional Hermite Polynomials

The multidimensional Hermite polynomial W;(¢s,. .., &) is a tensor product of
the 1D Hermite polynomials, with a suitable multi-index o' = (o}, a3, . .., a}),

Vi, &) =[] Vi (€k)
k=1

For example, 2D Hermite polynomials:

i p V;
oo 1
111 &

2 11 &
32—+
41 2| &&
5| 2| -1
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PCES

Multidimensional Inner Products — Orthogonality

(W) = / / Vi(E)V(€)g(E)a(E) - 9(En)dErdes - dén

T (g (€00, 6)) = 5 (95

k=1

e &/2
where, g(g) = \/2?
such that,
P P
u= Z Uk Wi = <\U,'U> = Z Uk <\|1,'\Uk> = Uj <\U,2>

k=0 k=0

(U‘U,‘)

= uj =
(v
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PCES
Multidimensional Polynomial Chaos Expansion

Consider:

P
U= V(&)
k=0

u: Random Variable (RV) represented with multi-D PCE
uk: PC coefficients (deterministic)

WV, Multi-D Hermite polynomials up to order p
& Gaussian RV
n: Dimensionality of stochastic space

P+ 1: Number of PC terms: P + 1 = (7+2)

The number of stochastic dimensions represents the number of independent
inputs, degrees of freedom that affect the random variable u

e E.g. one stochastic dimension per uncertain model parameter
e Contributions from each uncertain input can be identified
e Compact representation of a random variable and its dependencies
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PCES
More Formally: Probability Spaces and Random Variables

Let (©,6,P) be a probability space
e O is an event space
e Gisaoc-algebraon ©
e PPis a probability measure on (©, &)

Random variables are functions X : © — R with a measure
corresponding to their image:

o if X~1(A) € &, then define u(A) = P(X~1(A)).
e p(x) = du/dx: the density of the random variable X (with respect to
Lebesgue measure on R).
o Expectation: (f) = [ fdu = [ fp(x)dx
Let¢:©® —» RV suchthatfori=1,...,Neach ¢ : © — R, be a set of
random variables
G(&): o-algebra generated by the set ¢ of random variables

[2(©,6(¢), P): Hilbert space of real-valued random variables defined on
(©,6(¢),P) with finite second moments

[Ernst et al. 2011]
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PCES
Convergence Theorem

A random variable u(6) in L2(©, &(¢),P) can be described by
a Polynomial Chaos (PC) expansion in terms of:
the infinite-dimensional i.i.d. Gaussian basis & = {&;(0)}=y;

alo + Z aiy I (&1 (9))

ip=1

u(o)

+
M
Mg

I

N
Lol

Il

aiyip |—2(§,1 (9) 5'2 (9))

Zaqlzler 511 9) 612(9) 5’3(6))—’_

iz=1

+
Nk
Mg

I

N
Lol

I

where I, is the Polynomial Chaos of order p, o = 1, and

, N (_qypeieTe O —1eTe
rp(£’17"'7§’p) ( 1) e agh ag’ﬁe
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PCES
Notes on the PC construction

e The Polynomial Chaoses are by construction orthogonal with
respect to the Gaussian probability measure

e They are thus identical with the corresponding multidimensional
Hermite Polynomials

e The first four PCs are given by

b = 1
(&) &
Fa(8i,80) = €& — Oy
Is (€i1 1 &3) = &8ss — & 5"2"3 — &, 0i, i — & Oiiy

[R.G. Ghanem and P.D. Spanos, 1991]
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PCES

A more compact notation ... and finite dimensionality and order

e An L, random variable u(x, t, 8) can be described by
a PC expansion in terms of:
e Hermite polynomials Wy, k =1,...,00;
e the associated infinite-dimensional Gaussian basis

{&i(0)} 7=
e spectral mode strengths ux(x,t), k =1,...,00.
e Truncated to finite dimension n and order p, the PC expansion for u
is written as

P

u(x, t,0) = > uk(x, )Wi(£(0))

k=0

where £(6) = {€:(0), - ,&(0)}, and P + 1 = (212
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PCES
Generalized Polynomial Chaos

[ PC Type | Domain || Density w(¢) | Polynomial | Free parameters ||
2
Gauss-Hermite (=00, +00) \/% -% Hermite none
Legendre-Uniform | [—1,1] : Legendre | none
Gamma-Laguerre | [0, +o0) %J:f) Laguerre | a > —1
Beta-Jacobi [—1,1] % Jacobi a>—1,8>—1

Inner product: (i) = [ i(€)wy(€)w(€)de

e Wiener-Askey scheme provides a hierarchy of possible continuous PC
bases, see Xiu and Karniadakis, SISC, 2002.

e Legendre-Uniform PC is a special case of Beta-Jacobi PC
e Beta-Jacobi PC allows tailored accuracy of the PC representation across the
domain

¢ Input parameter domain often dictates the most convenient choice of PC

¢ Polynomials functions can also be tailored to be orthogonal w.r.t.
chosen, arbitrary density

Debusschere — SNL Forward UQ



PCES
Postprocessing / Analysis

e Moments
¢ Plotting PDFs of RVs represented with PCEs
e When is a PCE accurate enough?
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PCES
Moments of RVs described with PCEs

P

Z IAUES

k=0

e Expectation: (u) = up
e Variance o?

o = (- wy)
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PCES
Plotting PDFs of RVs corresponding to PCEs

P
U= uW(€)
k=0

¢ Analytical formula formula for PDF(u) exists
¢ Involves polynomial root finding, and is hard to generalize to multi-D
e PCE is cheap to sample

e Brute-force sampling and bin samples into histogram
e Use Kernel Density Estimation (KDE) to get smoother PDF with fewer

samples u;
PDF(u) = L%K (ufu")
- Nsh i=1 h

K is the kernel, his the bandwidth
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PCES

Comparison of histograms and KDE

el w
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Source Wikipedia, Drleft; licensed under the Creative Commons Attribution-ShareAlike 3.0 License

e Bandwidth h needs to be chosen carefully to avoid oversmoothing
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PCES
How do | know my PCE is converged?

o Approximation error in PCE is topic of a lot of research
¢ Rules of thumb:

e Higher order PC coefficients should decay
o Increase order until results no longer change
o Not always fail-proof ...
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Forward UQ
Propagation of Uncertain Inputs Represented with PCEs

o Galerkin projection approaches project uncertain quantity onto space
covered by PC basis functions

* Relying on orthogonality of basis functions

(UWy)
Ug = , k=0,...,P
(Vi)

o Residual orthogonal to space of basis functions
o Two different approaches

e Intrusive: project governing equations
e Non-intrusive: project sampled model outpus

e Collocation approaches
e Match PCE to random variable at chosen sample points
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Forward UQ

Intrusive Spectral Stochastic UQ Formulation: ODE Example

e Sample ODE with parameter A:
du _
dt
e Let A be uncertain; introduce ¢ ~ A(0,1).
e Express X and u using PCEs in &:

AU

P

P
=0T NW(€),  u(t) =D u(H)Wk(€)

k=0

e Substitute in ODE and apply a Galerkin projection on W;(¢),
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Forward UQ

Galerkin Projection on W;(¢)
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Forward UQ
Resulting Spectral ODE system

e (P + 1)-dimensional ODE system

P P

% = > MugCpi, i=0,...,P
p=0 q=0
where Cpgi = (WpWoW;) / (WZ)
e The tensor Cyq can be evaluated once and stored for any given PC
order and dimension
e This tensor is sparse, i.e. many elements are zero
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Forward UQ

1D 4-Order Cjx Example : Hermite polynomials

<\U,'\Ul'\|fk> value
(\Ifo\lfo\ll()) 1
VoWV, ¥y 1
Ewowzwgi 2 o Ci = (ViVWi) / (W)

e and,
(WoW3V3) 6 K T2
(WoW,w,) | 24 Vi)
(ViU W) | 2 ? } (Vv = (Vv =
<\V1 W2W3> 6 2 2 (ijiwk> = <ijkwi> =
(W1W3Wy) | 24 (VW) = (WWw))
WV, | 8 ol ! !
(WaWow,) | 24
(WoW3W3) | 36 e with other not-reported
<W2\U4‘U4> 192 <\|J,'\|Jj\|/k> zZero
(WaUaW,) | 216
(WaW,Vg) | 1728
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Forward UQ

1D 4-Order Cjx Example : Legendre polynomials

<\U,'\Ul'\|fk> value

(WoWoWo) 1

(WoW1Wy) 1/3 il 2

(WowoWz) | 1/5 * S =i/ (Vi

E\Ilo\llglllgi 1/7 o <\Ui> )

AU AUA 1/9

(ViU W,) | 2/15 ? 1}3 (Vv = (Vv =

<\V1 W2W3> 3/35 (ijiwk> = <ijkwi> =
2 1/5

2V,

(WaWoWy) 2/35 4 19

(WaW3W3) | 4/105 o with other not-reported

<\|12\|14‘U4> ~0.029 <\|J/\|Jj\|/k> Zero

<\|/3\|13\U4> ~0.026

<\V4\U4\|J4> ~0.018
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Forward UQ

Pseudo-Spectral Construction—1

P
w = APV, U=y UV, similarly for A & v

Spectral:

W = </\u2v>
P P P P
= SOSUSTY Nuktive (W), i=0,.. P

j=0 k=0 I=0 m=0

e The corresponding tensor of basis product expectations becomes too
large to pre-compute and store

Pseudo-Spectral: Project each PC product onto a (P + 1)-polynomial before
proceeding further, thus:
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Forward UQ
Pseudo-Spectral Construction—2

e Aliasing errors
o Efficiency, and convenience

[Debusschere et al., SIAM J. Sci. Comp., 2005.]
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Forward UQ

Intrusive propagation through non-polynomial functions

Addition, subtraction, and product allow (pseudo-)spectral evaluation of all
polynomial functions

How to propagate PC expansions ({ux} = {v«}) through transcendental
functions

1 u
V:B, v=Ilnu o v=e¢

Use local polynomial approximations, e.g. Taylor series

2 3
e Ege'=1+a+5+5+
o |ssues:

e Convergence issues
e High-order PC multiplications lead to aliasing
e Instabilities

Write system of equations for output

Integration approach

Borchardt-Gauss Algorithm: Arithmetic-Geometric Mean (AGM) series
[Debusschere et al., SISC 2005, McKale, Texas Tech, M.S. Thesis, 2011]
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Forward UQ

Inversion and division can be done without Taylor series

Assume three stochastic variables u, v, and w

u
W:;:> vw =u

Mode k of the stochastic product

P P

(vw), Z Z CiamVi - Wm = Uy

m=0 /=0

System of P + 1 linear algebraic equations in wy, with known ux and v,

P

Vikm = Z Ckmvi, VW =u
=0

More robust than Taylor series expansion for 1/u
What about the condition number of V ?
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Forward UQ

Integration approach for non-polynomial functions

« Consider the ODE % = y, with solution u = &*
e &* can be obtained from

X
du = udx = ex—e"":/ u dx
Xo

e Similarly for e, and In(x)

X X
e X g = /—2xudx, In(x) —In(xo) = &
Xo

Xo

o Agrees well with directly sampled pdf if PC order is high enough to
resolve pdf of solution
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Forward UQ
A More General Integration approach for irrational functions

o To evaluate u(x), x = Sop o XWi, u= S5 o Wi,
¢ use a deterministic IC x5 such that u(xz) is known
e express U = du/dx = f(u, x);
... require: f is a rational function
... ensures that (&), are found from the v, and x; coeffs
e evaluate the integral:

P (x)j P .
() = ueloa) = 3 [ S iy
j=0 7/ (xa)j iZo
« ok for ", &, and In(x), with & = u, 2xu, and 1/x resp.

e but not for eSi" X, with i = ucos x
e CPU-intensive, only slightly more robust than Taylor series
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Forward UQ
Pseudo-spectral overloading of operations

e Construction allows for a general representation using pseudo-spectral
(PS) overloaded operations.

o E.g. multiplication operation s’
W=AxUxUxV

o Each deterministic function multiplication is transformed into a
corresponding polynomial chaos product

» Potential meta-code: take a general deterministic code function F(u),
produce a pseudo-spectral stochastic function F(1)

e Possibility of transforming legacy deterministic code into corresponding
pseudo-spectral stochastic code.

e UQToolkit: contains library of utilities for operations on random variables
represented with PCEs
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Forward UQ

ntification Toolkit (UQTK)

A library of C++ and Matlab functions for propagation of uncertainty
through computational models

Mainly relies on spectral Polynomial Chaos Expansions (PCEs) for
representing random variables and stochastic processes
Target usage:

¢ Rapid prototyping

o Algorithmic research

o Tutorials / Educational

Version 1.0 released under the GNU Lesser General Public License

Downloadable from http://www.sandia.gov/UQToolkit/
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Forward UQ

contents and developm

e Currently released (http://www.sandia.gov/UQToolkit/)
e C++ Tools for intrusive UQ with PCEs

e Under production, planned release Fall 2012
e C++ Tools for non-intrusive UQ

Matlab tools for intrusive and non-intrusive UQ

Karhunen-Loéve decomposition

Bayesian inference tools

Many more examples and documentation

e Under development
e Adding support for multiwavelet based stochastic domain decompositions
e Support for arbitrary basis types
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Forward UQ

PCEs in the UQToolkit

// Initialize PC class

int ord = 5; // Order of PCE

int dim = 1; // Number of uncertain parameters

PCSet myPCSet ("ISP",ord,dim, "LU"); // Legendre-Uniform PCEs

// Initialize PC class

int ord = 5; // Order of PCE

int dim = 1; // Number of uncertain parameters

PCSet myPCSet ("NISP",ord,dim, "LU"); // Legendre-Uniform PCEs

e Currently support Wiener-Hermite, Legendre-Uniform, and
Gamma-Laguerre (limited), Jacobi-Beta (development version)

e PCSet class initializes PC basis type and pre-computes information
needed for working with PC expansions
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Forward UQ

Operations on PCEs in the UQToolkit

// PC coefficients in doublex
doublex a = new double[npc];
doublex b = new double[npc];
doublex ¢ = new double[npc];

// Initialization
al0] = 2.0;
al[l]l] = 0.1;

// Perform some arithmetic
myPCSet.Subtract (a,b,c);
myPCSet .Prod(a,b,c);
myPCSet .Exp(a,c);

myPCSet .Log(a,c);

// PC coefficients in Arrays
ArraylD<double> aa(npc,0.e0);
ArraylD<double> ab (npc,0.e0);
ArraylD<double> ac(npc,0.e0);

// Initialization
aa(0) = 2.0;
aa(l) = 0.1;

// Perform arithmetic
myPCSet .Subtract (aa, ab, ac);
myPCSet .Prod(aa, ab, ac)
myPCSet .Exp (aa, ac) ;
myPCSet .Log (aa,ac);

e PC coefficients are either stored in doublex vectors or in more
advanced custom ArraylD<double> classes

e Functions can take either data type as argument
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Forward UQ
Surface Reaction Model

1.0
3 ODEs for a monomer (u), — |— v — v — u]
dimer (v), and inert species § o8
(w) adsorbing onto a surface B
out of gas phase. O o6
du ”
— = az-cu-4duv @
dt S 0.4
dv 2 =
— = 2bz° —4duv o
ddvtv B0
9 ez — fw &
7 = 1—U—v—w 0.0 200 46‘?ime [6]60 800 1000
u(0) = v(0) = w(0) =0.0 Oscillatory behavior for b € [20.2,21.2]

a=16 b=2075 ¢=004 d=10 e=036 f=0.016

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Forward UQ

Surface Reaction Model: Intrusive Spectral Propagation (ISP) of Uncertainty

e Assume PCE for uncertain parameter b and for the output variables,
u,v,w
Substitute PCEs into the governing equations

Project the governing equations onto the PC basis functions
o Multiply with W, and take the expectation

Apply pseudo-spectral approximations where necessary
UQTk elementary operations
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Forward UQ

Surface Reaction Model: Specify PCEs for inputs and outputs

Represent uncertain inputs with PCEs with known coefficients:

P
b= bivi(§)

i=0

Represent all uncertain variables with PCEs with unknown coefficients:

P P P
U= uVi€) v=7 vWi(§) w=> wWi(E) z=) zV¥(E)
i=0 =0 i

i=0
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Forward UQ

Surface Reaction Model: Substitute PCEs into governing equations and
project onto basis functions

du
i az — cu — 4duv

P P P P
% Z uv;, = aZZiWi - CZ uV; — 4dZ UI‘UIZ viV;
i=0 i=0 i=0 j=0

i=0

Pl P P

<\IlkdtZu,-\ll,-> <a\IIkZz,-\U,-> — <C\IJkZu,-\IJ,->
i=0 i=0

P P

— <4d\llk Z uiv; Z ijl'>

i=0 j=0

i=0
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Forward UQ

Surface Reaction Model: Reorganize terms

(wivvy)

(Vi)

e Triple products Cjx = can be pre-computed and stored for

repeated use

Debusschere — SNL Forward UQ



Forward UQ

Surface Reaction Model: Substitute PCEs into governing equations and

project onto basis functions

— = 2bZ’ —4duv
P P P P P
2 Z bh\llh Z ZiV; Z Zj\Uj —4d Z uiv; Z Vj\U/'
h=0 i=0 j=0 i=0 j=0
P P P
<2\Uk Z bh\IJh Z ZiV; Z Z]\Ul>
h=0 i=0 j=0
P P
— <4d\|1k Z U,‘\U,' Z V]\UI>
i=0 j=0

&le
(]
<
S
I

Debusschere — SNL Forward UQ



Forward UQ

Surface Reaction Model: Reorganize terms

P P P P P
d
EtVK <\|Ji> = 2 Z Z Z brziz (WpWW W) — 4dZ Z uiv; (Wi W)
h=0 i=0 j=0 i=0 j=0
P P P P P
d (WpW W W) (Wivwy)
—Vv = 2 th,'Zji — 4d U,Vj
T D) DB T R DO
d P P P P P
d—tvk = 2zzzth/zJDhUk_4dZZU’VJC’Ik
h=0 i=0 j=0 i=0 j=0

¢ Pre-computing and storing the quad product Dy becomes cumbersome
o Use pseudo-spectral approach instead
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Forward UQ

Surface Reaction Model: Pseudo-Spectral approach for products

e Introduce auxiliary variable g = 2

2

P P
9 = 2> 27C
i=0 j=0

g = 2
f=2bz7 = 2bg Pl
fe = ZZZb,'ng,'jk
i=0 j=0

e Limits the complexity of computing product terms

o Higher products can be computed by repeated use of the same binary
product rule

e Does introduce errors if order of PCE is not large enough
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Forward UQ

Surface Reaction Model: UQTk implementation

// Build du/dt = axz - cxu - 4.0xdxu*v

aPCSet.Multiply(z,a,dummyl) ; // dummyl = axz

aPCSet.Multiply (u, ¢, dummy2) ; // dummy2 = c*u
aPCSet.SubtractInPlace (dummyl, dummy2); // dummyl = axz - cxu
aPCSset.Prod (u, v, dummy?2) ; // dummy2 = u*v
aPCSet.MultiplyInPlace (dummy2,4.e0xd); // dummy2 = 4.0xd*uxv
aPCSet.Subtract (dummyl, dummy2, dudt) ; // dudt = axz — c*xu - 4.0+dxuxv

o All operations are replaced with their equivalent intrusive UQ
counterparts
e Results in a set of coupled ODEs for the PC coefficients
e u,v,w,z represent vector of PC coefficients

e This set of equations is integrated to get the evolution of the PC
coefficients in time
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Forward UQ

Surface Reaction Model: Second equation implementation

// Build dv/dt = 2.0%bxzxz — 4.0*dxuxv

aPCSet.Prod(z, z, dummyl) ; // dummyl = zxz

aPCSet .Prod (dummyl, b, dummy2) ; // dummy2 = bxzxz
aPCSet.Multiply (dummy2, 2.e0, dummyl) ; // dummyl = 2.0xbxz*z
aPCSet.Prod(u,v,dummy?2) ; // dummy2 = u*v
aPCSet.MultiplyInPlace (dummy2,4.e0xd); // dummy2 = 4.0xd*uxv
aPCSet.Subtract (dummyl, dummy2, dvdt) ; // dvdt = 2.0xbxz*z — 4.0xd+u*v
// Build dw/dt = exz - fxw

aPCSet.Multiply(z, e, dummyl) ; // dummyl = exz

aPCSet.Multiply (w, £, dummy2) ; // dummy2 = fiw

aPCSet.Subtract (dummyl, dummy2, dwdt) ; // dwdt = exz - fiw

e Dummy variables used where needed to build the terms in the equations

e Data structure is currently being enhanced to provide the operation
result as the function return value

o Will allow more elegant inline replacement of operators with their stochastic
counterparts
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Forward UQ

Surface Reaction Model: ISP results

1.0 T T T T
|—u -_ v —w|

0.8 J

0.6 4

0.4 J

0.2 1

Species Mass Fractions [-]

0.0

0 200 400 600 800 1000
Time [-]

Assume 0.5% uncertainty in b around nominal value

Legendre-Uniform intrusive PC
Mean and standard deviation for u, v, and w
Uncertainty grows in time
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Forward UQ

Surface Reaction Model: ISP results

) 200 300 600 800 1000
Time [-]

e Modes of u

o Modes decay with higher order

e Amplitudes of oscillations of higher order modes grow in time

Debusschere — SNL Forward UQ



Forward UQ

Surface Reaction Model: ISP results: PDFs

0(.)310 0.315 0.320 0.325 0.330 0.335 0.340 0.345 0.350
u

o Pdfs of u at maximum mean (left) and maximum standard deviation
(right)
o Distributions get broader and multimodal as time increases
o Effect of accumulating uncertainty in phase of oscillation
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Forward UQ

Spectral UQ: Incompressible Flow - Stochastic Projection Method

e (P + 1) Galerkin-Projected Mom./Cont. Egns, ¢ =0,...,P:

R P
V- Vq = 0

q

e Projection: forg=0,...,P:

Vg—v]
N = GitD;
1 -
2 e _—— .
Vi = -5V T
vt —
-4 9 n = —Vpg

e P+ 1 decoupled Poisson Eqgns for the pressure modes
[Le Maitre et al., J. Comp. Phys., 2001.]
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Forward UQ

Laminar 2D Channel Flow with Uncertain Viscosity

i

Vo 1 2 V3 o

¢ Incompressible flow

e Gaussian viscosity PDF
o v=1y+ 1§

e Streamwise velocity

P
e V= Z viV;
i=0

® |p: mean
e v;: i-th order mode

o3 (wh)

i=1
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Forward UQ

Non-Intrusive propagation of uncertainty - Projection

Galerkin Projection

<U\|Jk /
Ux = = uW( de, k=0,...,P
e Qe ) OO
Evaluate projection integrals numerically
e Pick samples of uncertain parameters, e.g. b

¢ Run deterministic forward model for each of the sampled input
parameter values b;

¢ Integration depends on sampling approach
e Random Sampling: (uWy) = le Zf'; u(by)
e Quadrature: (uWy) = Z:\g giu(b;)
Reconstruct uncertain model output

P
u(x, t;0) = uk(x, )Wi(£(6))

k=0
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Forward UQ
Random Sampling approaches

Evaluate integral through sampling

Ns
/ UV (E)w(&)de = le Z u(é)

Samples are drawn according to the distribution of £
e Monte-Carlo (MC)
e Latin-Hypercube-Sampling (LHS)
e Pros:
e Can be easily made fault tolerant
e Sometimes random samples is all we have
Cons: slow convergence, but less dependent on number of stochastic
dimensions
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Forward UQ

Quadrature approaches

e Numerically evaluate integrals in Galerkin projection

Ng
/ UV (Ew(E)dE =D qiu(&)
i=1

e Gauss quadrature rules are very efficient
e ¢ are quadrature points, with corresponding weights g;
e Ny quadrature points can integrate polynomial of order 2Ny — 1 exactly
e Gauss-Hermite and Gauss-Legendre quadrature tailored to specific choices

of the weight function w(¢)
e As arule of thumb, p 4+ 1 quadrature points are needed for Galerkin

projection of PCE of order p
e [f both uand W are of order p, then integrand is of order 2p
o 2p<2Nq—1oqu>p+—
e Only exact if u is indeed a polynomial of order < p
e Pros:
e Can use existing codes as black box to evaluate u(&;)
o Embarrassingly parallel

e Cons: Tensor product rule for d dimensions requires Ng samples
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Forward UQ

Non-Intrusive propagation of uncertainty - Collocation

e Collocation techniques minimize errors at sample points

o ShooUkVk(&) =u(&), i=1,...,Ne
e Can use interpolation, e.g. Lagrange interpolants
o Or use regression approaches: P + 1 degrees of freedom to fit N points

e Pros: can position points where most accuracy desired
e Cons:
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Forward UQ
Surface Reaction Model

1.0
3 ODEs for a monomer (u), — |— v — v — u]
dimer (v), and inert species § o8
(w) adsorbing onto a surface B
out of gas phase. O o6
du ”
— = az-cu-4duv @
dt S 0.4
dv 2 =
— = 2bz° —4duv o
ddvtv B0
9 ez — fw &
7 = 1—U—v—w 0.0 200 46‘?ime [6]60 800 1000
u(0) = v(0) = w(0) =0.0 Oscillatory behavior for b € [20.2,21.2]

a=16 b=2075 ¢=004 d=10 e=036 f=0.016

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Forward UQ

Surface Reaction Model: NISP implementation in UQTk

Quadrature:

// Get the quadrature points

int nQdpts=myPCSet.GetNQuadPoints();
double* gdpts=new double[nQdpts];
myPCSet.GetQuadPoints (gdpts) ;

// Evaluate parameter at quad pts

for (int i=0;i<nQdpts;i++) {
bval[i]=myPCSet.EvalPC (b, &qdpts[i]);

}

// Run model for all samples

for (int i=0;i<nQdpts; i++) {
u_val[i] =

}

// Spectral projection

myPCSet.GalerkProjection (u_val,u);

myPCSet.GalerkProjection(v_val,v);

myPCSet.GalerkProjection(w_val,w);

Debusscher Forward UQ

Monte-Carlo Sampling:

// Get the sample points

int nSamples=1000;

Array2D<double> samPts (nSamples,dim);
myPCSet .DrawSampleVar (samPts) ;

// Evaluate parameter at sample pts
for (int i=0;i<nSamples;i++) {
... // select samPt from samPts
bval[i]=myPCSet.EvalPC (b, §samPt)
}

// Run model for all samples
for (int i=0;i<nSamples;i++) {
u_val[i] =
}
// Spectral projection
myPCSet .GalerkProjectionMC (samPts,u_val,u);
myPCSet .GalerkProjectionMC (samPts,v_val,v);
myPCSet .GalerkProjectionMC (samPts,w_val,w);



Forward UQ
Surface Reaction Model: NISP results

NISP Quadrature NISP MC

_. 10 : . : : _. 10 : : . :
- —_— u —_— v —_—w - —_— u —_— v —_—w
2 2
S o8 S o8
= S
3 @
i 0.6 s 0.6
wn %]
3 @

.4 4
=0 s°
wn %]
@ @
S 0.2 S 0.2
Q [}
Q Q.
(2] (%]

0.0 . . . ; 0.0 . . . i

0 200 200 600 800 1000 0 200 400 600 800 1000
Time [-] Time [-]

e Mean and standard deviation for u, v, and w

e Quadrature approach agrees well with ISP approach using 6 quadrature
points
e Monte Carlo sampling approach converges slowly
e With a 1000 samples, results are quite different from ISP and NISP
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Forward UQ

Surface Reaction Model: Comparison ISP and NISP

0.004
0.002
0.000
L. —0.002
s —0.004
—0.006
— Uyrsp - Usisp
—0.0081} — Uy NISP — Us NISp 1
~0.0105 200 200 600 800 1000
Time [-]

o Lower order modes agree perfectly
o Very small differences in higher order modes
o Difference increases with time
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Forward UQ

Surface Reaction Model: Comparison ISP and NISP

10 T T
— ISP, t = 803.0
al — NISP, t = 803.0
2 6f
()
a
S 4
o
a
2,
(9.10 0.‘15 0.‘20 0.‘25 0.50 0.35
u

o All pdf’s based on 50K samples each and evaluated with Kernel Density
Estimation (KDE)

¢ No difference in PDFs of sampled PCEs between NISP and ISP
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Forward UQ

Surface Reaction Model: Comparison ISP, NISP, and MC

10 r r
— ISP, t = 803.0
sl — NISP, t = 803.0
- — MC, t =803.0
g ef
(0]
[a]
a 4
e
[a
2,
(9.10 0.‘15 0.‘20 0.‘25 0.50 0.35
u

o All pdf’s based on 50K samples each and evaluated with Kernel Density
Estimation (KDE)

¢ Good agreement between intrusive, non-intrusive projection, and Monte
Carlo sampling
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Forward UQ
ISP pros and cons

e Pros:
e Elegant
e One time solution of system of equations for the PC coefficients fully
characterizes uncertainty in all variables at all times
o Tailored solvers can (potentially) take advantage of new hardware
developments

e Cons:
o Often requires re-write of the original code
o Reformulated system is factor (P+1) larger than the original system and can
be challenging to solve
e Challenges with increasing time-horizon for ODEs
e Many efforts in the community to automate ISP
e UQToolkit: http://www.sandia.gov/UQToolkit/
e Sundance: http://www.math.ttu.edu/~klong/Sundance/html/
e Stokhos: http://trilinos.sandia.gov/packages/stokhos/
L]
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Forward UQ
NISP pros and cons

e Pros:
o Easy to use as wrappers around existing codes
e Embarassingly parallel
e Cons:
« Most methods suffer from curse of dimensionality Ng = nMNe
e Many development efforts for smarter sampling approaches and
dimensionality reduction
o (Adaptive) Sparse Quadrature approaches
e Compressive Sensing
o ...
e Sampling methods have found very wide spread use in the community
e DAKOTA: http://dakota.sandia.gov/
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Sensitivity
Sensitivity Analysis

¢ Obtaining global sensitivity analysis from PCEs

o Identify dominant sources of uncertainty
o Attribution
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Sensitivity

PC postprocessing: global sensitivity information is readily obtained from PCE

K—1
g(xi,.. ., Xg) =Y ckWk(X)
k=0
e Global sensitivity analysis = Variance decomposition

Total variance
Var[g(x)] = > _ cl[Wl®
k>0

e Main effect sensitivity indices

_ Var[E(g(x|x)] _ Zkey, GIIVll®
Var[g(x)] >0 Cill Wkl [?
I; is the set of bases with only x; involved. S; is the uncertainty contribution

that is due to i-th parameter only.
e Joint sensitivity indices

Si

Sher, GBIV
AT

I; is the set of bases with only x; and x; involved. S; is the uncertainty
contribution that is due to (i, j) parameter pair.

Debusschere — SNL Forward UQ
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Sensitivity

PC postprocessing: sampling-based approaches

g(xi,...,Xq) = ZCk\Vk

In some cases, need to resort to Monte-Carlo estimation, e.g.
e Piecewise-PC with irregular subdomains
e Output transformations, e.g. build PC for log g(x), but
inquire sensitivity with respect to g(x)
A brute-force sampling of Var[E(g(x|x;)] is extremely inefficient.
Tricks are available, given a single set of sampled input [saitetii, 2002).
E.g., use

E[g(x|x)*] = E[g(x|x)g(x'|x)] = ZQ(X )g(x),

where X is x’ with i-th element replaced by x;.
Similar formulae available for joint sensitivity indices.

Con: as all Monte-Carlo algorithms, converges slowly.
Pro: sampling is cheap.
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Challenges
Challenges for PCE-based Uncertainty Quantification

Representing input variables with arbitrary distributions
Systems with high-dimensional uncertainty

Systems with long time horizon / oscillatory behavior
Nonlinearities in governing equations for intrusive UQ
Physical constraints in uncertain quantities

Systems with non-smooth behavior — discontinuities

Systems with inherent stochasticity

Various approaches have been developed to tackle these challenges ...

Debusschere — SNL Forward UQ



Challenges
®00000000000000000000000

Obtaining PCEs for uncertain inputs

e Characterizing PCEs for uncertain inputs is a really difficult problem
¢ Inputs specified in a variety of ways

o Probability density function

e Samples

e Expert opinion (e.g. “about 3.5”)
o Often obtained from inverse problem solution

e See session on Bayesian inference
o Generally provides many samples of the uncertain inputs
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Challenges
O®000000000000000000O0000

Inverse CDF Mapping for 1D RVs

100

— Posterior PDF
— Posterior PDF (PC)

PDF

50

2“).73 20.74 20.75 20.76 20.77 20.78
Parameter b

Consider random variable a with CDF F(-)
o Either specified or constructed from samples with KDE

CDF transformation F(a) = n maps random variable a to uniform|[0, 1]
random variable 7.

n = ®(&) maps uniform 7 to normal RV ¢

The inverse CDF enables NISP projection

p
_ N _ »
a= kZ:O akVk(€) a oc (aVi(&)) / F (:3(5)) W (€)de
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Challenges
O0@000000000000000000000

Constructing an nD PCE for a RV with a given PDF

e Given RV z € R with PDF: g(z), define:

P |
z= §z,-\u,-(g1,§2, L&), Pi1= (”nTp‘!’)'
i=
e No general procedure
e Can choose {n, p} and the mode strengths by ensuring
accurate capture of
» the PDF g(z2)
o select moments of z
» some observable of interest ¢(z)
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Challenges
0008000000000 00000000000

Rosenblatt for Multi-D RVs

¢ Rosenblatt transformation maps any (not necessarily independent) set of

random variables (1, ..., As) to uniform i.i.d’s {n;}/_; (Rosenblatt,
1952).

m = Fi(\)

e = Fpi(Aa2]A1)

= Fapnet, 1 (Aal Ao, o000 M)

¢ Rosenblatt transformation is a multi-D generalization of 1D CDF
mapping.
¢ Conditional CDFs are harder to evaluate in high dimensions
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Challenges
O000@0000000000000000000

Projection of Rosenblatt transformed vars onto PCEs

20

=
>

0.4

Parameter b
Parameter 1,

0. .
0.6 0.8 1 1.2 1.4 1.6
Parameter a Parameter M,

e NISP projection is enabled by inverse Rosenblatt transformation (a, b) = R~'(&1, £2)
ensures a well-defined quadrature integration

P

a = Wi (8) ac o | Ry'(§) Wk(§)de
kX:; KTk K /Ha,_a K
P

b= > bWk(€) bkoc/Ff £) Wi (€)d
k=0
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Challenges
0000080000000 00000000000

Multivariate Normal Approximation

e Many distributions are unimodal and somewhat shaped like Gaussians

o MultiVariate Normal (MVN) approximations capture the mean and
correlation structure of the random variables

o Easy to extract from a set of samples

e In 1D: just compute mean and standard deviation: u = up + U1 &
e Multi-D: Cholesky factorization of covariance

= 7

u = L¢

# Compute mean parameter values
par_mean = numpy.mean (samples,axis=0)

# Compute the covariance

par_cov = numpy.cov (samples, rowvar=0)

# Compute the Cholesky Decomposition
chol_lower = numpy.linalg.cholesky (par_cov)
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Challenges

0000008000000 00000000000

MVN approximation of Bayesian posterior from MCMC samples

Comparison of Posterior (blue) with MVN (red)

5400
0.600 53801
0.525

5360
0.450

53400
0.375

53200
0.300 kf

53000
0.225
0.150 5280f
0.075 52600
0.000 52400

1.31 1.32 133 1.34 135 136 137 138 1.39
1

S
CS = 5310 — 26.25¢; + 20.26¢

1.351 4 0.01367¢&;
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Challenges
0000000800000 00000000000

Data Decomposition Approaches to Handle Multi-Modalities

o Multimodal, dependent random variables

o Clustering and Rosenblatt transformation to represent data sets with
PCEs

e PC mixture model
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Challenges
O0000000e000000000000000

Karhunen-Loéve (KL) Expansions

e Assume stochastic process F(x,6) : D x © — R an L2 random field on D
e With covariance function Cov(x, y)
e F can be written as

F(x,0) = (F(x,0))y + i VBe(X)éx

o fi(x): eigenfunctions of Cov(x, y)

e )\: corresponding eigenvalues, all positive
e & uncorrelated random variables, unit variance

e Samples are obtained by projecting realizations of F onto f;
e Generally not independent

e Special case: for Gaussian F, &, are i.i.d. normal random variables
e The KLE is optimal: of all possible orthonormal bases for L2(© x D) the
above {f(x)} minimize the mean-square error in a finite linear
representation of F(-).
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Challenges
0000000008000 00000000000

KL Expansions - Numerical Approach - 1

o Covariance Matrix, Cov(x, y) = (F(x,0)F(y,6)),:
o specified analytically
e estimated from samples

o Estimate eigenvalyes and eigenvectors for the Fredholm equation of
second kind:

/ Cov(x,y)f(y)dy = M(x)

e ...using the Nystrom algorithm:
Np
>~ w;Cov(x, y)f(y;) = M(x)

i=1
where w; are the weights for the quadrature rule that uses N, points y;
where realizations are provided.

o Further manipulation leads to the eigenvalue problem

Ag = A\g

where A = WKW and g = Wf, with W being the diagonal matrix W; = /w;
and Kj = Cov(x;, y;). Solutions consist of pairs of eigenvalues A« and
eigenmodes f, = W~ 1gy.

Debusschere — SNL Forward UQ



Challenges
0000000000000 0000000000

KL Expansions - Numerical Approach - 2

o Samples of random variables & are obtained by projecting realizations
of the random process F on the eigenmodes f

&klo, = (F(x,00) = (F(x,0))q . (X)), /v/ M

e ... or numerically
Np

Eklo, = D wi (F(xi,0) = (F(x;,0))4) f(x)/ v/ Ak

i=1
o If Gaussian process: automatically have first order WH PCE

¢ If not, same approaches as for converting RVs to PCEs applied to KL
RVs
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Challenges
00000000000 @000000000000

1D Gaussian Process: Realizations

0=0.1 6=02

20 T T T T 20

f(x)
f(x)

-2 1 1 . 1 _2 1 . . 1
8.0 0.2 0.4 0.6 0.8 1 8.0 0.2 0.4 0.6 0.8 1.0

e Covariance Cov(xi, x2) = exp(—(x1 — x2)?/5?)
e Sample realizations are noisier as correlation length decreases
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Challenges
000000000000 @00000000000

1D Gaussian Process: KL modes

0=0.1 6=02

<5 o B 1
1 - fl fl U
- f2 fz
_2 — fs fs 1
- f4 f4
_3
8.0 0.2 0.4 0.6 0.8 1 1.0
X

e Eigenmodes of the covariance matrix

e Data covariance matrix constructed from 4096 Gaussian process
realizations

e Higher modes are more oscillatory
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Challenges
0000000000000 @0000000000

1D Gaussian Process: KL random variables

0=0.1 6=02

e Random variables obtained by projecting realizations onto KL modes
e Uncorrelated by construction
e Also independent due to nature of Gaussian Process
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Challenges
0000000000000 0e000000000

1D Gaussian Process: Eigenvalue spectrum

102 ‘ ‘ ‘ ‘ :

0=0.05

fury
o
©

=
o
N}

-
e
S

Eigenvalue Magnitude
=
o

-
e
&

0 10 20 30 40 60
Eigenvalue #

e Eigenvalue spectrum decays more slowly as correlation length
decreases

e More oscillatory modes needed to represent fluctuations in x

o KL expansion generally is truncated after enough modes are included to
capture a specified fraction of the total variance
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% . : : : :
° — 5=0.05
S 10°F — 5=0.1
2
e — 5=02
D107 — §=05
=
O e
E 10"
g
c -6
Z 10
2
w 108

0 10 20 30 40 60

Eigenvalue #

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes

Debusschere — SNL Forward UQ



Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : .
° 5005 2 terms
S 10°F — §=0.1
=1
c — §=02
D102} — =05
=
(V] .
E 10"
g
c -6
g 10
2
w 10-8

) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
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1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : .
° 5005 4 terms
S 10°F — §=0.1
=1
c — §=02
D102} — =05
=
(V] .
E 10"
g
c -6
g 10
2
w 10-8

) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : .
° 5005 6 terms
S 10°F — §=0.1
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(V] .
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g 10
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) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
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1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : .
° 5005 8 terms
S 10°F — §=0.1
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c — §=02
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g 10
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w 10-8

) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
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1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : :
° 5005 10 terms
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e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : : :
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e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes
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Challenges
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1D Gaussian Process: Reconstructed realizations
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e Large scale features can be resolved with small number of modes
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : T
@ — 5=0.05 3 terms
S 10°F — §=0.1
=1 L
z — §=02 10
107 ¢ — 6=05
= = 0
(O “~
E 10"
©
2 6
SR 1 _10}
2
w 10-8

) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes

Debusschere — SNL Forward UQ



Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations

10% : : : : ; 20 : : T
@ — 5=0.05 7 terms
S 10°F — §=0.1
=1 L
z — §=02 10
107 ¢ — 6=05
= = 0
(O “~
E 10"
©
2 6
SR 1 _10}
2
w 10-8

) . . . ) -2g . . . .
0 10 20 30 40 60 .0 0.2 0.4 0.6 0.8 1.0
Eigenvalue # X

e Large scale features can be resolved with small number of modes
e Smaller scale features require higher modes

Debusschere — SNL Forward UQ



Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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Challenges
0000000000000 00@00000000

1D Gaussian Process: Reconstructed realizations
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e Large scale features can be resolved with small number of modes
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Challenges
0000000000000 000O0000000

KL of 2D Gaussian Process

e 2D Gaussian Process with covariance:
Cov(x1, %) = exp(—||xi — xe[|?/6%)
o Realizations are smoother as covariance length § increases
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Challenges
0000000000000 0000e000000

2D KL - Modes for § = 0.1

N B

%80 02 o4 06 08 1 %30 02 04 06 08
X X
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Challenges
0000000000000 00000e00000

2D KL - Modes for § = 0.2
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Challenges
0000000000000 000000eO0000

2D KL - Modes for 6 = 0.
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Challenges
0000000000000 0000000e000

2D KL - eigenvalue spectrum

16 terms

1.0r7
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Challenges
0000000000000 00000000e00

2D KL - eigenvalue spectrum

4 terms 16 terms
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104 4

10° f| — §=0.1 4
— §=0.2
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Challenges
0000000000000 000000000e0

2D KL - eigenvalue spectrum

10° f| — §=0.1 4
— §=0.2
— =05

Eigenvalue Magnitude

0 20 40 60
Eigenvalue #
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Challenges
0000000000000 0000000000e

Other approaches

o Domain decomposition approaches with projection
¢ Inference-based approaches for PCEs
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Challenges
@000000

Sparse Quadrature Approaches for High-Dimensional Systems

o Need for sparse quadrature
e Sparse quadrature grids
o Application to surface reaction example

Debusschere — SNL Forward UQ



Challenges
O®@00000

Sparse quadrature drastically reduces the number of function evaluations

e Define the precision as the highest order of a polynomial that is
integrated exactly by the quadrature rule.
e Gaussian quadratures are optimal in 1d

e N points achieve the highest possible precision of 2N — 1.
e In multi-d, full product quadrature is wasteful:
e a5 ppd (point per dimension) rule is of precision P = 9,
but it integrates a polynomial x°y® exactly.
e Sparse grids are built to achieve maximal precision with fewest
possible points

Gauss-Hermite

+ + + * + + + - - M + +

+ + + * + + +

+ + + » + + +
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Challenges
0O0@0000

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 1, total 5
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Challenges
0O0@0000

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 2, total 13

T L T

Debusschere — SNL Forward UQ



Challenges
0O0@0000

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 3, total 29

ol
x

x

K X
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Challenges
0O0@0000

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 4, total 65

%
x
x

x x x
x
x
x

®Xx x X x x x x x x x X X X%

X
X
x

x x x
X
X
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Challenges
0O0@0000

Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 5, total 145

x
KXW
x

x x x x x x x
X
x
X
x x x
x
x
X
WUXXX X X X X X X X X X X X X X X X X X X XXXXK
x
X
x
x X X
X
x
X
x x x x x x x
x
x § X
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Challenges
0008000

The number of function evaluations is drastically reduced compared to full
quadrature

Table: The number of Clenshaw-Curtis sparse grid quadrature points for various levels
and dimensionalities.

Level Precision N N N N(d)
L p=2L—1 (d=2) (d=5) (d =10) General
1 1 1 1 1 1
2 3 5 11 21 1+2d
3 5 13 61 221 1+ 2d + 2d°
4 7 29 241 1581 1+ Fd+2d®+ 2d°
5 9 65 801 8801 1+ 0d+ 2P+ I + 2d°
6 i 145 2433 47265 -
7 13 321 6993 171425
8 15 705 19313 652065
z le+]
g z
g £ 1ess0
b e
g g oo
..qt; é le+20)
z z
! 10 20 30 »40 SO ) fx() 70 80 90 100 '/ 30 0 0 50 It
Dimensionality, d p—1 Dimensionality, d d
Sparse grid: polynomial growth, O(d 2 ) Full grid: exponential growth, (p + 1)
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Challenges
0O000e00

Surface Reaction Model

1.0
3 ODEs for a monomer (u), — |— v — v — u]
dimer (v), and inert species § o8
(w) adsorbing onto a surface B
out of gas phase. O o6
du ”
— = az-cu-4duv @
dt S 0.4
dv 2 =
— = 2bz° —4duv o
ddvtv B0
9 ez — fw &
7 = 1—U—v—w 0-05 200 4619ime [6]60 800 1000
u(0) = v(0) = w(0) =0.0 Oscillatory behavior for b € [20.2,21.2]

a=16 b=2075 ¢=004 d=10 e=036 f=0.016

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Challenges

[e]e]ee]e] Jo)

Surface Reaction Model: 6d results

PDF (v

e Output observable: time averaged u at steady state u

e Assume all input parameters have Gaussian distributions with
o/pn=0.01,i.e. 1% deviation.

e 6-d, level 3 Gauss-Hermite sparse quadrature point set includes 713
distinct points (a 2-d case is plotted)

e Output PDF is generated by 100K samples of a third order PC

e Variance-based sensitivity information comes for free with the PC
expansion
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Challenges
O00000e

Advantages and caveats of sparse quadrature approaches

e Pro: number of required samples scales much more gracefully with
number of dimensions than full tensor product quadrature rule
o Caveats:

e Function to be integrated needs to be smooth

o Due to negative quadrature weights, integrating a noisy positive function can
give a negative answer

e For very high dimensions, even sparse quadrature is too expensive
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Challenges

Taking Advantage of Sparsity in the System

For really high dimensional systems, even sparse quadrature requires
too many function evaluations

e For 80-dimensional climate land model, L = 4 requires = 10° points
Such systems can only be tackled with dimensionality reduction and/or
adaptive order

e Sensitivity analysis

¢ High Dimensional Model Representation (HDMR)

o Adaptive sparse quadrature approaches

More generally, use only the basis terms needed to represent the
physics / information in the system / data

e (Bayesian) Compressive Sensing (CS) approaches
If information content is sparse, it can be represented at reasonable cost
o If not, you need to pay the price
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Challenges

Challenges with Oscillatory / Long Time Horizon

¢ |ssue with oscillations / long time horizon
o Importance of choice of observables
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Challenges

Surface Reaction Model

1.0
3 ODEs for a monomer (u), — |— v — v — u]
dimer (v), and inert species § o8
(w) adsorbing onto a surface B
out of gas phase. O o6
du ”
— = az-cu-4duv @
dt S 0.4
dv 2 =
— = 2bz° —4duv o
ddvtv B0
9 ez — fw &
7 = 1—U—v—w 0.0 200 46‘?ime [6]60 800 1000
u(0) = v(0) = w(0) =0.0 Oscillatory behavior for b € [20.2,21.2]

a=16 b=2075 ¢=004 d=10 e=036 f=0.016

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Challenges
Limit Cycle Orbit in Phase Space, v vs u

0.12

0.1

0.08

0.06

0.04

0.02

0 . | . | . | . | .
0.1 0.15 0.2 0.25 0.3 0.35
u
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Challenges

4th-order Intrusive PC UQ

0.5
04 - g
03 r N
e Uncertain b
o Wiener- = 02 r 7
Hermite
PC /
e Mean and 0.1 r ]
+30 bounds
0.0 B
-0.1 : : :
0 500 1000

time
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Challenges

Growth of Phase Errors in Time

0.45

u
u-mean-sampled
04 F u-mean-PC ——

035

02

0.15

0.1

0.05

0 . . . . . . .
0 500 1000 1500 2000 2500 3000 3500 4000

time
e PC mean deviates away from the sampled-mean in time
e Large phase variances
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Challenges

Scatter in State Space

0.12

e Much better behaved
uncertainty in state ol
space

e Phase variances are 0.08
not of interest per se

e Knowledge of the
uncertainty in the
orbit details are more
of interest than the 0.02
detailed phase
variance errors o1 ons 02 025 03 03

0.06

0.04

Debusschere — SNL Forward UQ



Challenges

PC vs. Sampling Limit Cycle Orbit in Phase Space, v vs u

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Debusschere — SNL Forward UQ



Challenges

Surface Reaction Model: Uncertainty in Time Average of u

MW Mﬁ‘plﬂmﬂ\ﬂ M[M 4
(TRt /]m Il =
NI / I 2

JVAV/\V‘\V/,’W \VWW | LV/ MVMMM \V :{é% l a

e Variation of b leads to different qualitative behaviors
o Output observable: average over time of u at steady state: us
* Representative, e.g. of expected coverage in catalytic system

e Varied the parameter b by 10% around its nominal value
e Output PDF is generated by 100K samples of a 9-th order PC
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Challenges

Global PC expansions fail to cap multimodality

5
— Monte-Carlo with 10000 samples (true PDF)
— 10-th order PC built with 12 samples
4
~3
2
a
o2
1
0
0 0.1 0.2 0.3 0.4 0.5
u

¢ In principle, PC-based uncertainty propagation requires much fewer
function evaluation.

e However, the accuracy of the PC expansion needs to be properly
estimated.

e E.g., multimodal variables are not well-captured, even with a high PC
order.
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Challenges

main Decomposition Approaches to Handle Nonlinearities

A PCE is essentially a polynomial approximation of a random variable as
a function in stochastic space

Global PCEs fail to represent very non-linear functions over large
domains

o E.g. Gibbs oscillations around discontinuities

e As order increases, more oscillations
Piecewise representations can alleviate this

e Lower order approximations over subsections of stochastic domain
e Continuity of representation across subdomain boundaries is not required

e Boundary is area of zero measure
e Allows easy representation of discontinuities

Application: intrusive UQ in thermal ignition model
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Challenges
UQ in constant-pressure ignition

M reactions in N species, with mass fractions Y;:

dy; wi

ar _ i—1.... N
dt p: / ) )
a7 _ wr

dt pCp

with wr = — SN hiw; and wi = S, v R

Example: CH4 + 20, — CO; + 2H,0
Stoichiometric coefficients: vy = {—1,-2,1,2}
Reaction rate of progress: Rk = [CH4][O2]? Ax T ke Ex/T

¢ Quantify reaction-rate pre-exponential (Ax) uncertainty with multiplicative
factor Fy :

P (& < Ak < FkAk) =0.95
F
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Challenges

Large activation energy (Ex) exponentials lead to very fast changes in species
concentrations and temperature

3000
E=0-50K —
2500 - 1
e Methane-air ignition — 3
Global single-step g 2000 - ]
. . . Q
irreversible mechanism £
)
e Initial 7 = 800K g 1500 7
. . . L
o Stoichiometric =
1000 | 1
e p =1 atm (constant) J
500 b e e e e
107°10™ 10" 10™ 10 10° 107 107 10" 10°
time (sec)
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Challenges

Increased Ex leads to higher peak dT /dt and higher consequence of small

uncertainties in reaction rate constants

Debusschere — SNL Forward UQ

o A = Ac(€), 1-D Wiener-Hermite
e PC UQ captures sampled stochastic behavior at low Ex
e with miniscule uncertainty in Ax (F = 1.00002, COV=10-%).

o Unphysical effects observed at high activation energy

E=20K E=40K
0.040 : 15
_ —— 4"order WH PC _ —— 4"—order WH PC
X —— 1000 Samples X —— 1000 Samples
= =]
S 0030 + 1 S
E E
it % 10| 1
a a
e e
< <
g 0020 | 1 E
@ @
o o
E 3 5r 1
< <
g 0010 - 1 g
£ =
o (5
& E
0.000 g 0 . .
107 107 10° 107 10° 0.212 0.214 0.216 0.218
time (sec) time (msec)



Challenges
Errors increase for realistic Ex

E=50K
300
R —— 4"_order WH PC
¥ 9250 - —— 1000 Samples 4
e Ex=50K g —— 5"_order WH PC
e F = 1.00002 g ——— 6"—order WH PC
= 200 - b
e Max T-stdv ~ A
300K ]
g
o Non-zero g 150 |- 1
uncertainty in T &
(0]
for t — oo £ 100 - |
e Increased PC §
order does not g
resolve the & 50 i
problem
0

86.56 86.58 86.60
time (msec)
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Challenges

Increasing Ax COV towards minimally-practical levels leads to failed time
integration

E=50K 1000 samples, F=2.0
500 3000 : : !
= —— F=1.00002
¥ —— F=1.00003
5 40T —— F=100004| ] 2500
E
g g
2 300 ¢ S 2000
g E
g g
> 2
% 200 | £ 1500
2 5
=1 =
g
£ 100 | 1000
B
0 . : 500 . . .
86.56 86.58 86.60 0.00 0.05 0.10 0.15 0.20
time (msec) time (sec)

e Unrealistic to expect a WH PC expansion in 1D to capture
expected PDFs at realistic reaction-rate parametric uncertainties

e Need increased dimensionality of the PCEs, using multiple £’s for each
uncertain parameter, for increased accuracy and stability
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Challenges

tification with Multiwavelets

e An uncertain field quantity u(x, t, ) is expressed using PC

P

=3 Ul V(G )

k=0

e Introduce ¢; = p(&;): CDF of &, where ¢; is on [0,1]

u = g(&,....&n) =G, )
e Represent f(¢) using N-D multiwavelets (Alpert, 1993)

Q
> (X, )W (G- 5 CN)
Ae-Maitre, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)
Le Maitre, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)
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Challenges
Haar-Wavelets

Haar scaling functions

¢W(y)—{1’ 0=y <l

0 otherwise

Scaled Haar functions, scaling factor j, and sliding factor k:
$(y) = 226" (2y — k)

Haar function (mother wavelet)

] ] 1, 0<y<jy,
V() = soto(y)-—7sota(y) = { -1, z<y <1,
v2 v2 0, otherwise.

Wavelet family

W(y) =222y — k), j=0,1,...andk=0,...,2 —1

Debusschere — SNL Forward UQ



Challenges
Wiener-Haar Construction

The set of 9" (y) is an orthonormal system

Any function f € L2(]0, 1]) can be arbitrarily well approximated by the sum of
its mean and a finite linear combination of the /().

The wavelet set W (£(0)) = ¥/'k(p(€)) forms a basis for the space of L?
random processes.

oo 2/—1
X(€0) =Xo+ > > Xk(p(€)) = ZXA Wi (£(0))
Jj=0 k=0
Multidimensional {&1, &, ..., én},
N
w =[] W (&)

k=1
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Challenges

Multidimensional Multiwavelet Construction

e Wiener-Haar PC able to represent uncertainty in systems exhibiting
bifurcations depending on parameter values

e Poor convergence relative to PC constructions with smooth global
bases on smooth functions

e Use multiwavelet construction (Alpert, 1993) employing higher order
polynomials instead of the Haar-functions

e For efficient multidimensional construction, use

e Block-decomposition of the stochastic space
e A local MW construction on each block employing

o Scaled Legendre polynomials on [0, 1]
o First level Multiwavelet details

e Adaptive resolution in each dimension on each block
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Challenges
Block decomposition in a 2D parametric space

1

0.8

0.6
Xg

L1 0.4

0.2

0

0 02 04 06 08 1

X7
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Challenges
Computational Advantages with MRA UQ

e Adaptive partitioning allows optimal combinations of
resolution and order

e over space-time
e UQ problem can be done separately on each sub-domain
e This can be done

e intrusively or
e non-intrusively

on each sub-domain
e Presents advantages in a massively parallel context
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Challenges

Multi-Wavelet Representation of Model Problem Gaussian IC

e IC Uy=0.2,
Uy =0.1

e No: MW order

e N:: MRA
resolution

e Local
representation
using low-order
polynomial
Multi-Wavelets

e Increased N,
leads to faster
convergence to
exact solution with
increasing N;

06 L L L 0. L L L
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

CDF. CDF.
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Challenges
Adaptive Partition of the Random Parameter Space

For multiple stochastic dimensions, the computational cost of the MW
spectral products can become prohibitive

Use adaptive partitioning of the space of random parameters

On each sub-domain define a local scaled random basis

Construct a local MW expansion with up-to only 1%'-level details
o Local Wiener-Legendre projection of order Ny, plus 1D details

Combine local block-statistics to arrive at global statistics
Adaptively refine block decomposition in each stoch dimension

e Use 1D details variance to guide refinement in each dimension
Le Maitre et al. J. Comp. Phys., 197:502-531 (2004)
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Challenges

Generate ignition “data" using a detailed model+noise

e Ignition using a detailed
chemical model for methane-air 1
chemistry

e Ignition time versus Initial
Temperature

GRI

iplicati i | GRI:+noise
o Multiplicative noise error model ol nots

e 11 data points:

Ignition time (sec)

d = l;g?'(1+ae,-)
e ~ N(0,1)

El . | | |
1000 1100 1200 1300
Initial Temperature (K)
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Challenges
Fitting with a simple chemical model

361 ]

34

¢ Fit a global single-step E32)
irreversible chemical model 30
28

CH4 + 20, — CO» + 2H>0 1081

R = [CH4][O2]ks o
S
ki = Aexp(—E/R°T) " osk

o Infer 3-D parameter vector
(INA/InE,Ino)

e Good mixing with adaptive
MCMC when start at MLE

Inc

| IR B
4000 6000 8000 10000
Chain Step

!
2000
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— GRI

=—= GRI+noise
Fit Model

Ignition time (sec)

|
1200

Initial Temperature (K)

Nominal fit model is consistent

with the true model




Correlation Slope x and Chemical Ignition

0.25

<
)

Mass Fraction

0.15

Means
| : 3000
T 4
—2500
)
co, £
2000 §
£
H,0 b 8
— 1500
1000

I
0.5
Time (sec)

=4
=3
=N

Challenges

Standard Deviations

Mass Fraction
s o o o
8 8 2 3
T T T T

o
o
T

" 400

|
)
=)
1S3

|
)
=
S

|
1)
3

(9.46

1
0464 0.466 0.468
Time (sec)

0.462

o 4" Order Multiwavelet PC, Multiblock, Adaptive
® o7 max ~ 400 K during ignition transient, x ~ 0.03
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Challenges

Time evolution of Temperature PDFs in preheat stage

MC MW
0.15F T T T T = 0.15F T T T T =
t=0.455 sec t=0.455 sec
z 2
z 0.1F -1z 01f -
g 0.459 sec 5 0.459 sec
[a] [a]
2 z 1
£ £
g g
£ 005 0.462 sec 1 £005- 0.462 sec 7
0.464 sec | t 0.464 sec |
A I | h |
1%00 1400 1500 1600 1%00 1400 1500 1600
Temperature (K) Temperature (K)

e Similar results from MC (20K samples) and MW PC
e Increased uncertainty, and long high—T PDF tails, in time
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Challenges

Evolution of Temp. PDF — Fast Ignition Transient

MC MW
T T T T T T T T T T T
?)‘?)21 [ t=0.4642 sec ] ((;A(())zl [ j\ t=0.4642 sec
)| I R /B N B A R O P R B oL . I . I . I
S | . | . | — S | . | . | 2
0' o1l 0.4660 sec 1 04 o1k 0.4660 sec 1
0 L - L - ] 0 L . [ |
T T T T T T T T : . : . : .
.02 - - .02~ -
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e Transition from unimodal to bimodal PDFs
o Leakage of probability mass from pre-heat PDF high—T talil
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Challenges

Time evolution of Temperature PDFs for different y
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e Bimodal solution PDFs for high uncertainty growth
e Unimodal for low uncertainty growth, with y ~ 0.044
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Challenges

Data Decomposition Approaches to Handle Multi-Modalities

o Alternative approach when faced with samples of multi-modal random
variables

e Separate data into multiple sets that are easier to represent
e Represent each with global PCE
e Overall results is a PC mixture model

e Generalization of Gaussian mixture models

e Application: Karhunen-Loéve applied to output state of Schlégl model
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Challenges

Schldgl Model is a prototype bistable model

a
e Reactiong 1 2x <:>1 3X
a
as
B—X

ay

e Propensities
ay = kAX(X —1)/2,
ap = ng(X— 1)(X— 2)/6,

as = k3B,
as = kg X.
e Nominal parameters
KA 0.03
ko 0.0001
k3B =X 200
ky 3.5
A 10°
B 2.10°
X(0) 250
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Challenges

Polynomial Chaos expansion represents any random variable as a polynomial
of a standard random variable

e Truncated PCE: finite dimension n and order p

P
X(6) =~ ckWi(n)

k=0

with the number of terms P+ 1 = (’m)!.

e n=(n,--,nn) standard i.i.d. r.v.
WV, standard orthogonal polynomials
¢k spectral modes.

e Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]

Debusschere — SNL Forward UQ



Challenges
Galerkin Projection is typically needed

PC expansion: X(8) ~ SF_, cVi(n) = gn(n)

jection: ¢, = X(O)vkm)
Orthogonal projection: ¢x = wzm)

e Intrusive Spectral Projection (ISP)

* Direct projection of governing equations
* Leads to deterministic equations for PC coefficients
« No explicit governing equation for SRNs

e Non-intrusive Spectral Projection (NISP)

* Sampling based
* No explicit evolution equation for X needed
« Galerkin projection not well-defined for SRNs

Debusschere — SNL Forward UQ



Challenges

Karhunen-Loeve decomposition reduces stochastic process to a finite number
of random variables

e KL decomposition:

X(,0) = X(t) + > &a(0)VAnfa(1)
n=1
e Uncorrelated, zero-mean KL variables:
(&n) =0, (€n€m) = dnm

e SSA(continuum) <— KL(discrete)

X(t)(—)£:(§1,€2,)

T —
o A
o ; k
o —~ < 4 3
< g
E -
5 0 4 3 i
3 H
g 5 ok ] L
o =
2
\\\\\ L A “r
C S 1 o ] 5
Time, t n g
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Challenges

K-L decomposition captures each realization

KL decomposition with 2 modes KL decomposition with 5 modes KL decomposition with 10 modes

600

sa0

S w0
3

> 500

200

100

KL decomposition with 100 modes SSA Realizations

15 2 ]l 6 s

10
Time, t

10
Time, t
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Challenges
K-L decomposition captures each realization

700
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Challenges

PC expansion of a random vector

P
£=) cxVi(n)
k=0

Galerkin projection

(€Vk(m))
(Wi(m)

is not well-defined,
since £ and n do not belong to the same stochastic space.

Cx =
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Challenges

PC expansion of a random vector

P
£=) cxVi(n)
k=0

Galerkin projection

(€Vk(m))
(Wi(m)

is not well-defined,
since £ and n do not belong to the same stochastic space.

Cx =

Need a map & < n.
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Challenges
Rosenblatt transformation

o Rosenblatt transformation maps any (not necessarily independent)
set of random variables (&1, . . ., &) to uniformi.i.d.s {ni}];
(Rosenblatt, 1952).

m = Fi(&)

2 = Fp(&lé)

s = Fap,1(&sl€2,61)

Nn = Fn\n71 ..... 1(€n|§n—17--~7§1)

e Inverse Rosenblatt transformation ¢ = R~'(n) ensures a
well-defined quadrature integration

(EV(n / R n)dn
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Challenges

KL+PC+Data Partitioning represent the dynamics of a bimodal process

6 : 6 "KL projected data
A Mixture PC data

Time, t

10
Time, L
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Challenges

UQ in Systems with Inherent Stochastic Noise

e Some systems have intrinsic uncertainty

o Stochastic reaction networks
e Macroscale quantities extracted from atomistic methods with sampling

e Galerkin projection is challenged by such systems

* No deterministic governing equation for intrusive UQ
e Quadrature methods, especially sparse methods, are challenged by noise in
function evaluations

e Use Bayesian regression to infer PC coefficients
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Summary
Summary

e Polynomial Chaos Expansions offer a convenient way to represent
random variables

e Both intrusive and non-intrusive approaches are available to propagate
uncertain model inputs to its outputs

o While conceptually straightforward, many challenges remain in terms of
efficiency and accuracy
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