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The Goals of this lecture

• Provide broad introduction to Polynomial Chaos-based forward UQ
• Propagate uncertainties from inputs to model prediction
• Only parametric uncertainties covered here, no model uncertainty

• What you should take away from this lecture
• An understanding of Polynomial Chaos expansions to represent random

variables
• An understanding of intrusive and non-intrusive uncertainty propagation

methods
• An appreciation for some of the challenges and associated mitigation

approaches in forward UQ

• While this overview is broad, it is definitely not exhaustive

Debusschere – SNL Forward UQ
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Polynomial Chaos Expansions (PCEs)

• Representation of random variables with PCEs
• Convergence
• Galerkin projection
• Basis types

Debusschere – SNL Forward UQ
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One-Dimensional Hermite Polynomials

ψ0(x) = 1

ψk (x) = (−1)k ex2/2 dk

dxk e−x2/2, k = 1, 2, . . .

ψ1(x) = x , ψ2(x) = x2 − 1, ψ3(x) = x3 − 3x , . . .

The Hermite polynomials form an orthogonal basis over [−∞,∞] with
respect to the inner product

〈ψiψj〉 ≡
1√
2π

∫ ∞
−∞

ψi (x)ψj (x)w(x)dx = δij

〈
ψ2

i

〉
where w(x) is the weight function

w(x) = e−x2/2

Note that e−x2/2
√

2π
is the density of a standard normal random variable
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One Dimensional Polynomial Chaos Expansion

Consider:

u =
P∑

k=0

ukψk (ξ)

• u: Random Variable (RV)
represented with 1D PCE

• uk : PC coefficients (deterministic)
• ψk : 1D Hermite polynomial of

order k
• ξ: Gaussian RV
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u = 0.5 + 0.2ψ1(ξ) + 0.1ψ2(ξ)

A random quantity is represented with an expansion consisting of functions of
random variables multiplied with deterministic coefficients
• Set of deterministic PC coefficients fully describes RV
• Separates randomness from deterministic dimensions
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Multidimensional Hermite Polynomials

The multidimensional Hermite polynomial Ψi (ξ1, . . . , ξn) is a tensor product of
the 1D Hermite polynomials, with a suitable multi-index αi = (αi

1, α
i
2, . . . , α

i
n),

Ψi (ξ1, . . . , ξn) =
n∏

k=1

ψαi
k
(ξk )

For example, 2D Hermite polynomials:

i p Ψi

0 0 1
1 1 ξ1

2 1 ξ2

3 2 ξ2
1 − 1

4 2 ξ1ξ2

5 2 ξ2
2 − 1

... ... ...
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Multidimensional Inner Products — Orthogonality

〈Ψi Ψj〉 ≡
∫
. . .

∫
Ψi (ξ)Ψj (ξ)g(ξ1)g(ξ2) · · · g(ξn)dξ1dξ2 · · · dξn

=
n∏

k=1

〈
ψαi

k
(ξk )ψ

α
j
k
(ξk )

〉
= δij

〈
Ψ2

i

〉
where, g(ξ) =

e−ξ
2/2

√
2π

such that,

u =
P∑

k=0

uk Ψk ⇒ 〈Ψiu〉 =
P∑

k=0

uk 〈Ψi Ψk 〉 = ui

〈
Ψ2

i

〉

⇒ ui =
〈uΨi〉〈

Ψ2
i

〉
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Multidimensional Polynomial Chaos Expansion

Consider:

u =
P∑

k=0

uk Ψk (ξ1, . . . , ξn)

• u: Random Variable (RV) represented with multi-D PCE
• uk : PC coefficients (deterministic)
• Ψk : Multi-D Hermite polynomials up to order p
• ξi : Gaussian RV
• n: Dimensionality of stochastic space
• P + 1: Number of PC terms: P + 1 = (n+p)!

n!p!

The number of stochastic dimensions represents the number of independent
inputs, degrees of freedom that affect the random variable u
• E.g. one stochastic dimension per uncertain model parameter
• Contributions from each uncertain input can be identified
• Compact representation of a random variable and its dependencies

Debusschere – SNL Forward UQ
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More Formally: Probability Spaces and Random Variables

• Let (Θ,S,P) be a probability space
• Θ is an event space
• S is a σ-algebra on Θ
• P is a probability measure on (Θ,S)

• Random variables are functions X : Θ→ R with a measure
corresponding to their image:
• if X−1(A) ∈ S, then define µ(A) = P(X−1(A)).
• p(x) = dµ/dx : the density of the random variable X (with respect to

Lebesgue measure on R).
• Expectation: 〈f 〉 =

∫
f dµ =

∫
f p(x) dx

• Let ξ : Θ→ RN such that for i = 1, . . . ,N each ξi : Θ→ R, be a set of
random variables

• S(ξ): σ-algebra generated by the set ξ of random variables
• L2(Θ,S(ξ),P): Hilbert space of real-valued random variables defined on

(Θ,S(ξ),P) with finite second moments

[Ernst et al. 2011]
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Convergence Theorem

A random variable u(θ) in L2(Θ,S(ξ),P) can be described by
a Polynomial Chaos (PC) expansion in terms of:
the infinite-dimensional i.i.d. Gaussian basis ξ = {ξi (θ)}∞i=1;

u(θ) = a0Γ0 +
∞∑

i1=1

ai1 Γ1(ξi1 (θ))

+
∞∑

i1=1

∞∑
i2=1

ai1 i2 Γ2(ξi1 (θ), ξi2 (θ))

+
∞∑

i1=1

∞∑
i2=1

∞∑
i3=1

ai1 i2 i3 Γ3(ξi1 (θ), ξi2 (θ), ξi3 (θ)) + . . .

where Γp is the Polynomial Chaos of order p, Γ0 = 1, and

Γp(ξi1 , . . . , ξip ) = (−1)pe
1
2 ξ

T ξ ∂p

∂ξi1 . . . ∂ξip
e−

1
2 ξ

T ξ
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Notes on the PC construction

• The Polynomial Chaoses are by construction orthogonal with
respect to the Gaussian probability measure
• They are thus identical with the corresponding multidimensional

Hermite Polynomials
• The first four PCs are given by

Γ0 = 1

Γ1(ξi ) = ξi

Γ2(ξi1 , ξi2 ) = ξi1ξi2 − δi1 i2

Γ3(ξi1 , ξi2 , ξi3 ) = ξi1ξi2ξi3 − ξi1δi2 i3 − ξi2δi1 i3 − ξi3δi1 i2

. . .

[R.G. Ghanem and P.D. Spanos, 1991]
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A more compact notation ... and finite dimensionality and order

• An L2 random variable u(x , t , θ) can be described by
a PC expansion in terms of:
• Hermite polynomials Ψk , k = 1, . . . ,∞;
• the associated infinite-dimensional Gaussian basis
{ξi (θ)}∞i=1;
• spectral mode strengths uk (x , t), k = 1, . . . ,∞.

• Truncated to finite dimension n and order p, the PC expansion for u
is written as

u(x , t , θ) '
P∑

k=0

uk (x , t)Ψk (ξ(θ))

where ξ(θ) = {ξ1(θ), · · · , ξn(θ)}, and P + 1 = (n+p)!
n!p!

Debusschere – SNL Forward UQ
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Generalized Polynomial Chaos

PC Type Domain Density w(ξ) Polynomial Free parameters

Gauss-Hermite (−∞,+∞) 1√
2π

e−
ξ2
2 Hermite none

Legendre-Uniform [−1, 1] 1
2 Legendre none

Gamma-Laguerre [0,+∞) xαe−ξ
Γ(α+1)

Laguerre α > −1

Beta-Jacobi [−1, 1] (1+ξ)α(1−ξ)β

2α+β+1B(α+1,β+1)
Jacobi α > −1, β > −1

Inner product: 〈ψiψj〉 ≡
∫ b

a ψi (ξ)ψj (ξ)w(ξ)dξ

• Wiener-Askey scheme provides a hierarchy of possible continuous PC
bases, see Xiu and Karniadakis, SISC, 2002.
• Legendre-Uniform PC is a special case of Beta-Jacobi PC
• Beta-Jacobi PC allows tailored accuracy of the PC representation across the

domain

• Input parameter domain often dictates the most convenient choice of PC
• Polynomials functions can also be tailored to be orthogonal w.r.t.

chosen, arbitrary density
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Postprocessing / Analysis

• Moments
• Plotting PDFs of RVs represented with PCEs
• When is a PCE accurate enough?

Debusschere – SNL Forward UQ
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Moments of RVs described with PCEs

u =
P∑

k=0

uk Ψk (ξ)

• Expectation: 〈u〉 = u0

• Variance σ2

σ2 =
〈

(u − 〈u〉)2
〉

=

〈
(

P∑
k=1

uk Ψk (ξ))2

〉

=

〈
P∑

k=1

P∑
j=1

ujuk Ψj (ξ)Ψk (ξ)

〉

=
P∑

k=1

P∑
j=1

ujuk 〈Ψj (ξ)Ψk (ξ)〉

=
P∑

k=1

u2
k

〈
Ψk (ξ)2

〉
Debusschere – SNL Forward UQ
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Plotting PDFs of RVs corresponding to PCEs

u =
P∑

k=0

uk Ψk (ξ)

• Analytical formula formula for PDF(u) exists
• Involves polynomial root finding, and is hard to generalize to multi-D

• PCE is cheap to sample
• Brute-force sampling and bin samples into histogram
• Use Kernel Density Estimation (KDE) to get smoother PDF with fewer

samples ui

PDF(u) =
1

Nsh

Ns∑
i=1

K
(

u − ui

h

)
K is the kernel, h is the bandwidth
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Comparison of histograms and KDE

Source Wikipedia, Drleft; licensed under the Creative Commons Attribution-ShareAlike 3.0 License

• Bandwidth h needs to be chosen carefully to avoid oversmoothing

Debusschere – SNL Forward UQ
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How do I know my PCE is converged?

• Approximation error in PCE is topic of a lot of research
• Rules of thumb:

• Higher order PC coefficients should decay
• Increase order until results no longer change
• Not always fail-proof ...

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

Propagation of Uncertain Inputs Represented with PCEs

• Galerkin projection approaches project uncertain quantity onto space
covered by PC basis functions
• Relying on orthogonality of basis functions

uk =
〈uΨk 〉〈

Ψ2
k

〉 , k = 0, . . . ,P

• Residual orthogonal to space of basis functions
• Two different approaches

• Intrusive: project governing equations
• Non-intrusive: project sampled model outpus

• Collocation approaches
• Match PCE to random variable at chosen sample points

Debusschere – SNL Forward UQ
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Intrusive Spectral Stochastic UQ Formulation: ODE Example

• Sample ODE with parameter λ:

du
dt

= λu

• Let λ be uncertain; introduce ξ ∼ N (0, 1).
• Express λ and u using PCEs in ξ:

λ =
P∑

k=0

λk Ψk (ξ), u(t) =
P∑

k=0

uk (t)Ψk (ξ)

• Substitute in ODE and apply a Galerkin projection on Ψi (ξ),

Debusschere – SNL Forward UQ
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Galerkin Projection on Ψi (ξ)

d
dt

(
P∑

k=0

uk (t)Ψk (ξ)

)
=

 P∑
p=0

λpΨp(ξ)

 P∑
q=0

uq(t)Ψq(ξ)


P∑

k=0

duk (t)
dt

Ψk (ξ) =
P∑

p=0

P∑
q=0

λpuq(t)Ψp(ξ)Ψq(ξ)

〈
P∑

k=0

duk (t)
dt

Ψk (ξ)Ψi (ξ)

〉
=

〈
P∑

p=0

P∑
q=0

λpuq(t)Ψp(ξ)Ψq(ξ)Ψi (ξ)

〉
P∑

k=0

duk (t)
dt

〈Ψk (ξ)Ψi (ξ)〉 =
P∑

p=0

P∑
q=0

λpuq(t) 〈Ψp(ξ)Ψq(ξ)Ψi (ξ)〉

dui

dt

〈
Ψ2

i

〉
=

P∑
p=0

P∑
q=0

λpuq 〈ΨpΨqΨi〉

Debusschere – SNL Forward UQ
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Resulting Spectral ODE system

• (P + 1)-dimensional ODE system

dui

dt
=

P∑
p=0

P∑
q=0

λpuqCpqi , i = 0, . . . ,P

where Cpqi = 〈ΨpΨqΨi〉 /
〈
Ψ2

i
〉

• The tensor Cpqi can be evaluated once and stored for any given PC
order and dimension
• This tensor is sparse, i.e. many elements are zero

Debusschere – SNL Forward UQ
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1D 4th-Order Cijk Example : Hermite polynomials

〈Ψi Ψj Ψk 〉 value
〈Ψ0Ψ0Ψ0〉 1
〈Ψ0Ψ1Ψ1〉 1
〈Ψ0Ψ2Ψ2〉 2
〈Ψ0Ψ3Ψ3〉 6
〈Ψ0Ψ4Ψ4〉 24
〈Ψ1Ψ1Ψ2〉 2
〈Ψ1Ψ2Ψ3〉 6
〈Ψ1Ψ3Ψ4〉 24
〈Ψ2Ψ2Ψ2〉 8
〈Ψ2Ψ2Ψ4〉 24
〈Ψ2Ψ3Ψ3〉 36
〈Ψ2Ψ4Ψ4〉 192
〈Ψ3Ψ3Ψ4〉 216
〈Ψ4Ψ4Ψ4〉 1728

k
〈
Ψ2

k
〉

0 1
1 1
2 2
3 6
4 24

• Cijk = 〈Ψi Ψj Ψk 〉 /
〈
Ψ2

k
〉

• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported
〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL Forward UQ
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1D 4th-Order Cijk Example : Legendre polynomials

〈Ψi Ψj Ψk 〉 value
〈Ψ0Ψ0Ψ0〉 1
〈Ψ0Ψ1Ψ1〉 1/3
〈Ψ0Ψ2Ψ2〉 1/5
〈Ψ0Ψ3Ψ3〉 1/7
〈Ψ0Ψ4Ψ4〉 1/9
〈Ψ1Ψ1Ψ2〉 2/15
〈Ψ1Ψ2Ψ3〉 3/35
〈Ψ1Ψ3Ψ4〉 4/63
〈Ψ2Ψ2Ψ2〉 2/35
〈Ψ2Ψ2Ψ4〉 2/35
〈Ψ2Ψ3Ψ3〉 4/105
〈Ψ2Ψ4Ψ4〉 ≈0.029
〈Ψ3Ψ3Ψ4〉 ≈0.026
〈Ψ4Ψ4Ψ4〉 ≈0.018

k
〈
Ψ2

k
〉

0 1
1 1/3
2 1/5
3 1/7
4 1/9

• Cijk = 〈Ψi Ψj Ψk 〉 /
〈
Ψ2

k
〉

• and,

〈Ψi Ψj Ψk 〉 = 〈Ψi Ψk Ψj〉 =

〈Ψj Ψi Ψk 〉 = 〈Ψj Ψk Ψi〉 =

〈Ψk Ψi Ψj〉 = 〈Ψk Ψj Ψi〉

• with other not-reported
〈Ψi Ψj Ψk 〉 zero

Debusschere – SNL Forward UQ
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Pseudo-Spectral Construction–1

w = λu2v , u =
P∑

k=0

uk Ψk , similarly for λ & v

Spectral:

wi =
〈
λu2v

〉
i

=
P∑

j=0

P∑
k=0

P∑
l=0

P∑
m=0

λjuk ulvm 〈Ψj Ψk Ψl Ψm〉i , i = 0, . . . ,P

• The corresponding tensor of basis product expectations becomes too
large to pre-compute and store

Pseudo-Spectral: Project each PC product onto a (P + 1)-polynomial before
proceeding further, thus:

Debusschere – SNL Forward UQ
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Pseudo-Spectral Construction–2

w̃ = uv : w̃i = 〈uv〉i =
P∑

j=0

P∑
k=0

uk vj 〈Ψk Ψj〉i , i = 0, . . . ,P

ŵ = uw̃ : ŵi = 〈uw̃〉i =
P∑

j=0

P∑
k=0

uk w̃j 〈Ψk Ψj〉i , i = 0, . . . ,P

w = λŵ : wi = 〈λŵ〉i =
P∑

j=0

P∑
k=0

λk ŵj 〈Ψk Ψj〉i , i = 0, . . . ,P

• Aliasing errors
• Efficiency, and convenience

[Debusschere et al., SIAM J. Sci. Comp., 2005.]
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Intrusive propagation through non-polynomial functions

Addition, subtraction, and product allow (pseudo-)spectral evaluation of all
polynomial functions

How to propagate PC expansions ({uk} ⇒ {vk}) through transcendental
functions

v =
1
u
, v = ln u, or v = eu

• Use local polynomial approximations, e.g. Taylor series
• E.g. eu = 1 + u

1!
+ u2

2!
+ u3

3!
+ . . .

• Issues:
• Convergence issues
• High-order PC multiplications lead to aliasing
• Instabilities

• Write system of equations for output
• Integration approach
• Borchardt-Gauss Algorithm: Arithmetic-Geometric Mean (AGM) series

[Debusschere et al., SISC 2005, McKale, Texas Tech, M.S. Thesis, 2011]
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Inversion and division can be done without Taylor series

• Assume three stochastic variables u, v, and w

w =
u
v
⇒ vw = u

• Mode k of the stochastic product

〈vw〉k =
P∑

m=0

P∑
l=0

Cklmvl · wm = uk

• System of P + 1 linear algebraic equations in wm with known uk and vl ,

Vkm =
P∑

l=0

Cklmvl , Vw = u

• More robust than Taylor series expansion for 1/u
• What about the condition number of V ?

Debusschere – SNL Forward UQ
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Integration approach for non-polynomial functions

• Consider the ODE du
dx = u, with solution u = ex

• ex can be obtained from

du = udx ⇒ ex − exo =

∫ x

xo

u dx

• Similarly for e−x2
, and ln(x)

e−x2
− e−x2

o =

∫ x

xo

−2xu dx , ln(x)− ln(xo) =

∫ x

xo

dx
x

• Agrees well with directly sampled pdf if PC order is high enough to
resolve pdf of solution

Debusschere – SNL Forward UQ
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A More General Integration approach for irrational functions

• To evaluate u(x), x =
∑P

k=0 xk Ψk , u =
∑P

k=0 uk Ψk ,
• use a deterministic IC xa such that u(xa) is known
• express u̇ = du/dx = f (u, x);

... require: f is a rational function

... ensures that (u̇)k are found from the uk and xk coeffs
• evaluate the integral:

uk (xb)− uk (xa) =
P∑

j=0

∫ (xb)j

(xa)j

P∑
i=0

Cijk (u̇)i dxj

• ok for ex , ex2
, and ln(x), with u̇ = u, 2xu, and 1/x resp.

• but not for esin x , with u̇ = u cos x

• CPU-intensive, only slightly more robust than Taylor series

Debusschere – SNL Forward UQ
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Pseudo-spectral overloading of operations

• Construction allows for a general representation using pseudo-spectral
(PS) overloaded operations.
• E.g. multiplication operation ’∗’

w = λ ∗ u ∗ u ∗ v

• Each deterministic function multiplication is transformed into a
corresponding polynomial chaos product

• Potential meta-code: take a general deterministic code function F (u),
produce a pseudo-spectral stochastic function F̃ (ũ)

• Possibility of transforming legacy deterministic code into corresponding
pseudo-spectral stochastic code.

• UQToolkit: contains library of utilities for operations on random variables
represented with PCEs

Debusschere – SNL Forward UQ
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Uncertainty Quantification Toolkit (UQTk)

• A library of C++ and Matlab functions for propagation of uncertainty
through computational models

• Mainly relies on spectral Polynomial Chaos Expansions (PCEs) for
representing random variables and stochastic processes

• Target usage:
• Rapid prototyping
• Algorithmic research
• Tutorials / Educational

• Version 1.0 released under the GNU Lesser General Public License
• Downloadable from http://www.sandia.gov/UQToolkit/

Debusschere – SNL Forward UQ
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UQTk contents and development/release plans

• Currently released (http://www.sandia.gov/UQToolkit/)
• C++ Tools for intrusive UQ with PCEs

• Under production, planned release Fall 2012
• C++ Tools for non-intrusive UQ
• Matlab tools for intrusive and non-intrusive UQ
• Karhunen-Loève decomposition
• Bayesian inference tools
• Many more examples and documentation

• Under development
• Adding support for multiwavelet based stochastic domain decompositions
• Support for arbitrary basis types

Debusschere – SNL Forward UQ

http://www.sandia.gov/UQToolkit/


Introduction PCES Forward UQ Sensitivity Challenges Summary References

PCEs in the UQToolkit

// Initialize PC class
int ord = 5; // Order of PCE
int dim = 1; // Number of uncertain parameters
PCSet myPCSet("ISP",ord,dim,"LU"); // Legendre-Uniform PCEs

// Initialize PC class
int ord = 5; // Order of PCE
int dim = 1; // Number of uncertain parameters
PCSet myPCSet("NISP",ord,dim,"LU"); // Legendre-Uniform PCEs

• Currently support Wiener-Hermite, Legendre-Uniform, and
Gamma-Laguerre (limited), Jacobi-Beta (development version)

• PCSet class initializes PC basis type and pre-computes information
needed for working with PC expansions

Debusschere – SNL Forward UQ
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Operations on PCEs in the UQToolkit

// PC coefficients in double*
double* a = new double[npc];
double* b = new double[npc];
double* c = new double[npc];

// Initialization
a[0] = 2.0;
a[1] = 0.1;
...
// Perform some arithmetic
myPCSet.Subtract(a,b,c);
myPCSet.Prod(a,b,c);
myPCSet.Exp(a,c);
myPCSet.Log(a,c);

// PC coefficients in Arrays
Array1D<double> aa(npc,0.e0);
Array1D<double> ab(npc,0.e0);
Array1D<double> ac(npc,0.e0);

// Initialization
aa(0) = 2.0;
aa(1) = 0.1;
...
// Perform arithmetic
myPCSet.Subtract(aa,ab,ac);
myPCSet.Prod(aa,ab,ac);
myPCSet.Exp(aa,ac);
myPCSet.Log(aa,ac);

• PC coefficients are either stored in double* vectors or in more
advanced custom Array1D<double> classes

• Functions can take either data type as argument
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Surface Reaction Model

3 ODEs for a monomer (u),
dimer (v ), and inert species
(w) adsorbing onto a surface
out of gas phase.

du
dt

= az − cu − 4duv

dv
dt

= 2bz2 − 4duv

dw
dt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016
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Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model: Intrusive Spectral Propagation (ISP) of Uncertainty

• Assume PCE for uncertain parameter b and for the output variables,
u, v ,w

• Substitute PCEs into the governing equations
• Project the governing equations onto the PC basis functions

• Multiply with Ψk and take the expectation

• Apply pseudo-spectral approximations where necessary
• UQTk elementary operations
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Surface Reaction Model: Specify PCEs for inputs and outputs

Represent uncertain inputs with PCEs with known coefficients:

b =
P∑

i=0

bi Ψi (ξ)

Represent all uncertain variables with PCEs with unknown coefficients:

u =
P∑

i=0

ui Ψi (ξ) v =
P∑

i=0

vi Ψi (ξ) w =
P∑

i=0

wi Ψi (ξ) z =
P∑

i=0

zi Ψi (ξ)
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Surface Reaction Model: Substitute PCEs into governing equations and
project onto basis functions

du
dt

= az − cu − 4duv

d
dt

P∑
i=0

ui Ψi = a
P∑

i=0

zi Ψi − c
P∑

i=0

ui Ψi − 4d
P∑

i=0

ui Ψi

P∑
j=0

vj Ψj

〈
Ψk

d
dt

P∑
i=0

ui Ψi

〉
=

〈
aΨk

P∑
i=0

zi Ψi

〉
−

〈
cΨk

P∑
i=0

ui Ψi

〉

−

〈
4dΨk

P∑
i=0

ui Ψi

P∑
j=0

vj Ψj

〉
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Surface Reaction Model: Reorganize terms

d
dt

uk

〈
Ψ2

k

〉
= azk

〈
Ψ2

k

〉
− cuk

〈
Ψ2

k

〉
− 4d

P∑
i=0

P∑
j=0

uivj 〈Ψi Ψj Ψk 〉

d
dt

uk = azk − cuk − 4d
P∑

i=0

P∑
j=0

uivj
〈Ψi Ψj Ψk 〉〈

Ψ2
k

〉
d
dt

uk = azk − cuk − 4d
P∑

i=0

P∑
j=0

uivjCijk

• Triple products Cijk =
〈Ψi Ψj Ψk〉
〈Ψ2

k〉
can be pre-computed and stored for

repeated use
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Surface Reaction Model: Substitute PCEs into governing equations and
project onto basis functions

dv
dt

= 2bz2 − 4duv

d
dt

P∑
i=0

vi Ψi = 2
P∑

h=0

bhΨh

P∑
i=0

zi Ψi

P∑
j=0

zj Ψj − 4d
P∑

i=0

ui Ψi

P∑
j=0

vj Ψj

〈
Ψk

d
dt

P∑
i=0

vi Ψi

〉
=

〈
2Ψk

P∑
h=0

bhΨh

P∑
i=0

zi Ψi

P∑
j=0

zj Ψj

〉

−

〈
4dΨk

P∑
i=0

ui Ψi

P∑
j=0

vj Ψj

〉
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Surface Reaction Model: Reorganize terms

d
dt

vk

〈
Ψ2

k

〉
= 2

P∑
h=0

P∑
i=0

P∑
j=0

bhzizj 〈ΨhΨi Ψj Ψk 〉 − 4d
P∑

i=0

P∑
j=0

uivj 〈Ψi Ψj Ψk 〉

d
dt

vk = 2
P∑

h=0

P∑
i=0

P∑
j=0

bhzizj
〈ΨhΨi Ψj Ψk 〉〈

Ψ2
k

〉 − 4d
P∑

i=0

P∑
j=0

uivj
〈Ψi Ψj Ψk 〉〈

Ψ2
k

〉
d
dt

vk = 2
P∑

h=0

P∑
i=0

P∑
j=0

bhzizjDhijk − 4d
P∑

i=0

P∑
j=0

uivjCijk

• Pre-computing and storing the quad product Dhijk becomes cumbersome
• Use pseudo-spectral approach instead
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Surface Reaction Model: Pseudo-Spectral approach for products

• Introduce auxiliary variable g = z2

g = z2

f = 2bz2 = 2bg

gk =
P∑

i=0

P∑
j=0

zizjCijk

fk = 2
P∑

i=0

P∑
j=0

bigjCijk

• Limits the complexity of computing product terms
• Higher products can be computed by repeated use of the same binary

product rule

• Does introduce errors if order of PCE is not large enough
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Surface Reaction Model: UQTk implementation

// Build du/dt = a*z - c*u - 4.0*d*u*v
aPCSet.Multiply(z,a,dummy1); // dummy1 = a*z
aPCSet.Multiply(u,c,dummy2); // dummy2 = c*u
aPCSet.SubtractInPlace(dummy1,dummy2); // dummy1 = a*z - c*u
aPCSet.Prod(u,v,dummy2); // dummy2 = u*v
aPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*v
aPCSet.Subtract(dummy1,dummy2,dudt); // dudt = a*z - c*u - 4.0*d*u*v

• All operations are replaced with their equivalent intrusive UQ
counterparts

• Results in a set of coupled ODEs for the PC coefficients
• u, v ,w , z represent vector of PC coefficients

• This set of equations is integrated to get the evolution of the PC
coefficients in time
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Surface Reaction Model: Second equation implementation

// Build dv/dt = 2.0*b*z*z - 4.0*d*u*v
aPCSet.Prod(z,z,dummy1); // dummy1 = z*z
aPCSet.Prod(dummy1,b,dummy2); // dummy2 = b*z*z
aPCSet.Multiply(dummy2,2.e0,dummy1); // dummy1 = 2.0*b*z*z
aPCSet.Prod(u,v,dummy2); // dummy2 = u*v
aPCSet.MultiplyInPlace(dummy2,4.e0*d); // dummy2 = 4.0*d*u*v
aPCSet.Subtract(dummy1,dummy2,dvdt); // dvdt = 2.0*b*z*z - 4.0*d*u*v

// Build dw/dt = e*z - f*w
aPCSet.Multiply(z,e,dummy1); // dummy1 = e*z
aPCSet.Multiply(w,f,dummy2); // dummy2 = f*w
aPCSet.Subtract(dummy1,dummy2,dwdt); // dwdt = e*z - f*w

• Dummy variables used where needed to build the terms in the equations
• Data structure is currently being enhanced to provide the operation

result as the function return value
• Will allow more elegant inline replacement of operators with their stochastic

counterparts
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Surface Reaction Model: ISP results
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• Assume 0.5% uncertainty in b around nominal value
• Legendre-Uniform intrusive PC
• Mean and standard deviation for u, v , and w
• Uncertainty grows in time
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Surface Reaction Model: ISP results
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• Modes of u
• Modes decay with higher order
• Amplitudes of oscillations of higher order modes grow in time
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Surface Reaction Model: ISP results: PDFs
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• Pdfs of u at maximum mean (left) and maximum standard deviation
(right)

• Distributions get broader and multimodal as time increases
• Effect of accumulating uncertainty in phase of oscillation
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Spectral UQ: Incompressible Flow - Stochastic Projection Method

• (P + 1) Galerkin-Projected Mom./Cont. Eqns, q = 0, . . . ,P:

∂vq

∂t
+∇ · 〈vv〉q = −∇pq +

1
Re
∇ ·
〈
µ[(∇v) + (∇v)T ]

〉
q

∇ · vq = 0

• Projection: for q = 0, . . . ,P :

ṽq − vn
q

∆t
= Cn

q + Dn
q

∇2pq = − 1
∆t
∇ · ṽq

vn+1
q − ṽq

∆t
= −∇pq

• P + 1 decoupled Poisson Eqns for the pressure modes

[Le Maître et al., J. Comp. Phys., 2001.]
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Laminar 2D Channel Flow with Uncertain Viscosity

• Incompressible flow
• Gaussian viscosity PDF

• ν = ν0 + ν1ξ

• Streamwise velocity

• v =
P∑

i=0

vi Ψi

• v0: mean
• vi : i-th order mode

• σ2 =
P∑

i=1

v2
i

〈
Ψ2

i

〉
v0 v1 v2 v3 sd

v0 v1 v2 v3 σ
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Non-Intrusive propagation of uncertainty - Projection

Galerkin Projection

uk =
〈uΨk 〉〈

Ψ2
k

〉 =
1〈

Ψ2
k

〉 ∫ uΨk (ξ)w(ξ)dξ, k = 0, . . . ,P

Evaluate projection integrals numerically
• Pick samples of uncertain parameters, e.g. b
• Run deterministic forward model for each of the sampled input

parameter values bi

• Integration depends on sampling approach
• Random Sampling: 〈uΨk 〉 = 1

Ns

∑Ns
i=1 u(bi )

• Quadrature: 〈uΨk 〉 =
∑Nq

i=1 qi u(bi )

Reconstruct uncertain model output

u(x , t ; θ) =
P∑

k=0

uk (x , t)Ψk (ξ(θ))
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Random Sampling approaches

• Evaluate integral through sampling∫
uΨk (ξ)w(ξ)dξ =

1
Ns

Ns∑
i=1

u(ξi )

• Samples are drawn according to the distribution of ξ
• Monte-Carlo (MC)
• Latin-Hypercube-Sampling (LHS)

• Pros:
• Can be easily made fault tolerant
• Sometimes random samples is all we have

• Cons: slow convergence, but less dependent on number of stochastic
dimensions
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Quadrature approaches

• Numerically evaluate integrals in Galerkin projection∫
uΨk (ξ)w(ξ)dξ =

Nq∑
i=1

qiu(ξi )

• Gauss quadrature rules are very efficient
• ξ are quadrature points, with corresponding weights qi
• Nq quadrature points can integrate polynomial of order 2Nq − 1 exactly
• Gauss-Hermite and Gauss-Legendre quadrature tailored to specific choices

of the weight function w(ξ)
• As a rule of thumb, p + 1 quadrature points are needed for Galerkin

projection of PCE of order p
• If both u and Ψk are of order p, then integrand is of order 2p
• 2p ≤ 2Nq − 1 or Nq ≥ p + 1

2
• Only exact if u is indeed a polynomial of order ≤ p

• Pros:
• Can use existing codes as black box to evaluate u(ξi )
• Embarrassingly parallel

• Cons: Tensor product rule for d dimensions requires Nd
q samples
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Non-Intrusive propagation of uncertainty - Collocation

• Collocation techniques minimize errors at sample points
•
∑P

k=0 uk Ψk (ξi ) = u(ξi ) , i = 1, . . . ,Nc
• Can use interpolation, e.g. Lagrange interpolants
• Or use regression approaches: P + 1 degrees of freedom to fit Nc points

• Pros: can position points where most accuracy desired
• Cons:

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),
dimer (v ), and inert species
(w) adsorbing onto a surface
out of gas phase.

du
dt

= az − cu − 4duv

dv
dt

= 2bz2 − 4duv

dw
dt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016
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Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Surface Reaction Model: NISP implementation in UQTk

Quadrature:
// Get the quadrature points
int nQdpts=myPCSet.GetNQuadPoints();
double* qdpts=new double[nQdpts];
myPCSet.GetQuadPoints(qdpts);
...
// Evaluate parameter at quad pts
for(int i=0;i<nQdpts;i++){

bval[i]=myPCSet.EvalPC(b,&qdpts[i]);
}
...
// Run model for all samples
for(int i=0;i<nQdpts;i++){

u_val[i] = ...
}
// Spectral projection
myPCSet.GalerkProjection(u_val,u);
myPCSet.GalerkProjection(v_val,v);
myPCSet.GalerkProjection(w_val,w);

Monte-Carlo Sampling:
// Get the sample points
int nSamples=1000;
Array2D<double> samPts(nSamples,dim);
myPCSet.DrawSampleVar(samPts);
...
// Evaluate parameter at sample pts
for(int i=0;i<nSamples;i++){

... // select samPt from samPts
bval[i]=myPCSet.EvalPC(b,&samPt)

}
...
// Run model for all samples
for(int i=0;i<nSamples;i++){

u_val[i] = ...
}
// Spectral projection
myPCSet.GalerkProjectionMC(samPts,u_val,u);
myPCSet.GalerkProjectionMC(samPts,v_val,v);
myPCSet.GalerkProjectionMC(samPts,w_val,w);
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Surface Reaction Model: NISP results
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NISP Quadrature

u v w
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• Mean and standard deviation for u, v , and w
• Quadrature approach agrees well with ISP approach using 6 quadrature

points
• Monte Carlo sampling approach converges slowly

• With a 1000 samples, results are quite different from ISP and NISP
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Surface Reaction Model: Comparison ISP and NISP
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• Lower order modes agree perfectly
• Very small differences in higher order modes

• Difference increases with time
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Surface Reaction Model: Comparison ISP and NISP
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ISP, t = 803.0
NISP, t = 803.0

• All pdf’s based on 50K samples each and evaluated with Kernel Density
Estimation (KDE)

• No difference in PDFs of sampled PCEs between NISP and ISP
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Surface Reaction Model: Comparison ISP, NISP, and MC
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ISP, t = 803.0
NISP, t = 803.0
MC, t = 803.0

• All pdf’s based on 50K samples each and evaluated with Kernel Density
Estimation (KDE)

• Good agreement between intrusive, non-intrusive projection, and Monte
Carlo sampling
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ISP pros and cons

• Pros:
• Elegant
• One time solution of system of equations for the PC coefficients fully

characterizes uncertainty in all variables at all times
• Tailored solvers can (potentially) take advantage of new hardware

developments
• Cons:

• Often requires re-write of the original code
• Reformulated system is factor (P+1) larger than the original system and can

be challenging to solve
• Challenges with increasing time-horizon for ODEs

• Many efforts in the community to automate ISP
• UQToolkit: http://www.sandia.gov/UQToolkit/
• Sundance: http://www.math.ttu.edu/~klong/Sundance/html/
• Stokhos: http://trilinos.sandia.gov/packages/stokhos/
• ...
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NISP pros and cons

• Pros:
• Easy to use as wrappers around existing codes
• Embarassingly parallel

• Cons:
• Most methods suffer from curse of dimensionality Nq = nNd

• Many development efforts for smarter sampling approaches and
dimensionality reduction
• (Adaptive) Sparse Quadrature approaches
• Compressive Sensing
• ...

• Sampling methods have found very wide spread use in the community
• DAKOTA: http://dakota.sandia.gov/
• ...
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Sensitivity Analysis

• Obtaining global sensitivity analysis from PCEs
• Identify dominant sources of uncertainty
• Attribution
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PC postprocessing: global sensitivity information is readily obtained from PCE

g(x1, . . . , xd ) =
K−1∑
k=0

ck Ψk (x)

• Global sensitivity analysis ≡ Variance decomposition
• Total variance

Var [g(x)] =
∑
k>0

c2
k ||Ψk ||2

• Main effect sensitivity indices

Si =
Var [E(g(x |xi )]

Var [g(x)]
=

∑
k∈Ii

c2
k ||Ψk ||2∑

k>0 c2
k ||Ψk ||2

Ii is the set of bases with only xi involved. Si is the uncertainty contribution
that is due to i-th parameter only.
• Joint sensitivity indices

Sij =
Var [E(g(x |xi , xj )]

Var [g(x)]
− Si − Sj =

∑
k∈Iij

c2
k ||Ψk ||2∑

k>0 c2
k ||Ψk ||2

Iij is the set of bases with only xi and xj involved. Sij is the uncertainty
contribution that is due to (i, j) parameter pair.
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PC postprocessing: sampling-based approaches

g(x1, . . . , xd ) =
K−1∑
k=0

ck Ψk (x)

• In some cases, need to resort to Monte-Carlo estimation, e.g.
• Piecewise-PC with irregular subdomains
• Output transformations, e.g. build PC for log g(x), but

inquire sensitivity with respect to g(x)

• A brute-force sampling of Var [E(g(x |xi )] is extremely inefficient.
• Tricks are available, given a single set of sampled input [Saltelli, 2002].

E.g., use

E[g(x |xi )
2] = E[g(x |xi )g(x ′|xi )] =

1
N − 1

N∑
r=1

g(x (r))g(x̃ (r)),

where x̃ is x ′ with i-th element replaced by xi .
• Similar formulae available for joint sensitivity indices.

• Con: as all Monte-Carlo algorithms, converges slowly.
• Pro: sampling is cheap.
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Challenges for PCE-based Uncertainty Quantification

• Representing input variables with arbitrary distributions
• Systems with high-dimensional uncertainty
• Systems with long time horizon / oscillatory behavior
• Nonlinearities in governing equations for intrusive UQ
• Physical constraints in uncertain quantities
• Systems with non-smooth behavior – discontinuities
• Systems with inherent stochasticity

Various approaches have been developed to tackle these challenges ...
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Obtaining PCEs for uncertain inputs

• Characterizing PCEs for uncertain inputs is a really difficult problem
• Inputs specified in a variety of ways

• Probability density function
• Samples
• Expert opinion (e.g. “about 3.5”)

• Often obtained from inverse problem solution
• See session on Bayesian inference
• Generally provides many samples of the uncertain inputs
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Inverse CDF Mapping for 1D RVs
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• Consider random variable a with CDF F (·)
• Either specified or constructed from samples with KDE

• CDF transformation F (a) = η maps random variable a to uniform[0, 1]
random variable η.

• η = Φ(ξ) maps uniform η to normal RV ξ

• The inverse CDF enables NISP projection

a =
P∑

k=0

ak Ψk (ξ) ak ∝ 〈aΨk (ξ)〉 =

∫
F−1(Φ(ξ))︸ ︷︷ ︸

a

Ψk (ξ)dξ
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Constructing an nD PCE for a RV with a given PDF

• Given RV z ∈ R with PDF: g(z), define:

z =
P∑

i=0

zi Ψi (ξ1, ξ2, . . . , ξn), P + 1 =
(n + p)!

n!p!

• No general procedure
• Can choose {n, p} and the mode strengths by ensuring

accurate capture of
• the PDF g(z)
• select moments of z
• some observable of interest φ(z)
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Rosenblatt for Multi-D RVs

• Rosenblatt transformation maps any (not necessarily independent) set of
random variables (λ1, . . . , λn) to uniform i.i.d.’s {ηi}n

i=1 (Rosenblatt,
1952).

η1 = F1(λ1)

η2 = F2|1(λ2|λ1)

...

ηn = Fn|n−1,...,1(λn|λn−1, . . . , λ1)

• Rosenblatt transformation is a multi-D generalization of 1D CDF
mapping.

• Conditional CDFs are harder to evaluate in high dimensions
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Projection of Rosenblatt transformed vars onto PCEs
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• NISP projection is enabled by inverse Rosenblatt transformation (a, b) = R−1(ξ1, ξ2)
ensures a well-defined quadrature integration

a =
P∑

k=0

ak Ψk (ξ) ak ∝
∫

R−1
a (ξ)︸ ︷︷ ︸

a

Ψk (ξ)dξ

b =
P∑

k=0

bk Ψk (ξ) bk ∝
∫

R−1
b (ξ)︸ ︷︷ ︸

b

Ψk (ξ)dξ
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Multivariate Normal Approximation

• Many distributions are unimodal and somewhat shaped like Gaussians
• MultiVariate Normal (MVN) approximations capture the mean and

correlation structure of the random variables
• Easy to extract from a set of samples

• In 1D: just compute mean and standard deviation: u = u0 + u1ξ
• Multi-D: Cholesky factorization of covariance

C = LLT

u = Lξ

# Compute mean parameter values
par_mean = numpy.mean(samples,axis=0)
# Compute the covariance
par_cov = numpy.cov(samples,rowvar=0)
# Compute the Cholesky Decomposition
chol_lower = numpy.linalg.cholesky(par_cov)
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MVN approximation of Bayesian posterior from MCMC samples
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Comparison of Posterior (blue) with MVN (red)

S1 = 1.351 + 0.01367ξ1

CS = 5310− 26.25ξ1 + 20.26ξ2
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Data Decomposition Approaches to Handle Multi-Modalities

• Multimodal, dependent random variables
• Clustering and Rosenblatt transformation to represent data sets with

PCEs
• PC mixture model
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Karhunen-Loève (KL) Expansions

• Assume stochastic process F (x , θ) : D×Θ→ R an L2 random field on D
• With covariance function Cov(x , y)

• F can be written as

F (x , θ) = 〈F (x , θ)〉θ +
∞∑

k=1

√
λk fk (x)ξk

• fk (x): eigenfunctions of Cov(x , y)

• λk : corresponding eigenvalues, all positive
• ξk : uncorrelated random variables, unit variance

• Samples are obtained by projecting realizations of F onto fk
• Generally not independent

• Special case: for Gaussian F , ξk are i.i.d. normal random variables

• The KLE is optimal : of all possible orthonormal bases for L2(Θ× D) the
above {f (x)} minimize the mean-square error in a finite linear
representation of F (·).
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KL Expansions - Numerical Approach - 1

• Covariance Matrix, Cov(x , y) = 〈F (x , θ)F (y , θ)〉θ:
• specified analytically
• estimated from samples

• Estimate eigenvalyes and eigenvectors for the Fredholm equation of
second kind: ∫

Cov(x , y)f (y)dy = λf (x)

• ...using the Nystrom algorithm:

Np∑
i=1

wi Cov(x , yi )f (yi ) = λf (x)

where wi are the weights for the quadrature rule that uses Np points yi
where realizations are provided.

• Further manipulation leads to the eigenvalue problem

Ag = λg

where A = WKW and g = Wf , with W being the diagonal matrix Wii =
√

wi
and Kij = Cov(xi , yj ). Solutions consist of pairs of eigenvalues λk and
eigenmodes fk = W−1gk .
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KL Expansions - Numerical Approach - 2

• Samples of random variables ξk are obtained by projecting realizations
of the random process F on the eigenmodes fk

ξk |θl
=
〈
F (x , θl )− 〈F (x , θ)〉θ , fk (x)

〉
x /
√
λk

• ... or numerically

ξk |θl
=

Np∑
i=1

wi
(
F (xi , θl )− 〈F (xi , θ)〉θ

)
fk (xi )/

√
λk

• If Gaussian process: automatically have first order WH PCE
• If not, same approaches as for converting RVs to PCEs applied to KL

RVs
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1D Gaussian Process: Realizations
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• Covariance Cov(x1, x2) = exp(−(x1 − x2)2/δ2)

• Sample realizations are noisier as correlation length decreases
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1D Gaussian Process: KL modes

δ = 0.1
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• Eigenmodes of the covariance matrix
• Data covariance matrix constructed from 4096 Gaussian process

realizations

• Higher modes are more oscillatory

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: KL random variables

δ = 0.1
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• Random variables obtained by projecting realizations onto KL modes
• Uncorrelated by construction

• Also independent due to nature of Gaussian Process

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Eigenvalue spectrum
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• Eigenvalue spectrum decays more slowly as correlation length
decreases
• More oscillatory modes needed to represent fluctuations in x

• KL expansion generally is truncated after enough modes are included to
capture a specified fraction of the total variance
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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1D Gaussian Process: Reconstructed realizations
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• Large scale features can be resolved with small number of modes
• Smaller scale features require higher modes
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KL of 2D Gaussian Process
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• 2D Gaussian Process with covariance:
Cov(x1, x2) = exp(−||x1 − x2||2/δ2)

• Realizations are smoother as covariance length δ increases
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2D KL - Modes for δ = 0.1
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2D KL - Modes for δ = 0.2
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2D KL - Modes for δ = 0.5
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2D KL - eigenvalue spectrum
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2D KL - eigenvalue spectrum
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2D KL - eigenvalue spectrum
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Other approaches

• Domain decomposition approaches with projection
• Inference-based approaches for PCEs
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Sparse Quadrature Approaches for High-Dimensional Systems

• Need for sparse quadrature
• Sparse quadrature grids
• Application to surface reaction example
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Sparse quadrature drastically reduces the number of function evaluations

• Define the precision as the highest order of a polynomial that is
integrated exactly by the quadrature rule.
• Gaussian quadratures are optimal in 1d
• N points achieve the highest possible precision of 2N − 1.

• In multi-d, full product quadrature is wasteful:
• a 5 ppd (point per dimension) rule is of precision P = 9,

but it integrates a polynomial x9y9 exactly.
• Sparse grids are built to achieve maximal precision with fewest

possible points
Sparse, level 2, total 21

Full,     ppd 7,   total 49
Gauss-Hermite

Sparse, level 2, total 17

Full,     ppd 5,   total 25
Gauss-Legendre
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Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 1, total 5
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Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 2, total 13
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Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 3, total 29
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Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 4, total 65
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Clenshaw-Curtis nested quadrature rules allow reuse of function evalutions

Clenshaw-Curtis, level 5, total 145
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The number of function evaluations is drastically reduced compared to full
quadrature

Table: The number of Clenshaw-Curtis sparse grid quadrature points for various levels
and dimensionalities.

Level Precision N N N N(d)
L p = 2L− 1 (d = 2) (d = 5) (d = 10) General

1 1 1 1 1 1
2 3 5 11 21 1 + 2d
3 5 13 61 221 1 + 2d + 2d2

4 7 29 241 1581 1 + 14
3 d + 2d2 + 4

3 d3

5 9 65 801 8801 1 + 20
3 d + 22

3 d2 + 4
3 d3 + 2

3 d4

6 11 145 2433 41265 · · ·
7 13 321 6993 171425 · · ·
8 15 705 19313 652065 · · ·

10 20 30 40 50 60 70 80 90 100

Dimensionality, d

1

10

100

1000

10000

1e+05

1e+06

N
u
m

b
er

 o
f 

C
C

 s
p
ar

se
 g

ri
d
 p

o
in

ts
, 
N

p=7

p=5

p=3

Sparse grid: polynomial growth,O(d
p−1

2 )

0 20 40 60 80 100

Dimensionality, d

1

1e+20

1e+40

1e+60

1e+80

1e+100

N
u
m

b
er

 o
f 

C
C

 f
u
ll

 g
ri

d
 p

o
in

ts
, 
N

p=7

p=5

p=3

Full grid: exponential growth, (p + 1)d

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

Surface Reaction Model

3 ODEs for a monomer (u),
dimer (v ), and inert species
(w) adsorbing onto a surface
out of gas phase.

du
dt

= az − cu − 4duv

dv
dt

= 2bz2 − 4duv

dw
dt

= ez − fw

z = 1− u − v − w

u(0) = v(0) = w(0) = 0.0

a = 1.6 b = 20.75 c = 0.04 d = 1.0 e = 0.36 f = 0.016
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Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Surface Reaction Model: 6d results
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• Output observable: time averaged u at steady state uss

• Assume all input parameters have Gaussian distributions with
σ/µ = 0.01, i.e. 1% deviation.

• 6-d, level 3 Gauss-Hermite sparse quadrature point set includes 713
distinct points (a 2-d case is plotted)

• Output PDF is generated by 100K samples of a third order PC
• Variance-based sensitivity information comes for free with the PC

expansion
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Advantages and caveats of sparse quadrature approaches

• Pro: number of required samples scales much more gracefully with
number of dimensions than full tensor product quadrature rule

• Caveats:
• Function to be integrated needs to be smooth
• Due to negative quadrature weights, integrating a noisy positive function can

give a negative answer
• For very high dimensions, even sparse quadrature is too expensive
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Taking Advantage of Sparsity in the System

• For really high dimensional systems, even sparse quadrature requires
too many function evaluations
• For 80-dimensional climate land model, L = 4 requires ≈ 106 points

• Such systems can only be tackled with dimensionality reduction and/or
adaptive order
• Sensitivity analysis
• High Dimensional Model Representation (HDMR)
• Adaptive sparse quadrature approaches

• More generally, use only the basis terms needed to represent the
physics / information in the system / data
• (Bayesian) Compressive Sensing (CS) approaches

• If information content is sparse, it can be represented at reasonable cost
• If not, you need to pay the price
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Challenges with Oscillatory / Long Time Horizon Systems

• Issue with oscillations / long time horizon
• Importance of choice of observables
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Surface Reaction Model

3 ODEs for a monomer (u),
dimer (v ), and inert species
(w) adsorbing onto a surface
out of gas phase.

du
dt

= az − cu − 4duv

dv
dt

= 2bz2 − 4duv

dw
dt

= ez − fw

z = 1− u − v − w
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Oscillatory behavior for b ∈ [20.2, 21.2]

(Vigil et al., Phys. Rev. E., 1996; Makeev et al., J. Chem. Phys., 2002)
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Limit Cycle Orbit in Phase Space, v vs u
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4th-order Intrusive PC UQ

• Uncertain b
• Wiener-

Hermite
PC
• Mean and
±3σ bounds
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Growth of Phase Errors in Time
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• PC mean deviates away from the sampled-mean in time
• Large phase variances
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Scatter in State Space

• Much better behaved
uncertainty in state
space
• Phase variances are

not of interest per se
• Knowledge of the

uncertainty in the
orbit details are more
of interest than the
detailed phase
variance errors  0
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PC vs. Sampling Limit Cycle Orbit in Phase Space, v vs u
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Surface Reaction Model: Uncertainty in Time Average of u
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• Variation of b leads to different qualitative behaviors
• Output observable: average over time of u at steady state: uss

• Representative, e.g. of expected coverage in catalytic system

• Varied the parameter b by 10% around its nominal value
• Output PDF is generated by 100K samples of a 9-th order PC
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Global PC expansions fail to capture multimodality
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Monte-Carlo with 10000 samples (true PDF)

10-th order PC built with 12 samples

• In principle, PC-based uncertainty propagation requires much fewer
function evaluation.

• However, the accuracy of the PC expansion needs to be properly
estimated.

• E.g., multimodal variables are not well-captured, even with a high PC
order.
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Domain Decomposition Approaches to Handle Nonlinearities

• A PCE is essentially a polynomial approximation of a random variable as
a function in stochastic space

• Global PCEs fail to represent very non-linear functions over large
domains
• E.g. Gibbs oscillations around discontinuities
• As order increases, more oscillations

• Piecewise representations can alleviate this
• Lower order approximations over subsections of stochastic domain
• Continuity of representation across subdomain boundaries is not required

• Boundary is area of zero measure
• Allows easy representation of discontinuities

• Application: intrusive UQ in thermal ignition model
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UQ in constant-pressure ignition

M reactions in N species, with mass fractions Yi :

dYi

dt
=

wi

ρ
, i = 1, · · · ,N

dT
dt

=
wT

ρcp

with wT = −
∑N

i=1 hiwi and wi =
∑M

k=1 νikRk

Example: CH4 + 2O2 → CO2 + 2H2O
Stoichiometric coefficients: νik = {−1,−2, 1, 2}
Reaction rate of progress: Rk = [CH4][O2]2 Ak T nk e−Ek/T

• Quantify reaction-rate pre-exponential (Ak ) uncertainty with multiplicative
factor Fk :

P
(

Ak

Fk
< Ak < Fk Ak

)
= 0.95
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Large activation energy (Ek ) exponentials lead to very fast changes in species
concentrations and temperature

• Methane-air ignition —
Global single-step
irreversible mechanism

• Initial T = 800K
• Stoichiometric
• p = 1 atm (constant)
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Increased Ek leads to higher peak dT/dt and higher consequence of small
uncertainties in reaction rate constants
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• Ak = Ak (ξ), 1-D Wiener-Hermite
• PC UQ captures sampled stochastic behavior at low Ek

• with miniscule uncertainty in Ak (F = 1.00002, COV=10−5).

• Unphysical effects observed at high activation energy
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Errors increase for realistic Ek

• Ek = 50 K
• Fk = 1.00002
• Max T -stdv ≈

300K
• Non-zero

uncertainty in T
for t →∞

• Increased PC
order does not
resolve the
problem
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Increasing Ak COV towards minimally-practical levels leads to failed time
integration
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• Unrealistic to expect a WH PC expansion in 1D to capture
expected PDFs at realistic reaction-rate parametric uncertainties

• Need increased dimensionality of the PCEs, using multiple ξ’s for each
uncertain parameter, for increased accuracy and stability

Debusschere – SNL Forward UQ



Introduction PCES Forward UQ Sensitivity Challenges Summary References

Uncertainty Quantification with Multiwavelets

• An uncertain field quantity u(x, t , θ) is expressed using PC

u =
P∑

k=0

uk (x, t)Ψk (ξ1, . . . , ξN)

• Introduce ζi = p(ξi ): CDF of ξi , where ζi is on [0,1]

u = g(ξ1, . . . , ξN) = f (ζ1, . . . , ζN)

• Represent f (ζ) using N-D multiwavelets (Alpert, 1993)

u =
Q∑
λ=0

ũλ(x, t)Wλ(ζ1, . . . , ζN)
Le Maître, Ghanem, Knio, and Najm, J. Comp. Phys., 197:28-57 (2004)

Le Maître, Najm, Ghanem, and Knio, J. Comp. Phys., 197:502-531 (2004)
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Haar-Wavelets

Haar scaling functions

φw (y) =

{
1, 0 ≤ y < 1
0 otherwise

Scaled Haar functions, scaling factor j , and sliding factor k :

φw
jk (y) = 2j/2φw (2jy − k)

Haar function (mother wavelet)

ψw (y) ≡ 1√
2
φw

1,0(y)− 1√
2
φw

1,1(y) =


1, 0 ≤ y < 1

2 ,

−1, 1
2 ≤ y < 1,

0, otherwise.
Wavelet family

ψw
j,k (y) = 2j/2ψw (2jy − k), j = 0, 1, . . . and k = 0, . . . , 2j − 1
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Wiener-Haar Construction

The set of ψw
j,k (y) is an orthonormal system

Any function f ∈ L2([0, 1]) can be arbitrarily well approximated by the sum of
its mean and a finite linear combination of the ψw

j,k (y).

The wavelet set Wj,k (ξ(θ)) ≡ ψw
j,k (p(ξ)) forms a basis for the space of L2

random processes.

X (ξ(θ)) = Xo +
∞∑
j=0

2j−1∑
k=0

X w
j,kψ

w
j,k (p(ξ)) =

∑
λ

XλWλ(ξ(θ))

Multidimensional {ξ1, ξ2, . . . , ξN},

W =
N∏

k=1

Wλk (ξk )
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Multidimensional Multiwavelet Construction

• Wiener-Haar PC able to represent uncertainty in systems exhibiting
bifurcations depending on parameter values
• Poor convergence relative to PC constructions with smooth global

bases on smooth functions
• Use multiwavelet construction (Alpert, 1993) employing higher order

polynomials instead of the Haar-functions
• For efficient multidimensional construction, use
• Block-decomposition of the stochastic space
• A local MW construction on each block employing
• Scaled Legendre polynomials on [0, 1]
• First level Multiwavelet details

• Adaptive resolution in each dimension on each block
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Block decomposition in a 2D parametric space
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Computational Advantages with MRA UQ

• Adaptive partitioning allows optimal combinations of
resolution and order
• over space-time

• UQ problem can be done separately on each sub-domain
• This can be done
• intrusively or
• non-intrusively

on each sub-domain
• Presents advantages in a massively parallel context
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Multi-Wavelet Representation of Model Problem Gaussian IC
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• IC U0 = 0.2,
U1 = 0.1

• No: MW order
• Nr : MRA

resolution
• Local

representation
using low-order
polynomial
Multi-Wavelets

• Increased No

leads to faster
convergence to
exact solution with
increasing Nr
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Adaptive Partition of the Random Parameter Space

• For multiple stochastic dimensions, the computational cost of the MW
spectral products can become prohibitive

• Use adaptive partitioning of the space of random parameters
• On each sub-domain define a local scaled random basis
• Construct a local MW expansion with up-to only 1st -level details

• Local Wiener-Legendre projection of order No , plus 1D details

• Combine local block-statistics to arrive at global statistics
• Adaptively refine block decomposition in each stoch dimension

• Use 1D details variance to guide refinement in each dimension
Le Maître et al. J. Comp. Phys., 197:502-531 (2004)
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Generate ignition “data" using a detailed model+noise

• Ignition using a detailed
chemical model for methane-air
chemistry

• Ignition time versus Initial
Temperature

• Multiplicative noise error model
• 11 data points:

di = tGRI
ig,i (1 + σεi )

ε ∼ N(0, 1)
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Fitting with a simple chemical model

• Fit a global single-step
irreversible chemical model

CH4 + 2O2 → CO2 + 2H2O
R = [CH4][O2]kf

kf = A exp(−E/RoT )

• Infer 3-D parameter vector
(ln A, ln E , lnσ)

• Good mixing with adaptive
MCMC when start at MLE
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln A, ln E) exhibits strong
correlation

Nominal fit model is consistent
with the true model
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Correlation Slope χ and Chemical Ignition
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• 4th Order Multiwavelet PC, Multiblock, Adaptive
• σT ,max ∼ 400 K during ignition transient, χ ∼ 0.03
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Time evolution of Temperature PDFs in preheat stage
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• Similar results from MC (20K samples) and MW PC
• Increased uncertainty, and long high–T PDF tails, in time
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Evolution of Temp. PDF – Fast Ignition Transient
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• Transition from unimodal to bimodal PDFs
• Leakage of probability mass from pre-heat PDF high–T tail
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Time evolution of Temperature PDFs for different χ
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• Bimodal solution PDFs for high uncertainty growth
• Unimodal for low uncertainty growth, with χ ≈ 0.044
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Data Decomposition Approaches to Handle Multi-Modalities

• Alternative approach when faced with samples of multi-modal random
variables
• Separate data into multiple sets that are easier to represent
• Represent each with global PCE
• Overall results is a PC mixture model

• Generalization of Gaussian mixture models

• Application: Karhunen-Loève applied to output state of Schlögl model
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Schlögl Model is a prototype bistable model

• ReactionsA + 2X
a1
−→
←−
a2

3X

B
a3
−→
←−
a4

X .

• Propensities
a1 = k1AX(X − 1)/2,
a2 = k2X(X − 1)(X − 2)/6,
a3 = k3B,
a4 = k4X .

• Nominal parameters
k1A 0.03
k2 0.0001
k3B = λ 200
k4 3.5
A 105

B 2 · 105

X(0) 250
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Polynomial Chaos expansion represents any random variable as a polynomial
of a standard random variable

• Truncated PCE: finite dimension n and order p

X (θ) '
P∑

k=0

ck Ψk (η)

with the number of terms P + 1 = (n+p)!
n!p!

.

• η = (η1, · · · , ηn) standard i.i.d. r.v.
Ψk standard orthogonal polynomials
ck spectral modes.

• Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002]
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Galerkin Projection is typically needed

PC expansion: X (θ) '
∑P

k=0 ck Ψk (η) = gD(η)

Orthogonal projection: ck =
〈X(θ)Ψk (η)〉
〈Ψ2

k (η)〉

• Intrusive Spectral Projection (ISP)
? Direct projection of governing equations
? Leads to deterministic equations for PC coefficients
∗ No explicit governing equation for SRNs

• Non-intrusive Spectral Projection (NISP)
? Sampling based
? No explicit evolution equation for X needed
∗ Galerkin projection not well-defined for SRNs
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Karhunen-Loève decomposition reduces stochastic process to a finite number
of random variables

• KL decomposition:

X (t , θ) = X̄ (t) +
∞∑

n=1

ξn(θ)
√
λnfn(t)

• Uncorrelated, zero-mean KL variables:

〈ξn〉 = 0, 〈ξnξm〉 = δnm

• SSA(continuum)←→ KL(discrete)

X (t)←→ ξ = (ξ1, ξ2, . . . )
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K-L decomposition captures each realization
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K-L decomposition captures each realization
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PC expansion of a random vector

ξ =
P∑

k=0

ck Ψk (η)

Galerkin projection

ck =
〈ξΨk (η)〉
〈Ψ2

k (η)〉

is not well-defined,
since ξ and η do not belong to the same stochastic space.
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PC expansion of a random vector

ξ =
P∑

k=0

ck Ψk (η)

Galerkin projection

ck =
〈ξΨk (η)〉
〈Ψ2

k (η)〉

is not well-defined,
since ξ and η do not belong to the same stochastic space.

Need a map ξ ↔ η.
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Rosenblatt transformation
• Rosenblatt transformation maps any (not necessarily independent)

set of random variables (ξ1, . . . , ξn) to uniform i.i.d.’s {ηi}n
i=1

(Rosenblatt, 1952).

η1 = F1(ξ1)

η2 = F2|1(ξ2|ξ1)

η3 = F3|2,1(ξ3|ξ2, ξ1)

...

ηn = Fn|n−1,...,1(ξn|ξn−1, . . . , ξ1)

• Inverse Rosenblatt transformation ξ = R−1(η) ensures a
well-defined quadrature integration

〈ξi Ψk (η)〉 =

∫
R−1(η)i Ψk (η)dη
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KL+PC+Data Partitioning represent the dynamics of a bimodal process
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KL-PC representation, 5 KL modes, 3rd PC order
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UQ in Systems with Inherent Stochastic Noise

• Some systems have intrinsic uncertainty
• Stochastic reaction networks
• Macroscale quantities extracted from atomistic methods with sampling

• Galerkin projection is challenged by such systems
• No deterministic governing equation for intrusive UQ
• Quadrature methods, especially sparse methods, are challenged by noise in

function evaluations

• Use Bayesian regression to infer PC coefficients
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Summary

• Polynomial Chaos Expansions offer a convenient way to represent
random variables

• Both intrusive and non-intrusive approaches are available to propagate
uncertain model inputs to its outputs

• While conceptually straightforward, many challenges remain in terms of
efficiency and accuracy
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