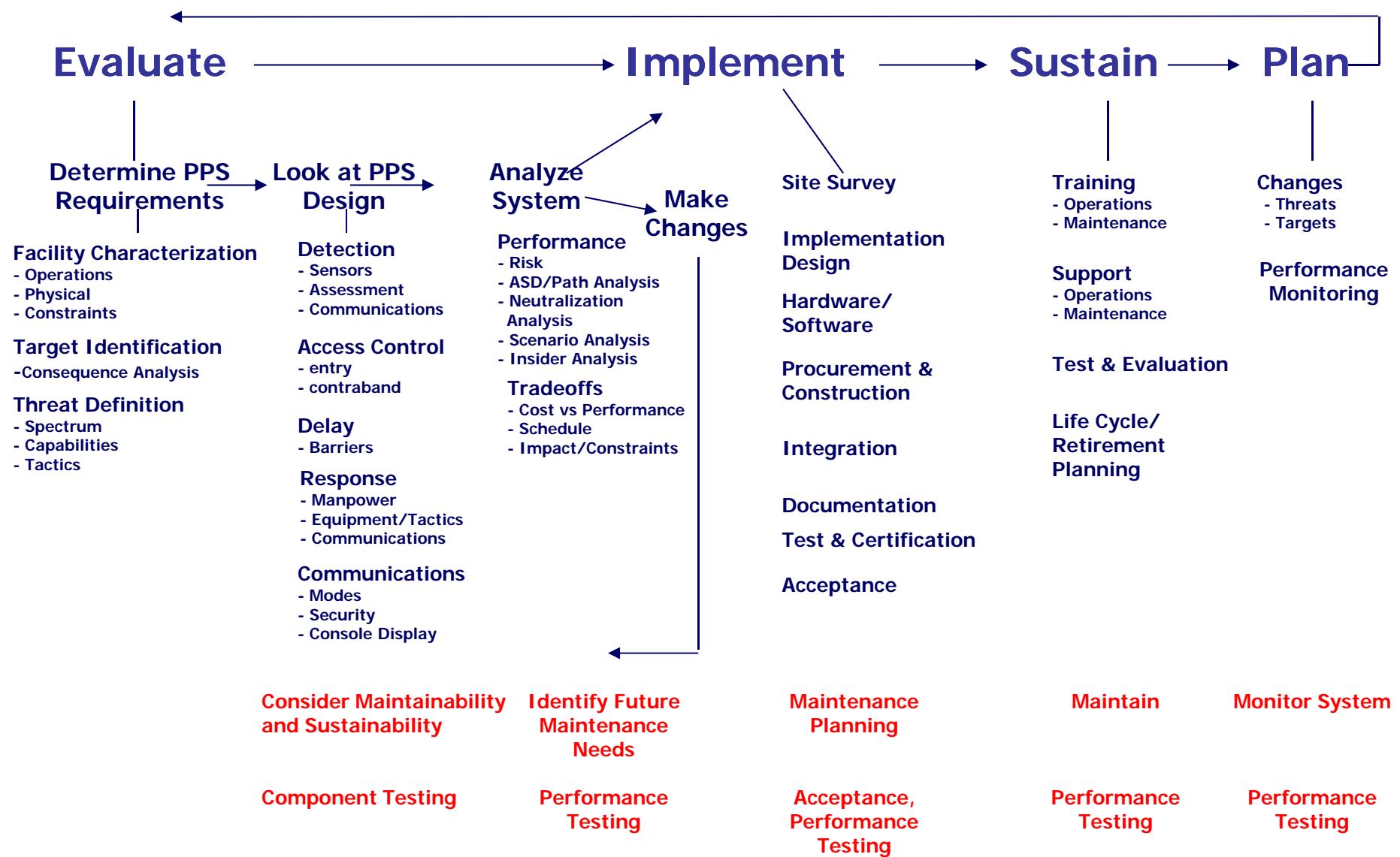


International Atomic Energy Agency

Maintenance and Performance Testing of PPS

Regional Training Course on Security of Research Reactors


Jakarta, Indonesia, 8-12 October 2012

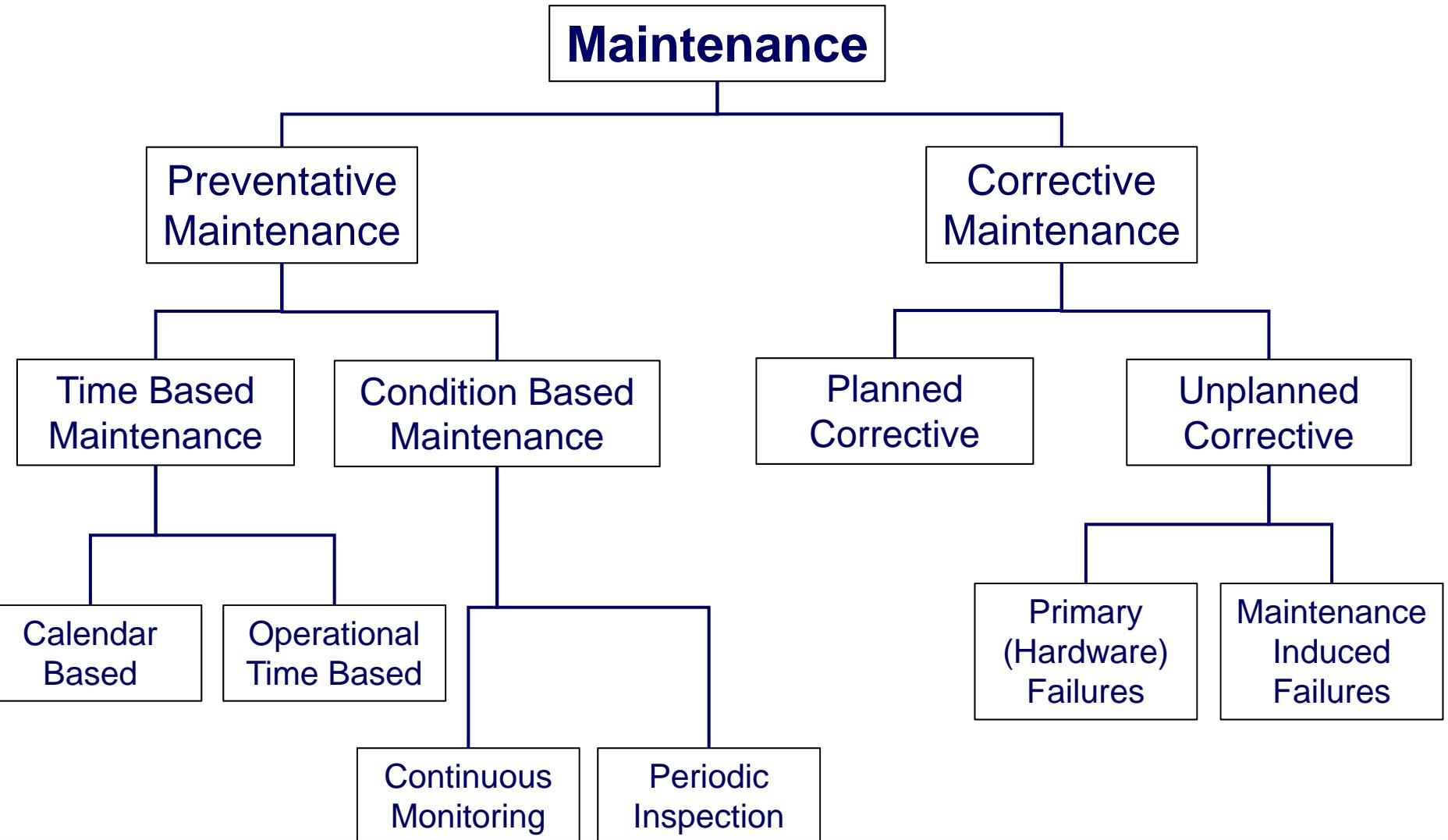
Learning Objectives

- Identify where maintenance and performance testing occurs within the PPS life cycle
- Identify IAEA guidance on maintenance and performance testing for a PPS
- Identify what is maintenance for a PPS
- Identify types of maintenance activities
- Identify the purpose and importance of performance testing
- Differentiate between different kinds of performance testing
- Outline the testing process

PPS Life Cycle Process

IAEA Guidance on Maintenance

- Competent authorities are responsible for putting in place sustainment of detection and response measures including instrument maintenance and a maintenance program for response equipment.
- Competent authorities ensure that an instrument deployment plan includes such measures as: initial installation, calibration, acceptance testing, setting up maintenance procedure, training and qualification of technical support staff
- Operators should prepare security plans that address maintenance of PPS and security procedures to be followed before and after maintenance
- Operators should develop a means and procedures for evaluations, including performance testing and maintenance of PPS.
- Operators should establish a sustainability program that includes equipment updating, maintenance, repair and calibration.



Maintenance

- **Maintenance:** Actions taken to keep some item/component/system in proper condition to perform its mission.
 - Preventative maintenance
 - Corrective maintenance
 - Reliability centered maintenance
- **Preventative Maintenance:** Periodic component inspection, test, service, calibration, repair or replacement activities that are intended to preserve the inherent reliability of components.
- **Corrective Maintenance:** Repair and restoration of components or components that have failed or are malfunctioning and are not performing their intended mission.
- **Reliability Centered Maintenance:** Systematic evaluation approach for developing or optimizing a maintenance program.

Example Maintenance Structure

Maintenance

- **Technical support – hardware, software**
 - Hardware/software support specialist, maintenance experts
 - Maintenance, testing and calibration
 - Procedures for determining problems, failures, deficiencies
- **Work planning and control system**
 - Initiates and tracks maintenance activities
 - Identifies tools, equipment and other resources needed
- **Data analysis tools and procedures**
 - Measurable attributes about system health
 - Metrics - False and nuisance alarm rates, mean time between failures ...
 - Tools that can be used to record and analyze, performance, trends

Maintenance

- **Configuration management system for PPS**
 - Changes in the PPS can have an adverse effect on system performance
- **Master equipment list (MEL)**
 - PPS related hardware, software; activities related to equipment
 - Supports graded approach to maintenance management
- **Spare parts**
 - Consider failure data, cost, shelf life, storage requirements ...
- **Tools and equipment to perform maintenance functions**
 - Maintenance people need tool sets, vehicles, communications...
- **Other – Warranties, Service Agreements**

IAEA Guidance on Performance Testing

- Competent authority should ensure evaluation based on performance testing
- Evaluations include exercises to test the integrated system, including training and readiness of guards and response forces
- Operator should develop and implement means and procedures for evaluations, including performance testing and maintenance of the PPS
- Operators, Shippers and Carriers should establish sustainability programs that include performance testing and operational monitoring
- Performance testing a PPS should include appropriate exercises to evaluate guards and response force effectiveness and timely response (Cat I/II, high radiological consequences)
- Performance testing of a PPS should be conducted annually (Cat I)

Performance Testing

- ***Performance test:*** Testing of the physical protection measures and the PPS to determine whether or not they are implemented as designed; adequate for proposed natural, industrial and threat environments; and in compliance with established performance requirements.
- **Performance tests are a means to:**
 - Establish or confirm a performance level of a PPS element
 - Provide comprehensive assurance of performance on a required basis
 - Determine element's baseline performance for system design
 - Test PPS elements over their planned range of operation
- **Performance testing results**
 - Identify if element(s) tested performed adequately
 - Identify weaknesses or substandard performance

Performance Testing

Purpose and Objectives

- **Purpose of performance testing is to evaluate the performance of**
 - People,
 - Procedures, and/or
 - Equipment, technology, hardware
- **Objectives of performance testing:**
 - Validate vulnerability analysis input data, assumptions, activities, results, and conclusions
 - Demonstrate protection capabilities
 - Ensure that the performance of protection elements provide adequate protection and acceptable risk

Performance Testing

Types of Testing

- **Example types of tests that can measure effectiveness**
 - Operability and functional tests
 - Sub-system performance tests
 - Whole system performance tests

Performance Testing

Operability and Functional Tests

- **Simple measure of operability – is it working?**
- **Simple measure of functionality – does it function as intended?**
 - Performed on a frequent basis
 - Looks for significant malfunctions or outages
 - If the test fails, call maintenance and possibly take compensatory measures
- **Examples (each shift):**
 - Metal detectors
 - X-ray machines
 - Walk test a certain number of perimeter sectors to verify alarms are generated

Performance Testing

Sub-system Performance Tests

- **Sub-system Performance Testing focuses on the performance and effectiveness of either individual components or parts of the overall PPS**
 - Perimeter detection & delay, entry control, alarm communications, response force deployment tactics
- **Conducted to**
 - Evaluate the skills, capability, or knowledge of personnel
 - Test operations, procedures, or policy requirements
- **Sub-system tests should be conducted realistically—they may be either scheduled or unannounced**
 - Examples
 - Protective force response to an alarm
 - Technology / equipment and procedures at personnel and vehicle entry control portals

Performance Testing

Whole System Performance Tests

- **Whole System Performance Tests are conducted to evaluate the overall effectiveness of all elements of an entire system**
- **OR large portions of an entire system**
 - Example 1: Force-on-force security exercise tests the overall effectiveness of all elements involved in a response to a site-specific threat and adversary capabilities

- Example 2: Used to determine how effectively individual elements of a perimeter perform together to form an entire system

Performance Testing

When to Conduct Performance Tests

- **On new and proposed PPS equipment to determine effectiveness and limitations**
- **On PPS equipment after initial installation and after maintenance to verify component performance**
- **On new and existing security procedures – determine whether**
 - Personnel understand and follow the procedures
 - Personnel and equipment interact effectively
- **Ensure that protection elements are performing as designed and provide the required protection level**

Performance Testing

Performance Testing Process

- Plan the performance test
- Define test purpose, objectives, and standards
- Create a test plan
- Identify protection elements to be tested and test locations
- Identify threats (capabilities) and develop scenarios
- Define testing methodology and evaluation criteria
- Define test controls
- Identify resource requirements
- Coordinate the tests and obtain approvals
- Identify compensatory measures
- Collect data; analyze, document, performance metrics (confidence levels) and critique test

Performance Testing

Response Force (RF) Performance Testing

- **Response components are tested individually to establish performance**
 - People, weapons, vehicles, equipment, etc.
- **Subsystem performance testing**
 - Different types of tests used to test performance of RF functions
 - Testing subsystems of whole system (e.g., Alarm Station)
- **Whole system performance testing**
 - Testing of whole system (e.g., force-on-force)
 - Two performance measure criteria are evaluated
 - Interruption
 - Neutralization

Conclusion

- Maintenance and Performance Testing are considered during several phases of the PPS life cycle and involve a number of activities
- Maintenance can be preventative, corrective or reliability centered
- Many types of tests can measure effectiveness
 - Operability and functional tests
 - Component, sub-system, and
 - Whole system performance test
- Performance testing should include:
 - Evaluation of people, procedures, equipment/hardware/technology
 - Test against the defined threat (insider and outsider)
- The results of performance testing provide a basis for the calculation of protection system effectiveness
 - During design process
 - Throughout life of the system

