
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the 

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Chapel,	
  Qthreads,	
  and	
  Eurekas
Chapel	
  Projects	
  Review

August	
  23,	
  2012

Tuesday, August 21, 12

SAND2012-6985P



Chapel’s	
  RunAme	
  Layer

§ Abstract	
  interface	
  compiler	
  target
§ C	
  API	
  calls
§ ImplementaAons	
  selected	
  when	
  building	
  `chpl`

§ Default	
  implementaAons
§ Tasking/threading:	
  FIFO/Pthreads
§ CommunicaAon:	
  GASNet

§ Tasking	
  interface	
  supports
§ Sync	
  variables
§ Begin,	
  cobegin,	
  coforall,	
  ...

2
Co

m
m
un

ic
aA

on

Ta
sk
in
g

Th
re
ad
in
g

M
em

or
y

Tuesday, August 21, 12



Challenges	
  in	
  Tasking	
  RunAmes

§ Per-­‐thread	
  state
§ Locality

§ An	
  a3erthought	
  in	
  standard	
  threading	
  models
§ Communica8on	
  and	
  synchroniza8on	
  expensive	
  (easy	
  to	
  use	
  

accidentally)

§ Synchroniza8on
§ Hard	
  to	
  make	
  portable,	
  maintain	
  guarantees

§ Scheduling
§ Part	
  of	
  the	
  cri8cal	
  path
§ Controls	
  resource	
  conten8on	
  (cache,	
  memory,	
  network,	
  etc.)
§ Adap8vity	
  to	
  load,	
  power,	
  resource	
  conten8on	
  cri8cal	
  for	
  performance
§ Most	
  schedulers	
  ignore	
  non-­‐computa8onal	
  ac8vity

§ Networking	
  and	
  I/O

§ Every	
  machine	
  is	
  different
§ Granularity	
  of	
  sharing	
  (cacheline	
  size)
§ Op8mal	
  number	
  of	
  threads	
  (PU	
  count)
§ Communica8on	
  topology
§ Cache	
  structure
§ Memory	
  model

3
Co

m
m
un

ic
aA

on

Ta
sk
in
g

Th
re
ad
in
g

M
em

or
y

Tuesday, August 21, 12



Sandia’s	
  Qthreads	
  for	
  Tasking

§ Lightweight	
  user-­‐level	
  tasking
§ PlaPorm	
  portability

§ ARM,	
  Tilera,	
  IA32/64,	
  AMD64,	
  PPC32/64,	
  SparcV9
§ Linux,	
  BSD,	
  Solaris,	
  MacOSX,	
  Cygwin

§ Locality	
  fundamental	
  to	
  model
§ “Shepherd”	
  a	
  thread	
  mobility	
  domain

§ Fine-­‐grained	
  synchroniza8on	
  seman8cs
§ Full-­‐empty	
  bits	
  (64-­‐bit	
  &	
  60-­‐bit)
§ Mutexes
§ Atomic	
  opera8ons	
  (integer	
  incr,	
  float	
  incr,	
  &	
  CAS)
§ Collec8ve	
  and	
  reduc8on	
  opera8ons	
  (sincs)

§ Locality-­‐,	
  cache-­‐,	
  I/O-­‐aware	
  work-­‐stealing	
  scheduler	
  model
§ Open	
  source	
  research	
  plaPorm

4
Co

m
m
un

ic
aA

on

	
  	
  

M
em

or
y

Tuesday, August 21, 12



Why	
  Qthreads?

§ Performance	
  compeAAve	
  
with	
  the	
  best	
  commercial	
  
tasking	
  runAmes
§ ...	
  and	
  more	
  scalable

§ Feature-­‐rich,	
  simple	
  mapping	
  
from	
  Chapel	
  primiAves

§ Ongoing	
  fundamental	
  
runAme	
  research

§ Easy	
  to	
  extend

5

0.01

0.10

1.00

10.00

100.00

0 4 8 12 16 20 24 28 32

Sequential Spawn 2^20

Se
co

nd
s

Cores

TBB Qthreads Intel OpenMP
GCC OpenMP HPX Cilk

0.01

0.10

1.00

10.00

100.00

1000.00

0 4 8 12 16 20 24 28 32

Unbalanced Tree Search T3*

Se
co

nd
s

Cores

*T3 dataset generates 4112897 vertices
Tuesday, August 21, 12



Recent	
  Chapel	
  Support	
  Overview

§ Regression	
  Tests
§ Local	
  Nightlies!

§ SynchronizaAon	
  Improvements
§ More	
  direct	
  support	
  of	
  sync	
  variables	
  (Ma^	
  Baker)
§ Support	
  for	
  (more	
  efficient)	
  oversubscripAon

§ I/O	
  Subsystem
§ Eureka	
  Moment	
  Infrastructure

§ Sincs
§ Task	
  Teams	
  &	
  Subteams

6

Tuesday, August 21, 12



I/O	
  Subsystem	
  Design

§ Queue	
  of	
  I/O	
  operaAons
§ Servicing	
  kernel	
  threads	
  (pthreads)

§ Dynamic	
  up	
  to	
  user-­‐configurable	
  maximum
§ Persistent	
  up	
  to	
  user-­‐configurable	
  Ame	
  limit

§ Overheads
§ 1-­‐2	
  context	
  swaps
§ Queueing	
  latency
§ I/O	
  threadstart

7

Tuesday, August 21, 12



I/O	
  Subsystem	
  Features

§ Generic	
  Blocking	
  OperaAons
§ Basis	
  for	
  fundamental	
  blocking	
  operaAons
§ Provides	
  inter-­‐operaAon	
  with	
  external	
  blocking	
  operaAons	
  (TPLs)
§ 2	
  context	
  swaps
§ PotenAal	
  for	
  abuse

§ System	
  Call	
  IntercepAon
§ 1	
  context	
  swap
§ Hard	
  and	
  sof	
  intercepAon
§ CapabiliAes	
  limited	
  by	
  OS	
  support	
  for	
  syscall()

§ Networking	
  OperaAons
§ CollaboraAon	
  with	
  Portals4
§ Asynchronous	
  operaAons	
  needn’t	
  involve	
  subsystem
§ Progress	
  thread	
  management	
  an	
  area	
  of	
  acAve	
  research	
  (see	
  SPR)

8

Tuesday, August 21, 12



Eureka	
  Moments

§ Asynchronous	
  preempAve	
  terminaAon	
  of	
  a	
  set	
  of	
  tasks
§ Number	
  of	
  tasks	
  working	
  towards	
  some	
  goal
§ One	
  task	
  is	
  first	
  to	
  reach	
  special	
  state,	
  signals	
  “eureka”
§ Only	
  first	
  task	
  conAnues	
  execuAon,	
  all	
  others	
  terminated

§ Use	
  cases
§ Algorithm	
  races

§ MulAple	
  versions	
  of	
  the	
  same	
  kernel
§ Redundant	
  execuAon

§ Recursive	
  tree	
  search	
  algorithms
§ Many	
  parallel	
  tasks	
  searching	
  for	
  a	
  specific	
  condiAon	
  or	
  datum

§ Parallel	
  breaks
§ Break	
  out	
  of	
  parallel	
  loops

9

Tuesday, August 21, 12



Eureka	
  Requirements

§ PreempAve	
  task	
  kill
§ Stop	
  running	
  tasks
§ Filter	
  work	
  queues
§ Track	
  down	
  blocked	
  tasks

§ Task	
  collecAons
§ Maintain	
  membership
§ Scope	
  extent	
  of	
  kill
§ Implemented	
  in	
  Qthreads	
  as	
  “teams”
§ Nested	
  eurekas	
  require	
  nested	
  teams	
  (scope	
  of	
  death)

10

Tuesday, August 21, 12



Task	
  Kill	
  Algorithms

§ OpAon	
  #1:	
  Task-­‐centric
§ Send	
  terminaAon	
  signal	
  to	
  all	
  tasks	
  in	
  team	
  X
§ O(T)	
  operaAon
§ Must	
  maintain	
  explicit	
  membership	
  list
§ Requires	
  that	
  tasks	
  be	
  able	
  to	
  receive	
  and/or	
  handle	
  signals

§ Even	
  when	
  blocked!

§ OpAon	
  #2:	
  Worker-­‐centric
§ Send	
  terminaAon	
  signal	
  to	
  all	
  worker	
  threads,	
  who	
  then	
  collaborate	
  to	
  
eliminate	
  tasks	
  matching	
  some	
  descripAon

§ O(P)	
  operaAon
§ Do	
  not	
  need	
  explicit	
  membership	
  list

§ Allows	
  simpler	
  mostly-­‐anonymous	
  tasks

§ Tasks	
  do	
  not	
  need	
  to	
  “handle”	
  or	
  “receive”	
  signals

11

Tuesday, August 21, 12



Teams	
  Concept

§ All	
  tasks	
  belong	
  to	
  a	
  team
§ Team	
  “0”	
  always	
  runs	
  first	
  task

§ A	
  task	
  only	
  belongs	
  to	
  one	
  team
§ New	
  tasks	
  can	
  be	
  spawned	
  into:

§ Same	
  team	
  as	
  parent
§ A	
  new	
  team
§ A	
  new	
  team	
  dependent	
  on	
  the	
  parent	
  team’s	
  existence	
  (subteam)

§ An	
  execuAon	
  can	
  comprise	
  a	
  forest	
  of	
  team	
  trees
§ Dynamically	
  growing	
  and	
  contracAng

§ A	
  eureka	
  event	
  propagates	
  down	
  a	
  team	
  tree
§ Tree	
  structure	
  encodes	
  dependence
§ Recursive	
  cascading	
  kill	
  of	
  all	
  subteam	
  tasks	
  in	
  parallel

12

T0

T1 T2

T5 T6 T7

T10T3

T8 T9

Tuesday, August 21, 12



Teams	
  ImplementaAon	
  in	
  Qthreads

§ Each	
  task	
  has	
  an	
  associated	
  team	
  ID	
  
(pointer	
  to	
  team	
  struct)

§ Team	
  struct
§ No	
  list	
  of	
  references	
  to	
  members	
  or	
  subteams	
  
(SPEED)

§ Sincs	
  for	
  synchronizing	
  collec8ons	
  of	
  tasks	
  and	
  
subteams

§ Team	
  “0”	
  has	
  no	
  associated	
  struct	
  (tasks	
  
in	
  “0”	
  store	
  NULL	
  pointer)
§ Minimizes	
  impact	
  on	
  Qthreads	
  apps	
  not	
  using	
  
teams

§ Subteams	
  have	
  special	
  (invisible)	
  
“watcher”	
  member	
  thread
§ Trigger	
  eureka	
  iff	
  the	
  parent	
  team	
  is	
  destroyed

13

Subteam

Team

Tuesday, August 21, 12



Sinc	
  SynchronizaAon

§ CollecAve	
  and	
  reducAon	
  operaAons
§ Dynamic	
  set	
  of	
  anonymous	
  parAcipants
§ Task	
  barrier
§ User-­‐provided	
  reducAon	
  operaAons

§ Do	
  not	
  require	
  synchronizaAon!

§ Basic	
  usage
§ Create	
  expecAng	
  N	
  submissions	
  (parAcipants)
§ Increase/decrease	
  parAcipaAon	
  with	
  qt_sinc_expect()	
  and	
  _submit()

§ Tasks	
  may	
  block	
  unAl	
  sinc	
  is	
  “ready”	
  with	
  qt_sinc_wait()

§ MulAple	
  implementaAons
§ Central	
  counter	
  (both	
  incr	
  and	
  CAS	
  variants)
§ Distributed	
  counter	
  (snzi-­‐style)

14

Tuesday, August 21, 12



Status	
  and	
  the	
  Future

§ Status
§ MulAple	
  implementaAons	
  of	
  sincs	
  construct

§ Used	
  in	
  many	
  places	
  in	
  Qthreads	
  internals	
  and	
  applicaAons

§ Teams	
  and	
  subteams	
  fully	
  implemented
§ Eureka	
  design	
  completed

§ The	
  Future
§ MulAnode!
§ SPR:	
  A	
  more	
  perfect	
  union	
  of	
  parallelism	
  scopes
§ Distributed	
  task	
  teams

15

Tuesday, August 21, 12



Scalable	
  Parallel	
  RunAme	
  (SPR)

§ Integrate	
  Qthreads	
  and	
  Portals	
  for	
  mutual	
  benefit
§ Remote	
  task	
  spawn

§ Currently	
  explicit,	
  potenAal	
  for	
  load	
  balance	
  under	
  
certain	
  condiAons

§ ConAnuaAon-­‐style	
  programming

§ Data	
  movement	
  and	
  collecAves
§ Can	
  a^ach	
  (input)	
  data	
  to	
  tasks	
  OR	
  send	
  data	
  directly	
  
(RMA-­‐style)

§ Can	
  leverage	
  MPI	
  collecAves

§ SynchronizaAon
§ Currently	
  done	
  via	
  remote	
  spawn,	
  plan	
  to	
  do	
  be^er	
  (as	
  
needed)

§ Progress
§ Portals4	
  provides	
  strong	
  (asynchronous)	
  progress
§ Currently	
  mulAple	
  progress	
  threads	
  (needs	
  development)

16

Chapel

SP
R

(Q
th
re
ad

s	
  &
	
  

Po
rt
al
s4
)

M
em

or
y

Tuesday, August 21, 12



QUESTIONS?
Thank	
  you!

17

Tuesday, August 21, 12



SPARE	
  SLIDES
End	
  of	
  presentaAon...

18

Tuesday, August 21, 12



ImplemenAng	
  Other	
  Models

19

1

10

100

1000

0 2 4 6 8 10 12 14 16

Execution Time
Se

co
nd

s

Cores
GCC OpenMP GCC Serial
PGI OpenMP PGI Serial
Intel OpenMP Intel Serial
Qthread OpenMP

0

4

8

12

16

0 2 4 6 8 10 12 14 16

Speedup

Cores
GCC Qthread PGI Intel
Linear

1

10

100

1000

0 24 48 72 96 120 144 168 192

Execution Time

Se
co

nd
s

Cores
GCC OpenMP GCC Serial
Qthread OpenMP

0

24

48

72

96

120

144

168

192

0 24 48 72 96 120 144 168 192

Speedup

Cores
GCC Qthread Linear

OpenMP SparseLU Factorization (BOTS)

Tuesday, August 21, 12



The	
  Others	
  in	
  the	
  Field

20

SPR Cilk TBB IOMP GOMP HPX Cuda Nanox Tascel Scioto H-C H-J
Loop 

Parallelism
Data 

Parallelism
Any-to-any 

synch

Reductions

Collectives

Data-directed 
Synchronization

Triggered Tasks

Cache-aware 
Scheduler

NUMA-aware 
Scheduler

Task Pinning

Spawn Cache

Task Teams

I/O Handling

Modifiable 
Parallelism

Reactive 
Parallelism

Compiler 
Independent

Remote task 
spawn

SPMD

MIMD

✔ ✔ ✔ ✔ ✔ ✔ ✔ ~ ✔

✔ ✔ ~ ✔ ✔ ✔

✔ ✔ ✔ ~ ✔ ✔

✔ ✔ ✔ ~ ~ ✔ ✔ ~ ✔
✔ ~ ~ ~ ~ ✔ ~ ~ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔ ~ ✔ ✔ ✔

✔ ✔ ✔ ~ ✔ ~
✔ ✔ ✔ ✔ ✔ ~
✔ ~ ✔

✔ ✔ ~
✔ ? ✔

✔ ~ ~ ✔

✔

✔ ✔ ✔ ✔
Multinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only Features

✔ ✔

✔ ~
✔ ✔ ✔ ✔

Tuesday, August 21, 12


