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Chapel’s	
  RunAme	
  Layer

§ Abstract	
  interface	
  compiler	
  target
§ C	
  API	
  calls
§ ImplementaAons	
  selected	
  when	
  building	
  `chpl`

§ Default	
  implementaAons
§ Tasking/threading:	
  FIFO/Pthreads
§ CommunicaAon:	
  GASNet

§ Tasking	
  interface	
  supports
§ Sync	
  variables
§ Begin,	
  cobegin,	
  coforall,	
  ...
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Challenges	
  in	
  Tasking	
  RunAmes

§ Per-­‐thread	
  state
§ Locality

§ An	
  a3erthought	
  in	
  standard	
  threading	
  models
§ Communica8on	
  and	
  synchroniza8on	
  expensive	
  (easy	
  to	
  use	
  

accidentally)

§ Synchroniza8on
§ Hard	
  to	
  make	
  portable,	
  maintain	
  guarantees

§ Scheduling
§ Part	
  of	
  the	
  cri8cal	
  path
§ Controls	
  resource	
  conten8on	
  (cache,	
  memory,	
  network,	
  etc.)
§ Adap8vity	
  to	
  load,	
  power,	
  resource	
  conten8on	
  cri8cal	
  for	
  performance
§ Most	
  schedulers	
  ignore	
  non-­‐computa8onal	
  ac8vity

§ Networking	
  and	
  I/O

§ Every	
  machine	
  is	
  different
§ Granularity	
  of	
  sharing	
  (cacheline	
  size)
§ Op8mal	
  number	
  of	
  threads	
  (PU	
  count)
§ Communica8on	
  topology
§ Cache	
  structure
§ Memory	
  model
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Sandia’s	
  Qthreads	
  for	
  Tasking

§ Lightweight	
  user-­‐level	
  tasking
§ PlaPorm	
  portability

§ ARM,	
  Tilera,	
  IA32/64,	
  AMD64,	
  PPC32/64,	
  SparcV9
§ Linux,	
  BSD,	
  Solaris,	
  MacOSX,	
  Cygwin

§ Locality	
  fundamental	
  to	
  model
§ “Shepherd”	
  a	
  thread	
  mobility	
  domain

§ Fine-­‐grained	
  synchroniza8on	
  seman8cs
§ Full-­‐empty	
  bits	
  (64-­‐bit	
  &	
  60-­‐bit)
§ Mutexes
§ Atomic	
  opera8ons	
  (integer	
  incr,	
  float	
  incr,	
  &	
  CAS)
§ Collec8ve	
  and	
  reduc8on	
  opera8ons	
  (sincs)

§ Locality-­‐,	
  cache-­‐,	
  I/O-­‐aware	
  work-­‐stealing	
  scheduler	
  model
§ Open	
  source	
  research	
  plaPorm
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Why	
  Qthreads?

§ Performance	
  compeAAve	
  
with	
  the	
  best	
  commercial	
  
tasking	
  runAmes
§ ...	
  and	
  more	
  scalable

§ Feature-­‐rich,	
  simple	
  mapping	
  
from	
  Chapel	
  primiAves

§ Ongoing	
  fundamental	
  
runAme	
  research

§ Easy	
  to	
  extend
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Recent	
  Chapel	
  Support	
  Overview

§ Regression	
  Tests
§ Local	
  Nightlies!

§ SynchronizaAon	
  Improvements
§ More	
  direct	
  support	
  of	
  sync	
  variables	
  (Ma^	
  Baker)
§ Support	
  for	
  (more	
  efficient)	
  oversubscripAon

§ I/O	
  Subsystem
§ Eureka	
  Moment	
  Infrastructure

§ Sincs
§ Task	
  Teams	
  &	
  Subteams
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I/O	
  Subsystem	
  Design

§ Queue	
  of	
  I/O	
  operaAons
§ Servicing	
  kernel	
  threads	
  (pthreads)

§ Dynamic	
  up	
  to	
  user-­‐configurable	
  maximum
§ Persistent	
  up	
  to	
  user-­‐configurable	
  Ame	
  limit

§ Overheads
§ 1-­‐2	
  context	
  swaps
§ Queueing	
  latency
§ I/O	
  threadstart
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I/O	
  Subsystem	
  Features

§ Generic	
  Blocking	
  OperaAons
§ Basis	
  for	
  fundamental	
  blocking	
  operaAons
§ Provides	
  inter-­‐operaAon	
  with	
  external	
  blocking	
  operaAons	
  (TPLs)
§ 2	
  context	
  swaps
§ PotenAal	
  for	
  abuse

§ System	
  Call	
  IntercepAon
§ 1	
  context	
  swap
§ Hard	
  and	
  sof	
  intercepAon
§ CapabiliAes	
  limited	
  by	
  OS	
  support	
  for	
  syscall()

§ Networking	
  OperaAons
§ CollaboraAon	
  with	
  Portals4
§ Asynchronous	
  operaAons	
  needn’t	
  involve	
  subsystem
§ Progress	
  thread	
  management	
  an	
  area	
  of	
  acAve	
  research	
  (see	
  SPR)
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Eureka	
  Moments

§ Asynchronous	
  preempAve	
  terminaAon	
  of	
  a	
  set	
  of	
  tasks
§ Number	
  of	
  tasks	
  working	
  towards	
  some	
  goal
§ One	
  task	
  is	
  first	
  to	
  reach	
  special	
  state,	
  signals	
  “eureka”
§ Only	
  first	
  task	
  conAnues	
  execuAon,	
  all	
  others	
  terminated

§ Use	
  cases
§ Algorithm	
  races

§ MulAple	
  versions	
  of	
  the	
  same	
  kernel
§ Redundant	
  execuAon

§ Recursive	
  tree	
  search	
  algorithms
§ Many	
  parallel	
  tasks	
  searching	
  for	
  a	
  specific	
  condiAon	
  or	
  datum

§ Parallel	
  breaks
§ Break	
  out	
  of	
  parallel	
  loops
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Eureka	
  Requirements

§ PreempAve	
  task	
  kill
§ Stop	
  running	
  tasks
§ Filter	
  work	
  queues
§ Track	
  down	
  blocked	
  tasks

§ Task	
  collecAons
§ Maintain	
  membership
§ Scope	
  extent	
  of	
  kill
§ Implemented	
  in	
  Qthreads	
  as	
  “teams”
§ Nested	
  eurekas	
  require	
  nested	
  teams	
  (scope	
  of	
  death)
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Task	
  Kill	
  Algorithms

§ OpAon	
  #1:	
  Task-­‐centric
§ Send	
  terminaAon	
  signal	
  to	
  all	
  tasks	
  in	
  team	
  X
§ O(T)	
  operaAon
§ Must	
  maintain	
  explicit	
  membership	
  list
§ Requires	
  that	
  tasks	
  be	
  able	
  to	
  receive	
  and/or	
  handle	
  signals

§ Even	
  when	
  blocked!

§ OpAon	
  #2:	
  Worker-­‐centric
§ Send	
  terminaAon	
  signal	
  to	
  all	
  worker	
  threads,	
  who	
  then	
  collaborate	
  to	
  
eliminate	
  tasks	
  matching	
  some	
  descripAon

§ O(P)	
  operaAon
§ Do	
  not	
  need	
  explicit	
  membership	
  list

§ Allows	
  simpler	
  mostly-­‐anonymous	
  tasks

§ Tasks	
  do	
  not	
  need	
  to	
  “handle”	
  or	
  “receive”	
  signals
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Teams	
  Concept

§ All	
  tasks	
  belong	
  to	
  a	
  team
§ Team	
  “0”	
  always	
  runs	
  first	
  task

§ A	
  task	
  only	
  belongs	
  to	
  one	
  team
§ New	
  tasks	
  can	
  be	
  spawned	
  into:

§ Same	
  team	
  as	
  parent
§ A	
  new	
  team
§ A	
  new	
  team	
  dependent	
  on	
  the	
  parent	
  team’s	
  existence	
  (subteam)

§ An	
  execuAon	
  can	
  comprise	
  a	
  forest	
  of	
  team	
  trees
§ Dynamically	
  growing	
  and	
  contracAng

§ A	
  eureka	
  event	
  propagates	
  down	
  a	
  team	
  tree
§ Tree	
  structure	
  encodes	
  dependence
§ Recursive	
  cascading	
  kill	
  of	
  all	
  subteam	
  tasks	
  in	
  parallel
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Teams	
  ImplementaAon	
  in	
  Qthreads

§ Each	
  task	
  has	
  an	
  associated	
  team	
  ID	
  
(pointer	
  to	
  team	
  struct)

§ Team	
  struct
§ No	
  list	
  of	
  references	
  to	
  members	
  or	
  subteams	
  
(SPEED)

§ Sincs	
  for	
  synchronizing	
  collec8ons	
  of	
  tasks	
  and	
  
subteams

§ Team	
  “0”	
  has	
  no	
  associated	
  struct	
  (tasks	
  
in	
  “0”	
  store	
  NULL	
  pointer)
§ Minimizes	
  impact	
  on	
  Qthreads	
  apps	
  not	
  using	
  
teams

§ Subteams	
  have	
  special	
  (invisible)	
  
“watcher”	
  member	
  thread
§ Trigger	
  eureka	
  iff	
  the	
  parent	
  team	
  is	
  destroyed
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Sinc	
  SynchronizaAon

§ CollecAve	
  and	
  reducAon	
  operaAons
§ Dynamic	
  set	
  of	
  anonymous	
  parAcipants
§ Task	
  barrier
§ User-­‐provided	
  reducAon	
  operaAons

§ Do	
  not	
  require	
  synchronizaAon!

§ Basic	
  usage
§ Create	
  expecAng	
  N	
  submissions	
  (parAcipants)
§ Increase/decrease	
  parAcipaAon	
  with	
  qt_sinc_expect()	
  and	
  _submit()

§ Tasks	
  may	
  block	
  unAl	
  sinc	
  is	
  “ready”	
  with	
  qt_sinc_wait()

§ MulAple	
  implementaAons
§ Central	
  counter	
  (both	
  incr	
  and	
  CAS	
  variants)
§ Distributed	
  counter	
  (snzi-­‐style)
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Status	
  and	
  the	
  Future

§ Status
§ MulAple	
  implementaAons	
  of	
  sincs	
  construct

§ Used	
  in	
  many	
  places	
  in	
  Qthreads	
  internals	
  and	
  applicaAons

§ Teams	
  and	
  subteams	
  fully	
  implemented
§ Eureka	
  design	
  completed

§ The	
  Future
§ MulAnode!
§ SPR:	
  A	
  more	
  perfect	
  union	
  of	
  parallelism	
  scopes
§ Distributed	
  task	
  teams
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Scalable	
  Parallel	
  RunAme	
  (SPR)

§ Integrate	
  Qthreads	
  and	
  Portals	
  for	
  mutual	
  benefit
§ Remote	
  task	
  spawn

§ Currently	
  explicit,	
  potenAal	
  for	
  load	
  balance	
  under	
  
certain	
  condiAons

§ ConAnuaAon-­‐style	
  programming

§ Data	
  movement	
  and	
  collecAves
§ Can	
  a^ach	
  (input)	
  data	
  to	
  tasks	
  OR	
  send	
  data	
  directly	
  
(RMA-­‐style)

§ Can	
  leverage	
  MPI	
  collecAves

§ SynchronizaAon
§ Currently	
  done	
  via	
  remote	
  spawn,	
  plan	
  to	
  do	
  be^er	
  (as	
  
needed)

§ Progress
§ Portals4	
  provides	
  strong	
  (asynchronous)	
  progress
§ Currently	
  mulAple	
  progress	
  threads	
  (needs	
  development)
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QUESTIONS?
Thank	
  you!
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SPARE	
  SLIDES
End	
  of	
  presentaAon...
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ImplemenAng	
  Other	
  Models

19
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The	
  Others	
  in	
  the	
  Field
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SPR Cilk TBB IOMP GOMP HPX Cuda Nanox Tascel Scioto H-C H-J
Loop 

Parallelism
Data 

Parallelism
Any-to-any 

synch

Reductions

Collectives

Data-directed 
Synchronization

Triggered Tasks

Cache-aware 
Scheduler

NUMA-aware 
Scheduler

Task Pinning

Spawn Cache

Task Teams

I/O Handling

Modifiable 
Parallelism

Reactive 
Parallelism

Compiler 
Independent

Remote task 
spawn

SPMD

MIMD

✔ ✔ ✔ ✔ ✔ ✔ ✔ ~ ✔

✔ ✔ ~ ✔ ✔ ✔

✔ ✔ ✔ ~ ✔ ✔

✔ ✔ ✔ ~ ~ ✔ ✔ ~ ✔
✔ ~ ~ ~ ~ ✔ ~ ~ ✔ ✔

✔ ✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔ ✔ ~ ✔ ✔ ✔

✔ ✔ ✔ ~ ✔ ~
✔ ✔ ✔ ✔ ✔ ~
✔ ~ ✔

✔ ✔ ~
✔ ? ✔

✔ ~ ~ ✔

✔

✔ ✔ ✔ ✔
Multinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only FeaturesMultinode-only Features

✔ ✔

✔ ~
✔ ✔ ✔ ✔
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