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Chapel’s Runtime Layer

= Abstract interface compiler target
= C APl calls

" Implementations selected when building chpl

= Default implementations
* Tasking/threading: FIFO/Pthreads

" Communication: GASNet

Communication
Threading| Tasking

= Tasking interface supports

= Sync variables

= Begin, cobegin, coforall, ...
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Challenges in Tasking Runtimes

Per-thread state

Locality
= An afterthought in standard threading models

= Communication and synchronization expensive (easy to use
accidentally)

Synchronization
= Hard to make portable, maintain guarantees

Scheduling
= Part of the critical path

Communication

= Controls resource contention (cache, memory, network, etc.)

= Adaptivity to load, power, resource contention critical for performance
= Most schedulers ignore non-computational activity
= Networking and /O
Every machine is different

= Granularity of sharing (cacheline size)
= Optimal number of threads (PU count)

Communication topology

Cache structure

Memory model
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Sandia’s Qthreads for Tasking B

Lightweight user-level tasking N

A0y

| CHHAPEL

Platform portability
= ARM, Tilera, IA32/64, AMD64, PPC32/64, SparcV9
= Linux, BSD, Solaris, MacOSX, Cygwin

Locality fundamental to model
= “Shepherd” a thread mobility domain

Fine-grained synchronization semantics
= Full-empty bits (64-bit & 60-bit)
= Mutexes

Qthreads

Communication

= Atomic operations (integer incr, float incr, & CAS)
= Collective and reduction operations (sincs)

Locality-, cache-, |/O-aware work-stealing scheduler model

Open source research platform
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Why Qthreads?

= Performance competitive
with the best commercial
tasking runtimes

= . and more scalable

= Feature-rich, simple mapping
from Chapel primitives

= Ongoing fundamental
runtime research

= Easy to extend

— TBB — Qthreads Intel OpenMP
— GCC OpenMP — HPX Cilk

Sandia
National
Laboratories
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Recent Chapel Support Overview

Regression Tests
" Local Nightlies!

Synchronization Improvements
= More direct support of sync variables (Matt Baker)

= Support for (more efficient) oversubscription

/O Subsystem
Eureka Moment Infrastructure

= Sincs

= Task Teams & Subteams
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1/O Subsystem Design

= Queue of I/O operations
= Servicing kernel threads (pthreads)

" Dynamic up to user-configurable maximum

= Persistent up to user-configurable time limit

" Overheads
= 1-2 context swaps
= Queueing latency
= |/O threadstart
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/O Subsystem Features B

= Generic Blocking Operations
= Basis for fundamental blocking operations
= Provides inter-operation with external blocking operations (TPLs)
= 2 context swaps
= Potential for abuse

= System Call Interception
= ] context swap
= Hard and soft interception
= Capabilities limited by OS support for syscall ()

= Networking Operations
= Collaboration with Portals4
= Asynchronous operations needn’t involve subsystem
= Progress thread management an area of active research (see SPR)
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Fureka Moments oy

= Asynchronous preemptive termination of a set of tasks
"= Number of tasks working towards some goal
" One task is first to reach special state, signals “eureka”

" Only first task continues execution, all others terminated

= Use cases

" Algorithm races
Multiple versions of the same kernel
Redundant execution

= Recursive tree search algorithms

Many parallel tasks searching for a specific condition or datum

= Parallel breaks

Break out of parallel loops
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Eureka Requirements

= Preemptive task kill
= Stop running tasks
" Filter work queues

®" Track down blocked tasks

= Task collections
" Maintain membership
= Scope extent of Kkill
" Implemented in Qthreads as “teams”

" Nested eurekas require nested teams (scope of death)
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Task Kill Algorithms =

= Option #1: Task-centric
= Send termination signal to all tasks in team X
= O(T) operation
= Must maintain explicit membership list
= Requires that tasks be able to receive and/or handle signals
Even when blocked!
= Option #2: Worker-centric

= Send termination signal to all worker threads, who then collaborate to
eliminate tasks matching some description

= O(P) operation

* Do not need explicit membership list

Allows simpler mostly-anonymous tasks

" Tasks do not need to “handle” or “receive” signals

Tuesday, August 21, 12



Teams Concept ()

= All tasks belong to a team — — —

m T ' (¥aVi | ﬁ k \ 6
eam “0” always runs first tas OO// \T2 Q/T8 Cg

= A task only belongs to one team O{/ NNy ({ bd}

= New tasks can be spawned into: Jbg g

= Same team as parent

= A new team

= A new team dependent on the parent team’s existence (subteam)

= An execution can comprise a forest of team trees

= Dynamically growing and contracting

= A eureka event propagates down a team tree
" Tree structure encodes dependence

= Recursive cascading kill of all subteam tasks in parallel
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Teams Implementation in Qthreads M.

Each task has an associated team ID
(pointer to team struct)

Team struct

= No list of references to members or subteams

(SPEED) g%:/?ligg

= Sincs for synchronizing collections of tasks and

e

Subteam

in “0” store NULL pointer)

= Minimizes impact on Qthreads apps not using
teams

subteams O/ \Q
Team “0” has no associated struct (tasks @é‘?/‘ix\é\@

Subteams have special (invisible)
“watcher” member thread

" Trigger eureka iff the parent team is destroyed
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Sinc Synchronization =N

= Collective and reduction operations
= Dynamic set of anonymous participants
= Task barrier

= User-provided reduction operations

Do not require synchronization!

= Basic usage
" Create expecting N submissions (participants)

" |Increase/decrease participation with qt_sinc_expect() and _submit ()
= Tasks may block until sinc is “ready” with qt_sinc_wait()

= Multiple implementations

= Central counter (both incr and CAS variants)

= Distributed counter (snzi-style)
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Status and the Future

= Status

* Multiple implementations of sincs construct

= Used in many places in Qthreads internals and applications

= Teams and subteams fully implemented

" Eureka design completed

= The Future
* Multinode!
= SPR: A more perfect union of parallelism scopes

= Distributed task teams
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Scalable Parallel Runtime (SPR)

Integrate Qthreads and Portals for mutual benefit
Remote task spawn

= Currently explicit, potential for load balance under
certain conditions

= Continuation-style programming
Data movement and collectives

= Can attach (input) data to tasks OR send data directly
(RMA-style)

= Can leverage MPI collectives

Synchronization

* Currently done via remote spawn, plan to do better (as
needed)

Progress
" Portals4 provides strong (asynchronous) progress
= Currently multiple progress threads (needs development)
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Thank you!

QUESTIONS?
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End of presentation...

SPARE SLIDES
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Implementing Other Models

OpenMP SparselLU Factorization (BOTS)

Execution Time Speedup

Seconds

8 10 12 14 8 10 12 14 16

Cores Cores

O GCC OpenMP O GCC Serial O GCC A Qthread PGl 3¢ Intel

PGI OpenMP 3 PGI Serial — Linear
%% Intel OpenMP % Intel Serial
#x Qthread OpenMP

Execution Time

96
72
48

# M

1 0

0 24 48 72 96 120 144 168 192 0 24 48 72 96 120 144 168 192
Cores Cores

O GCC OpenMP O GCC Serial O GCC 4 Qthread Linear
A Qthread OpenMP

Seconds

AAAAAAAAAAAAAAAAAAM
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The Others in the Field ()

SPR Cilk TBB IOMP GOMP HPX Cuda Nanox Tascel Scioto H-C

v v v v v v ~
v = v v

v ~ v

v v o e v v a

Loop
Parallelism

Data
Parallelism

Any-to-any
synch

Reductions

Collectives

Data-directed
Synchronization

Triggered Tasks

Cache-aware
Scheduler

NUMA-aware
Scheduler

SN XXX

Task Pinning
Spawn Cache

Task Teams

S X
!

1/0 Handling
Modifiable
Parallelism

Reactive
Parallelism

Compiler
Independent

v v v

Multinode-only Features

Sandia
National
Laboratories

t * KRN SKT?T

Remote task
spawn

SPMD

v

TN CNNNKNKACKNKCKSKKKKNKSKKXN
<
<
<

MIMD

v v v

Tuesday, August 21, 12



