SAND2012- 6985P

Sandia

Exceptional service in the national interest National
Laboratories

Chapel Projects Review

August 23, 2012

@/ ENERGY ; 4 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Tuesday, August 21, 12

Chapel’s Runtime Layer

= Abstract interface compiler target
= C APl calls

" Implementations selected when building chpl

= Default implementations
* Tasking/threading: FIFO/Pthreads

" Communication: GASNet

Communication
Threading| Tasking

= Tasking interface supports

= Sync variables

= Begin, cobegin, coforall, ...

Tuesday, August 21, 12

Challenges in Tasking Runtimes

Per-thread state

Locality
= An afterthought in standard threading models

= Communication and synchronization expensive (easy to use
accidentally)

Synchronization
= Hard to make portable, maintain guarantees

Scheduling
= Part of the critical path

Communication

= Controls resource contention (cache, memory, network, etc.)

= Adaptivity to load, power, resource contention critical for performance
= Most schedulers ignore non-computational activity
= Networking and /O
Every machine is different

= Granularity of sharing (cacheline size)
= Optimal number of threads (PU count)

Communication topology

Cache structure

Memory model

Tuesday, August 21, 12

Sandia

Sandia’s Qthreads for Tasking B

Lightweight user-level tasking N

A0y

| CHHAPEL

Platform portability
= ARM, Tilera, IA32/64, AMD64, PPC32/64, SparcV9
= Linux, BSD, Solaris, MacOSX, Cygwin

Locality fundamental to model
= “Shepherd” a thread mobility domain

Fine-grained synchronization semantics
= Full-empty bits (64-bit & 60-bit)
= Mutexes

Qthreads

Communication

= Atomic operations (integer incr, float incr, & CAS)
= Collective and reduction operations (sincs)

Locality-, cache-, |/O-aware work-stealing scheduler model

Open source research platform

Tuesday, August 21, 12

Why Qthreads?

= Performance competitive
with the best commercial
tasking runtimes

= . and more scalable

= Feature-rich, simple mapping
from Chapel primitives

= Ongoing fundamental
runtime research

= Easy to extend

— TBB — Qthreads Intel OpenMP
— GCC OpenMP — HPX Cilk

Sandia
National
Laboratories

Sequential Spawn 2720

Cores

ced Tree Search T3*
1000.00

100.00

10.00

1.00

0.10

0.01

*T3 dataset generates 4112897 vertices

Tuesday, August 21, 12

Sandia

Recent Chapel Support Overview

Regression Tests
" Local Nightlies!

Synchronization Improvements
= More direct support of sync variables (Matt Baker)

= Support for (more efficient) oversubscription

/O Subsystem
Eureka Moment Infrastructure

= Sincs

= Task Teams & Subteams

Tuesday, August 21, 12

1/O Subsystem Design

= Queue of I/O operations
= Servicing kernel threads (pthreads)

" Dynamic up to user-configurable maximum

= Persistent up to user-configurable time limit

" Overheads
= 1-2 context swaps
= Queueing latency
= |/O threadstart

Tuesday, August 21, 12

Sandia

/O Subsystem Features B

= Generic Blocking Operations
= Basis for fundamental blocking operations
= Provides inter-operation with external blocking operations (TPLs)
= 2 context swaps
= Potential for abuse

= System Call Interception
=] context swap
= Hard and soft interception
= Capabilities limited by OS support for syscall ()

= Networking Operations
= Collaboration with Portals4
= Asynchronous operations needn’t involve subsystem
= Progress thread management an area of active research (see SPR)

Tuesday, August 21, 12

Sandia

Fureka Moments oy

= Asynchronous preemptive termination of a set of tasks
"= Number of tasks working towards some goal
" One task is first to reach special state, signals “eureka”

" Only first task continues execution, all others terminated

= Use cases

" Algorithm races
Multiple versions of the same kernel
Redundant execution

= Recursive tree search algorithms

Many parallel tasks searching for a specific condition or datum

= Parallel breaks

Break out of parallel loops

Tuesday, August 21, 12

Eureka Requirements

= Preemptive task kill
= Stop running tasks
" Filter work queues

®" Track down blocked tasks

= Task collections
" Maintain membership
= Scope extent of Kkill
" Implemented in Qthreads as “teams”

" Nested eurekas require nested teams (scope of death)

Tuesday, August 21, 12

Sandia

Task Kill Algorithms =

= Option #1: Task-centric
= Send termination signal to all tasks in team X
= O(T) operation
= Must maintain explicit membership list
= Requires that tasks be able to receive and/or handle signals
Even when blocked!
= Option #2: Worker-centric

= Send termination signal to all worker threads, who then collaborate to
eliminate tasks matching some description

= O(P) operation

* Do not need explicit membership list

Allows simpler mostly-anonymous tasks

" Tasks do not need to “handle” or “receive” signals

Tuesday, August 21, 12

Teams Concept ()

= All tasks belong to a team — — —

m T ' (¥aVi | ﬁ k \ 6
eam “0” always runs first tas OO// \T2 Q/T8 Cg

= A task only belongs to one team O{/ NNy ({ bd}

= New tasks can be spawned into: Jbg g

= Same team as parent

= A new team

= A new team dependent on the parent team’s existence (subteam)

= An execution can comprise a forest of team trees

= Dynamically growing and contracting

= A eureka event propagates down a team tree
" Tree structure encodes dependence

= Recursive cascading kill of all subteam tasks in parallel

Tuesday, August 21, 12

Sandia

Teams Implementation in Qthreads M.

Each task has an associated team ID
(pointer to team struct)

Team struct

= No list of references to members or subteams

(SPEED) g%:/?ligg

= Sincs for synchronizing collections of tasks and

e

Subteam

in “0” store NULL pointer)

= Minimizes impact on Qthreads apps not using
teams

subteams O/ \Q
Team “0” has no associated struct (tasks @é‘?/‘ix\é\@

Subteams have special (invisible)
“watcher” member thread

" Trigger eureka iff the parent team is destroyed

Tuesday, August 21, 12

Sandia

Sinc Synchronization =N

= Collective and reduction operations
= Dynamic set of anonymous participants
= Task barrier

= User-provided reduction operations

Do not require synchronization!

= Basic usage
" Create expecting N submissions (participants)

" |Increase/decrease participation with qt_sinc_expect() and _submit ()
= Tasks may block until sinc is “ready” with qt_sinc_wait()

= Multiple implementations

= Central counter (both incr and CAS variants)

= Distributed counter (snzi-style)

Tuesday, August 21, 12

Status and the Future

= Status

* Multiple implementations of sincs construct

= Used in many places in Qthreads internals and applications

= Teams and subteams fully implemented

" Eureka design completed

= The Future
* Multinode!
= SPR: A more perfect union of parallelism scopes

= Distributed task teams

Tuesday, August 21, 12

Scalable Parallel Runtime (SPR)

Integrate Qthreads and Portals for mutual benefit
Remote task spawn

= Currently explicit, potential for load balance under
certain conditions

= Continuation-style programming
Data movement and collectives

= Can attach (input) data to tasks OR send data directly
(RMA-style)

= Can leverage MPI collectives

Synchronization

* Currently done via remote spawn, plan to do better (as
needed)

Progress
" Portals4 provides strong (asynchronous) progress
= Currently multiple progress threads (needs development)

Tuesday, August 21, 12

Thank you!

QUESTIONS?

Tuesday, August 21, 12

End of presentation...

SPARE SLIDES

Tuesday, August 21, 12

Implementing Other Models

OpenMP SparselLU Factorization (BOTS)

Execution Time Speedup

Seconds

8 10 12 14 8 10 12 14 16

Cores Cores

O GCC OpenMP O GCC Serial O GCC A Qthread PGl 3¢ Intel

PGI OpenMP 3 PGI Serial — Linear
%% Intel OpenMP % Intel Serial
#x Qthread OpenMP

Execution Time

96
72
48

M

1 0

0 24 48 72 96 120 144 168 192 0 24 48 72 96 120 144 168 192
Cores Cores

O GCC OpenMP O GCC Serial O GCC 4 Qthread Linear
A Qthread OpenMP

Seconds

AAAAAAAAAAAAAAAAAAM

Tuesday, August 21, 12

The Others in the Field ()

SPR Cilk TBB IOMP GOMP HPX Cuda Nanox Tascel Scioto H-C

v v v v v v ~
v = v v

v ~ v

v v o e v v a

Loop
Parallelism

Data
Parallelism

Any-to-any
synch

Reductions

Collectives

Data-directed
Synchronization

Triggered Tasks

Cache-aware
Scheduler

NUMA-aware
Scheduler

SN XXX

Task Pinning
Spawn Cache

Task Teams

S X
!

1/0 Handling
Modifiable
Parallelism

Reactive
Parallelism

Compiler
Independent

v v v

Multinode-only Features

Sandia
National
Laboratories

t * KRN SKT?T

Remote task
spawn

SPMD

v

TN CNNNKNKACKNKCKSKKKKNKSKKXN
<
<
<

MIMD

v v v

Tuesday, August 21, 12

