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Selected Applications 

•  Many materials are transparent to THz 
•  THz radiation is non-invasive, does 

not damage biological tissue  
•  Explosives have unique chemical 

signatures (THz fingerprints) 

•  Eigenstates can be changed over 
layer thickness and bias 

•  Wide range of frequencies can be 
targeted in same material system 

Why semiconductor nanostructures? 
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2. Optically-pumped, electrically driven THz QCL1 
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  1. Quantum wells & Quantum Cascade Lasers •  circumvents the Manley-Rowe limit by coherently 
recovering the pump phonons 

•  THz generation via stimulated emission but also from 
automatically phase-matched  quantum coherence 
contributions 

Model systems for quantum 
coherence effects (GWI, EIT) 

1. Band structure 2. Material Dynamics 

3. Field Dynamics B
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exceeds  
Manley-Rowe limit ! [1] Waldmueller et al., ‘Circumventing the Manley-Rowe Quantum Efficiency Limit in an 

Optically Pumped Terahertz Quantum-Cascade Amplifier’, Phys Rev. Lett. 99 (2007)  

Depending on the problem at hand, the three parts (1. band 
structure, 2. material dynamics, and 3. field dynamics) have to 
be solved simultaneously or iteratively.  

solve Schrodinger Equation 
(k.pmethod, 8x8 Hamiltonian) 
in fourier space 

solve Heisenberg equations (in Markov 
and 2nd order Born approximation) to 
determine k-resolved 

Ĥ(k) ψ(k) = E ψ(k)

Our microscopic simulator has been applied successfully to 
the description of ultrafast phenomena (including high 
excitation and fast modulation conditions) as well as to the 
steady-state characteristics (electron distributions, non-
equilibrium phonon populations, absorption/gain spectra, 
current densities) of complex 2d-heterostructures. 
Furthermore, it has been used to showcase that 
automatically phase-matched quantum coherence 
contributions can give rise to THz radiation. 
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•  intersubband coherences 
•  subband populations 
•  Phonons 
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For the contribution from Hpp we use the relaxation time approximation. 
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Gain spectra, showing the 
different gain contributions, are 
calculated microscopically 
without any fit-parameters 

Time- and k-resolved electron 
occupations and intersubband 
coherences are calculated including 
both diagonal, and non-diagonal 
correlation contributions 
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solve Maxwell’s wave equation 
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where the resonant part of the 
material response is been treated 
dynamically in terms of the 
macroscopic optical polarization 

with 
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