

Exceptional service in the national interest

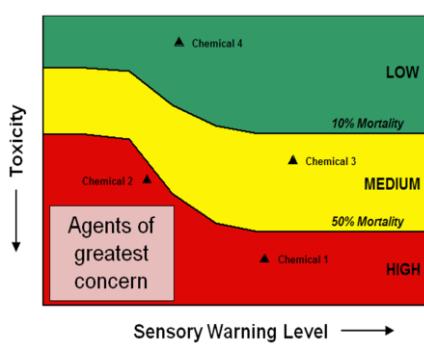
Hazards Assessment & Consequence Management Decision Analysis Capability

Sandia's HazDAC Tool

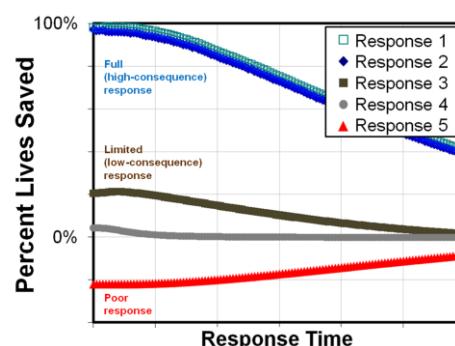
HazDAC provides probabilistic, end-to-end analysis and decision support, including:

- Defining the threat;
- Analyzing attack prevention or hardening measures;
- Evaluating the effectiveness of countermeasures;
- Developing system requirements;
- Deploying optimized detection system architectures;
- Providing modeling and decision support following an attack.

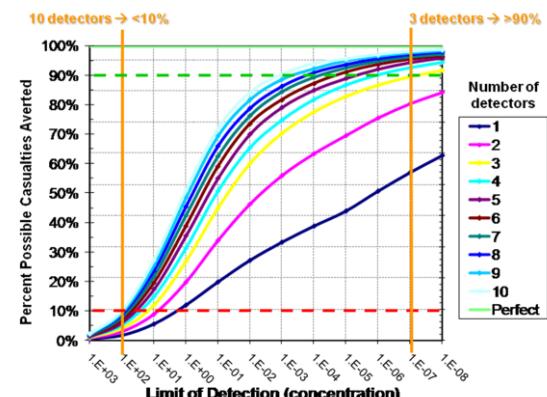
To enable these capabilities, HazDAC is a modular, Java-based, system-of-systems tool that integrates multiple modeling components and datasets into a single analysis center. Some of the HazDAC modules include:


- Domain data uses real geometries and actual schedules
 - Actual building geometries, HVAC schedules, and vehicle gate schedules
 - Metropolitan Statistical Area definitions from the Census Bureau
 - The Oak Ridge LandScan population database
- Attack module uses Monte Carlo methods to survey the entire space of threat possibilities
 - Aerosol release model
 - Library of building flow states
 - A database of meteorological data from the National Oceanic and Atmospheric Administration (NOAA)
- Dispersion module links indoor and outdoor dispersion codes
 - The Hazard Prediction and Assessment Capability (HPAC)
 - An indoor contaminant transport and diffusion model, CONTAM
 - HYSPLIT atmospheric transport and dispersion model
 - Infiltration and exfiltration capability

- Health effects module includes a dynamic population for detect-to-warn and static population for detect-to-treat
 - An agent-based, population movement model;
 - Static population & exposure
 - Agent affects model
- Response module includes ConOps, sensor siting, multiple metrics and reachback analysis
 - Countermeasure and response options model
 - The Sensor Placement Optimization Toolkit (SPOT)
 - Sensor Inversion Analysis


Many studies have used HazDAC to answer a variety of analysis questions

- DHS S&T World Trade Center Complex Indoor Detection Analysis and Optimization Study
 - Generate Design Basis Threat (DBT) scenario library to include chemical, biological, and radiological threat scenarios
 - Compute consequences across all scenarios with and without detection
 - Optimization of detector locations for networks of varying sizes.
- DHS S&T Bio-Detection System Requirements Studies
 - What are the engineering parameter (e.g. flow rate, sensitivity) requirements for optimal cost-benefit performance? Where should detectors be placed for best performance?
 - What metrics are appropriate for measuring performance?
 - Studies supported: Viable Bio-particle Capture System, Bio-Detector Performance Tradeoff Analysis, Risk-Based Indoor-Outdoor Bio-Detector Requirements Analysis, Next-Generation Threat Study, BioWatch BAND
- DHS BioWatch Indoor Reachback Center (BIRC)
 - Optimization of detector locations
 - Simulation and modeling to support exercises and training of locals
 - Post-event analysis to support key response decisions
- DHS CSAC analyses
 - What targets are most at-risk and which agents pose the greatest threat?
 - What countermeasures and responses can be taken to mitigate threat?


Examples of HazDAC output:

Threat Assessment

Countermeasure Evaluation

System Requirements