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- eelocitv-Coupled Combustion Instability — Mechanism

* Velocity fluctuations stem from both acoustic and vortical velocity
fluctuation sources
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Velocity-Coupled Combustion Instability — Mechanism

* Velocity fluctuations lead to global heat release fluctuations largely
through a flame area fluctuation mechanism
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Shreekrishna and Lieuwen, AIAA, 2009
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elocity-Coupled Combustion Instability — Rockets

* Acoustic velocity fluctuations lead to variable jet breakup and high-
amplitude heat release fluctuations

* ACOUSTIC ON

Davis and Chehroudi, AIAA2004-1330
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Velocity-Coupled Combustion Instability — Augmentors

* Flame fluctuations are due to both wake and shear layer instability

Prasad and Williamson, JFM, 1997 Emerson et al., AIAA, 2011
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Velocity-Coupled Combustion Instability — Gas Turbine Combustors

* Several instability modes in swirling flows disturb the flame

Lieuwen and Yang, AIAA, 2005
Thumuluru and Lieuwen, Proc. Comb. Inst., 2009
SzedIlmayer et al., GT2011-46080
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i
Combustion Instabilities in Gas Turbines

e What are some of the specific issues in gas turbine combustor
instabilities?
— Complicated flow fields — swirling flows are hydrodynamically
unstable and susceptible to acoustic forcing
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Billant et al., JFM, 1998, Huang et al., AIAA J., 2006
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Combustion Instabilities in Gas Turbines

e What are some of the specific issues in gas turbine combustor
instabilities?
— Mixed acoustic mode shapes

SR SO ms

C. Sensiau et al., Int. J. of Aeroacoustics, 2009
P. Wolf, G. Staffelbach, L. Gicquel and T. Poinsot, CERFACS, 2010
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Velocity Fluctuations from Hydrodynamic Instability

e Unsteady motions in swirling flows due to at least two hydrodynamic
instability mechanisms

— Swirling jet instability — vortex breakdown (Al)

— Shear layer instability — Kelvin-Helmholtz (Cl)

Liang and Maxworthy, JFM, 2006
Billant et al., JFM, 1998
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Velocity Fluctuations from Hydrodynamic Instability

e Unsteady motions in swirling flows due to at least two hydrodynamic
instability mechanisms

\ortex breakdown (Al)
Kelvin-

Helmholtz (Cl)

Kelvin-
Helmholtz (Cl)



Swirling Flow Instability

e Swirling jet instability — vortex breakdown (Al)
— Absolute instability — self-excited oscillator
— Displays intrinsic dynamics except at high-amplitude forcing
— Function of Reynolds number, swirl number, geometry




Dynamical Role of Vortex Breakdown

e The vortex breakdown region does have a dynamical role in the flow
field, particularly in the form of a precessing vortex core
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Spatial Modal Decomposition

e Spatial mode decomposition in the r-0 plane

u (t’ X T 9) ‘ TrF;nusrfisrrm ‘ 0 (w’ X, T, 9)

U(r, m,a)) — ZN: An (r’a))eime n Bm (r’w)e—ime

!

A,, m<0 — co-swirling (counter-clockwise)
B,., m>0 — counter-swirling (clockwise)
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Spatial Modal Decomposition

m=1 B - Front m=-1

Clockwise -Back Counter-clockwise

Symmetric Asymmetric Asymmetric
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Role of Vortex Breakdown in Disturbance Field

e Several spatial modes of instability are present, but in particular, m=-1
and m=-2
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Swirling Flow Instability

e Shear layer instability — Kelvin-Helmholtz

— Most amplified shear layer mode is helical

— Bias due to the action of swirl
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Swirling Flow Instability

e Shear layer instability — Kelvin-Helmholtz
— Convectively unstable — disturbance amplifier
— Strong response to external excitation (acoustic forcing)
— Response is a function of frequency, amplitude, symmetry
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Swirling Flow Instability

e Shear layer instability — Kelvin-Helmholtz
— Convectively unstable — disturbance amplifier
— Strong response to external excitation (acoustic forcing)
— Response is a function of frequency, amplitude, symmetry

Symmetric Forcing Asymmetric Forcing

Reynolds et al., ARFM, 2003
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Role of Vortex Breakdown in Disturbance Field

e Compared to the response of the shear layers, the contribution of the
precessing vortex core to the overall velocity disturbance field is small

Response at Low Frequency (0-200Hz)

.. uT!uO=D.1

Mode Number

Response at Forcing Frequency (800HzOP)
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Flow Field Topology
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—> Out-of-phase forcing

——

—

—

—

IWFSCI-2012

Session Il - O'Connor

Qut-of-phase Forcing

Vortex breakdown
Jet COIUI“\I: l ISL structure

Asymmetric acoustic velocity
Helical shear layer response
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Flow Field Topology — Phase-Averaged Velocity

Qut-of-phase Forcing
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Flow Field Topology

—

In-phase forcing

‘e
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— In-phase Forcing
b
— Vortex breakdown
Jet column l ISL structure

Symmetric acoustic velocity
Ring vortex shedding
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Flow Field Topology — Phase-Averaged Velocity
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Flow Field Topology — Downstream Development
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Role of Acoustic Field Symmetry in Flame Response

Symmetric Forcing

Asymmetric Forcing

400 Hz in-phase,
U,=10 m/s, $=0.9

Symmetric acoustic velocity
Ring vortex shedding

400 Hz out-of-phase,
U,=10 m/s, $=0.9

Asymmetric acoustic velocity
Helical shear layer response
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Role of Acoustic Field Symmetry in Flame Response

e Analytical results show significant difference in global flame response
characteristics between symmetric and asymmetric vortical velocity
disturbance fields

m = 0 ‘05 .
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- Velocity-Coupled Combustion Instability

X
i

Hydrodynamic instability

Acoustic symmetry
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Key Points

e Combustor flows are often hydrodynamically unstable
e Rockets — jet instability, jet breakup
e Augmentors — shear layer instability, wake instability
e Gas turbines — shear layer instability, vortex breakdown

e Characteristics of these instabilities dictates how these flows will
respond to combustor acoustic fields

e Convectively unstable — disturbance amplifiers

e Absolutely unstable — self-excited disturbances

e Acoustic/flow instability symmetries

e Flow response determines local flame disturbances; varying response
symmetries can produce vastly different global flame heat release
fluctuations
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Future Research Directions

e Several research needs address not only the subjects under
investigation, but also the methodology:

e Multi-physics understanding

e High-fidelity diagnostics

e Comparison between experiment and model

e Transition of fundamental research to applications

Sources: D. Noble; Hemchandra and Lieuwen, Comb. And Flame, 157, 2010 ; Staffelbach et al., Proc. Comb. Inst., 2008
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Experimental Facility

Optical quartz
window for
laser access

SEME 3|
B3 o

* |

~

Acoustic drivers

Fuel/air

premixing
section
Optical quartz
window

Combustor
drawing

Swirler housing (1-5 swirlers)
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Transverse Motion in the Combustor

e Phase control

. = '
e O =09, approximate out of phase | -| u”— out of phe
in phase '| p’—inphase

pressure maximum, velocity
node, at center flame

-,
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e O = 1809, approximate
velocity maximum, pressure
node, at center flame
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Time-Average Flow Field

e Experimental conditions:
-U,=10m/s, $=0.85

— ¢ =0.95
—f,=400 Hz — 1800 Hz
Time-average axial velocity Time-average vorticity

1.5
1.5

D

0.4
0.5

-0.5
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Swirling Flow Instability

e We can more closely examine the symmetry of the disturbances by

looking in the r-0 plane

a)
b)
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Velocity-Coupled Transverse Instabilities

QUESTION: What are key physical processes controlling
flame response during transverse instabilities?

f/
F
A Taf/

* Minimal effect on flame response
at most frequencies of interest

— No net mass flow through
flame over acoustic cycle

Transverse Acoustic Excitation

|:L

FTL
Longitudinal
Acoustics FTa)
|:La)
Flow Instabilities |e

F

w

Flame Response




Velocity-Coupled Transverse Instabilities

QUESTION: What are key physical processes controlling
flame response during transverse instabilities?

/ f Transverse Acoustic Excitation
uL,a
D=4 Fro
ur, ()
Longitudinal
* Describes acoustic coupling Acoustics FTco
between combustor and swirler F
nozzle cavit Lo =
y F | T

Flow Instabilities |«

* Key coupling mechanism that
determines the relative role of
transverse vs. longitudinal Fa)
motion

— Suggests proper reference
velocity for flame transfer
functions

Flame Response




Velocity-Coupled Transverse Instabilities

QUESTION: What are key physical processes controlling
flame response during transverse instabilities?

f
Transverse Acoustic Excitation
F
'- f / Fr
L ,a v
Longitudinal

Acoustics FTa)

* Definition of the flame transfer
function of a longitudinally FLa) E
forced flame F|_ Y T

Flow Instabilities |«

* Important mechanismin F;>1
situations F
— Often greater in magnitude @

than F; Flame Response




Velocity-Coupled Transverse Instabilities

QUESTION: What are key physical processes controlling
flame response during transverse instabilities?

Transverse Acoustic Excitation

u, (f)
F,(f)=—% F
L ( ) ur_’a ( f ) LonTgLilcudinaI
u' o f Acoustics FT(O
T,a Lo

Flow Instabilities

F

(0]
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Effect of Forcing on Time-Average Flow

e The progression of the flow field shape as the amplitude of forcing

increases is due to changes in the vortex breakdown bubble
1800 Hz in-phase
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Effect of Forcing on Time-Average Flow

e This behavior is reflected in changes in the structure of the vortex
breakdown bubble at high amplitudes

V//u,=0.3

V'/u,=0.4

-0.6

-1
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Flow Field Topology — Downstream Development

Mode m=-1

m=-1, No Forcing
m=-1, In-phase
m=-1, Out-of-phase

Mode m=1

® m=1, No Forcing
£ m=1, In-phase

8 m=1, Out-of-phase
o e ] = I

0.18

0161

® m=0, No Forcing
£ m=0, In-phase :
B m=0, Qut-of-phase |’




Flow Field Topology — Instantaneous Velocity
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Swirling Flow Instability and Flame Response

e Flame response in velocity-coupled combustion instabilities is
dictated by these two levels of instability

e The “base state” governs the flame shape and, in part, the magnitude
of the flame response

G [
e GRS RINT R

e The shear layer instabilities drive the oscillating heat release
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Time-average behavior (base state)

Swirling Flow Instability and Flame Response
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Swirling air + fuel

Fluctuating behavior (flame wrinkling)
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High-Speed Data Database

e Velocity data: 462 cases
e Non-reacting and reacting
e 5=0.85, 5=0.5
e R-x and R-J views
e u=10, 15, 20,40 m/s
* fr=400-1800 Hz, variety of amplitudes, symmetries

e PLIF data: 38 cases
e 5=0.5, u, =10 m/s
* fr=400-1800 Hz, variety of amplitudes, symmetries

e Flame luminescence data: 64 cases
e Smoke visualization data: 276 cases
e Flame transfer function data: 224 cases



