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Velocity-Coupled Combustion Instability – Mechanism 

• Velocity fluctuations stem from both acoustic and vortical velocity 
fluctuation sources 
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Velocity-Coupled Combustion Instability – Mechanism 

• Velocity fluctuations lead to global heat release fluctuations largely 
through a flame area fluctuation mechanism 
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Shreekrishna and Lieuwen, AIAA, 2009 



Velocity-Coupled Combustion Instability – Rockets 

• Acoustic velocity fluctuations lead to variable jet breakup and high-
amplitude heat release fluctuations 
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Davis and Chehroudi, AIAA2004-1330 



Velocity-Coupled Combustion Instability – Augmentors  

•  Flame fluctuations are due to both wake and shear layer instability 
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Prasad and Williamson, JFM, 1997 Emerson et al., AIAA, 2011 



Velocity-Coupled Combustion Instability – Gas Turbine Combustors 

•  Several instability modes in swirling flows disturb the flame 
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Lieuwen and Yang, AIAA, 2005 
Thumuluru and Lieuwen, Proc. Comb. Inst., 2009 
Szedlmayer et al., GT2011-46080 



Combustion Instabilities in Gas Turbines 

• What are some of the specific issues in gas turbine combustor 
instabilities? 

— Complicated flow fields – swirling flows are hydrodynamically 
unstable and susceptible to acoustic forcing 

Billant et al., JFM, 1998, Huang et al., AIAA J., 2006 

IWFSCI-2012 Session III - O'Connor 9 



Combustion Instabilities in Gas Turbines 

• What are some of the specific issues in gas turbine combustor 
instabilities? 

— Mixed acoustic mode shapes 

C. Sensiau et al., Int. J. of Aeroacoustics, 2009 
 P. Wolf, G. Staffelbach, L. Gicquel and T. Poinsot, CERFACS, 2010 
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Velocity Fluctuations from Hydrodynamic Instability 

• Unsteady motions in swirling flows due to at least two hydrodynamic   
instability mechanisms 

– Swirling jet instability – vortex breakdown (AI) 
– Shear layer instability – Kelvin-Helmholtz (CI) 
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Liang and Maxworthy, JFM, 2006 
Billant et al., JFM, 1998 
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Swirling Flow Instability 

• Swirling jet instability – vortex breakdown (AI) 
– Absolute instability – self-excited oscillator 

– Displays intrinsic dynamics except at high-amplitude forcing 
– Function of Reynolds number, swirl number, geometry 
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Dynamical Role of Vortex Breakdown 

• The vortex breakdown region does have a dynamical role in the flow 
field, particularly in the form of a precessing vortex core 

15 
Syred, Prog. Energy and Comb. Sci., 2006 

IWFSCI-2012 Session III - O'Connor 



Spatial Modal Decomposition 

• Spatial mode decomposition in the r-θ plane 
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Bm, m>0 – counter-swirling (clockwise) 
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Spatial Modal Decomposition 
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Role of Vortex Breakdown in Disturbance Field 

18 

• Several spatial modes of instability are present, but in particular, m=-1 
and m=-2 
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Swirling Flow Instability 

• Shear layer instability – Kelvin-Helmholtz 
– Most amplified shear layer mode is helical 
– Bias due to the action of swirl 

19 

Loiseleux et al., Phys. of Fluids, 1998 
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Swirling Flow Instability 

• Shear layer instability – Kelvin-Helmholtz 
– Convectively unstable – disturbance amplifier 
– Strong response to external excitation (acoustic forcing) 
– Response is a function of frequency, amplitude, symmetry 
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Role of Vortex Breakdown in Disturbance Field 

23 

• Compared to the response of the shear layers, the contribution of the 
precessing vortex core to the overall velocity disturbance field is small 
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Response at Low Frequency (0-200Hz) Response at Forcing Frequency (800HzOP) 
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Flow Field Topology 

Out-of-phase Forcing 

Asymmetric acoustic velocity 
Helical shear layer response 
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Flow Field Topology – Phase-Averaged Velocity 

Out-of-phase Forcing 
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Flow Field Topology 

In-phase Forcing 

Symmetric acoustic velocity 
Ring vortex shedding 
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Flow Field Topology – Phase-Averaged Velocity 

In-phase Forcing 
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Flow Field Topology – Downstream Development 
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Mode m=0 

Ring vortex, 
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Role of Acoustic Field Symmetry in Flame Response 

Asymmetric Forcing 

400 Hz out-of-phase,  
Uo=10 m/s, φ=0.9 

Asymmetric acoustic velocity 
Helical shear layer response 
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Symmetric Forcing 

400 Hz in-phase,  
Uo=10 m/s, φ=0.9 

Symmetric acoustic velocity 
Ring vortex shedding 
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Role of Acoustic Field Symmetry in Flame Response 

31 

• Analytical results show significant difference in global flame response 
characteristics between symmetric and asymmetric vortical velocity 
disturbance fields 

Results courtesy of Vishal Acharya 
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Velocity-Coupled Combustion Instability 
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Key Points 

33 

• Combustor flows are often hydrodynamically unstable 
• Rockets – jet instability, jet breakup 
• Augmentors – shear layer instability, wake instability 
• Gas turbines – shear layer instability, vortex breakdown 

 
• Characteristics of these instabilities dictates how these flows will 
respond to combustor acoustic fields 

• Convectively unstable – disturbance amplifiers 
• Absolutely unstable – self-excited disturbances 
• Acoustic/flow instability symmetries 

 
• Flow response determines local flame disturbances; varying response 
symmetries can produce vastly different global flame heat release 
fluctuations 
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Future Research Directions 

• Several research needs address not only the subjects under 
investigation, but also the methodology: 

• Multi-physics understanding 
• High-fidelity diagnostics 
• Comparison  between experiment and model 
• Transition of fundamental research to applications 
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Sources:  D. Noble; Hemchandra and Lieuwen, Comb. And Flame, 157, 2010 ; Staffelbach et al., Proc. Comb. Inst., 2008 
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Questions? 
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Backup Slides 
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Experimental Facility 

Swirler housing (1-5 swirlers) 

Fuel/air 
premixing 
section 

Acoustic drivers 

Optical quartz 
window 

Optical quartz 
window for 
laser access 

Combustor 
drawing 
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Transverse Motion in the Combustor 

• Phase control 
• Φ = 0º, approximate 
pressure maximum, velocity 
node, at center flame 

 
• Φ = 180º, approximate 
velocity maximum, pressure 
node, at center flame 

 
In-phase forcing 

Out-phase forcing 

u’ – out of phase 

p’ – in phase 

p’ – out of phase 

u’ – in phase 
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Time-Average Flow Field 

• Experimental conditions: 
– Uo = 10 m/s, S = 0.85 
– φ = 0.95 
– fo = 400 Hz – 1800 Hz 

Time-average axial velocity Time-average vorticity 
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Swirling Flow Instability 

• We can more closely examine the symmetry of the disturbances by 
looking in the r-θ plane  
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 QUESTION:  What are key physical processes controlling 
flame response during transverse instabilities? 

Velocity-Coupled Transverse Instabilities 

Transverse Acoustic Excitation 

Longitudinal 
Acoustics 

Flame Response 

Flow Instabilities 

TLF

LF TF

TF 

LF 

F
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•Minimal effect on flame response 
at most frequencies of interest 

—No net mass flow through 
flame over acoustic cycle 
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•Describes acoustic coupling 
between combustor and swirler 
nozzle cavity 
 
•Key coupling mechanism that 

determines the relative role of 
transverse vs. longitudinal 
motion 

—Suggests proper reference 
velocity for flame transfer 
functions 
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•Definition of the flame transfer 
function of a longitudinally 
forced flame 
 
• Important mechanism in FTL>1 

situations 
—Often greater in magnitude 
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Effect of Forcing on Time-Average Flow 

• The progression of the flow field shape as the amplitude of forcing 
increases is due to changes in the vortex breakdown bubble 

1800 Hz in-phase 
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Effect of Forcing on Time-Average Flow 

• This behavior is reflected in changes in the structure of the vortex 
breakdown bubble at high amplitudes 
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0.3ov u  0.35ov u 
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Flow Field Topology – Downstream Development 

50 

Mode m=-1 Mode m=1 Mode m=0 
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Flow Field Topology – Instantaneous Velocity 

Out-of-phase Forcing In-phase Forcing 

400 Hz out-of-phase,  
Uo=10 m/s 

400 Hz in-phase,  
Uo=10 m/s 
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Swirling Flow Instability and Flame Response 

• Flame response in velocity-coupled combustion instabilities is 
dictated by these two levels of instability 

 
• The “base state” governs the flame shape and, in part, the magnitude 
of the flame response 

 
 

 
• The shear layer instabilities  drive the oscillating heat release 
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Reproduced from Thumuluru and Lieuwen, Proceedings of the Comb. Inst., 2009  
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Swirling Flow Instability and Flame Response 

Swirling air + fuel 

Fluctuating behavior (flame wrinkling) Time-average behavior (base state) 
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High-Speed Data Database 

• Velocity data: 462 cases 
• Non-reacting and reacting 
• S=0.85, S=0.5 
• R-x and R-θ views 
• uo=10, 15, 20, 40 m/s 
• ff = 400-1800 Hz, variety of amplitudes, symmetries 

 
• PLIF data:  38 cases 

• S=0.5, uo = 10 m/s 
• ff = 400-1800 Hz, variety of amplitudes, symmetries 

 
• Flame luminescence data:  64 cases 
• Smoke visualization data:  276 cases 
• Flame transfer function data:  224 cases 
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