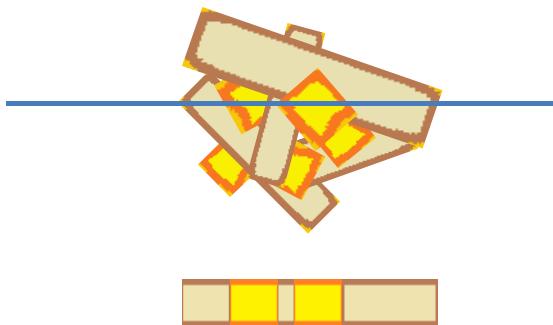
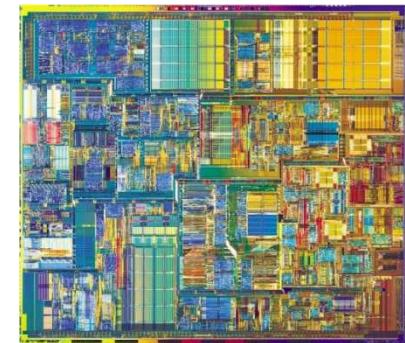
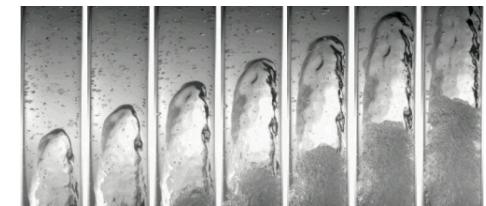


August 8, 2012

Examination of Savings Using Weighted Sum Quadrature Calculations in Stochastic Geometries

Aaron Olson




Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia
National
Laboratories

Introduction – Stochastic Media

- Stochastic Media – Two or more materials mixed in a way that cannot easily be exactly modeled
 - Compound mixtures
 - Two-phase flow
 - Small repetitive systems
 - Scalloped Potatoes

Introduction and Outline

- Old Method – Build Meshes Based on Material Segment Lengths

5 slides

- New Method – Build Meshes Based on Num of Material Segments

- Run many realizations

2 slides

- With some parameters, run many fewer realizations (when are there significant savings?)

- Works for all types of mixes

3 slides

- Works well for mixes with larger segments (how well?)

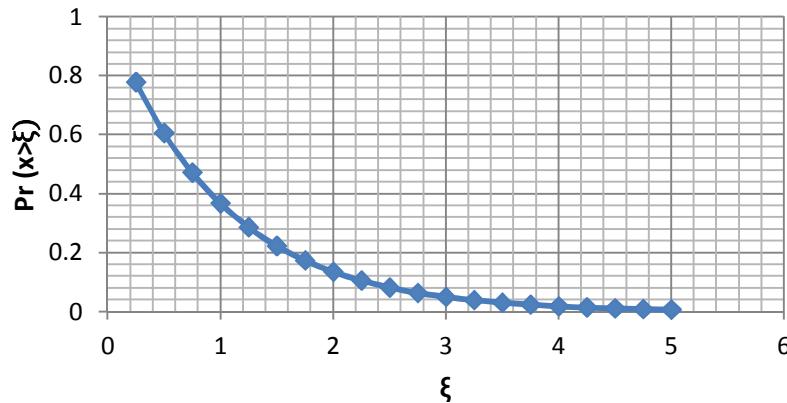
- Difficult to integrate with other approaches

1 slide

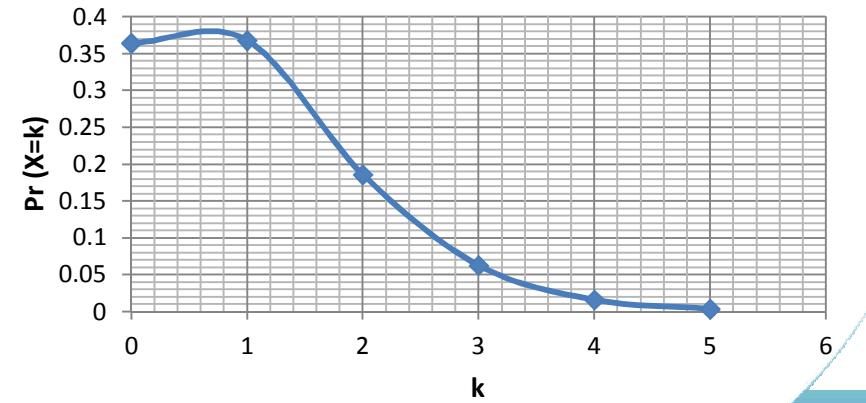
- Easier to integrate with other approaches (such as?)

Two Methods: Poisson Distribution – Two Different Properties

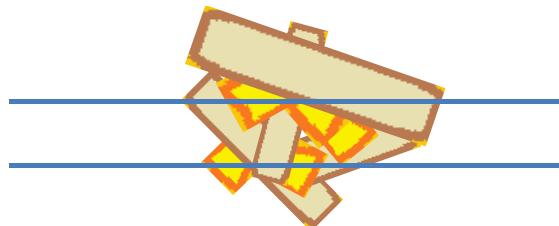
- Old Method – Material Segment Length
- New Method – Number of Material Segments

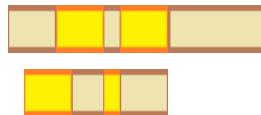

$$\Pr(x > \xi) = \frac{e^{-\xi}}{\lambda_c}$$

$$\lambda_c = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$


$$\Pr(X = k) = \frac{\left(\frac{s}{\lambda_c}\right)^k e^{-\left(\frac{s}{\lambda_c}\right)}}{k!},$$

for $k = 0, 1, 2, \dots$


Poisson Distribution –
Probability Segment Length $> \xi$


Poisson Distribution - Probability
of Number of Segments

Two Methods: Old Method - Mesh Gen Using Material Lengths

- Meshes built using average material path lengths

- Mesh solved to specified precision: 1 realization

realization 1:

- Results from realizations statistically averaged

realization 2:

realization 3:

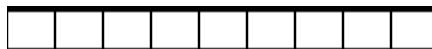
realization 4:

...

- Oftentimes 10,000 realizations are required for desired precision

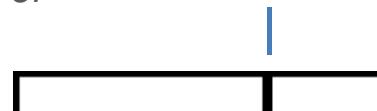
Two Methods: New Method – Mesh Gen Using Quadrature & Poisson Weights

- **Sn order (Sn):** Number of potential divisions of material segments


- $Sn = 2$

- $Sn = 4$

- $Sn = 8$



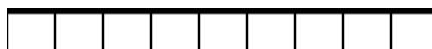
- **Pseudo-interfaces (N):** material segment dividers

- $N = 1, Sn = 2$

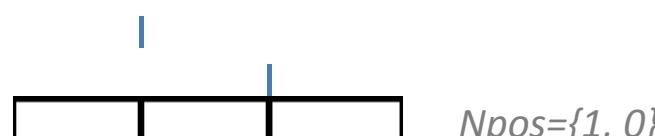
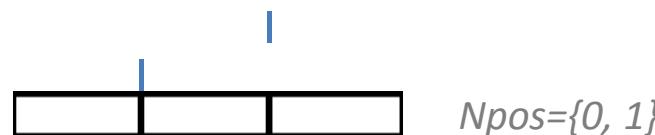
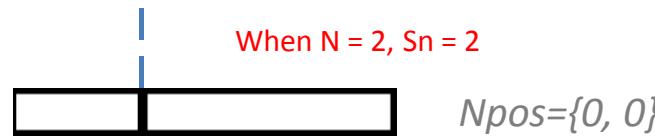
- *or*

Two Methods: New Method – Mesh Gen Using Quadrature & Poisson Weights

- **Sn order (Sn): Number of potential divisions of material segments**


– $Sn = 2$

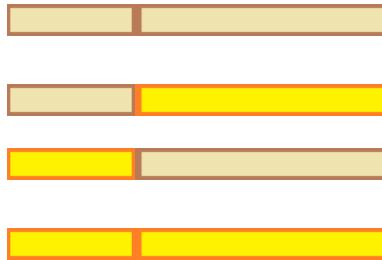
– $Sn = 4$




– $Sn = 8$

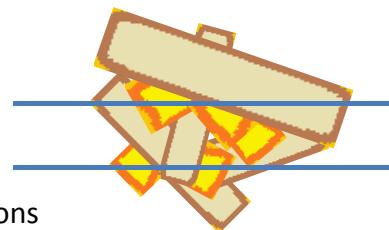
- **Pseudo-interfaces (N): material segment dividers**

Four Geometries

– $N = 2, Sn = 2$

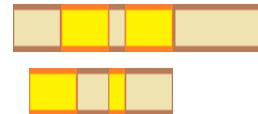

Two Methods: New Method – Mesh Gen Using Quadrature & Poisson Weights

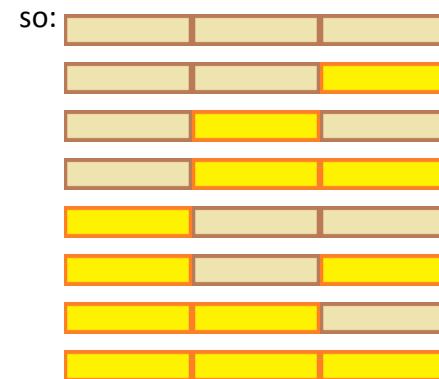
- Each segment must be assigned a material



When $N = 2, S_n = 2$

so:


Geometries: 4
Realizations: 24


Geom 1: Four meshes: 4 realizations

Geom 3: 8 realizations

Total: 24 realizations

Geom 2: Eight meshes: 8 realizations

Geom 4: 4 realizations

Introduction and Outline

- Old Method – Build Meshes Based on Material Segment Lengths

5 slides

- New Method – Build Meshes Based on Num of Material Segments

- Run many realizations

2 slides

- With some parameters, run many fewer realizations (when are there significant savings?)

- Works for all types of mixes

3 slides

- Works well for mixes with larger segments (how well?)

- Difficult to integrate with other approaches

1 slide

- Easier to integrate with other approaches (such as?)

When Are Savings Significant: Quadrature Chart

- Primary Question: What is its error?
 - Need to use greater Sn orders until answer does not change
 - Will need to run large suites of realizations to calculate with large Sn numbers
 - Will need to re-write scripts to accomplish this

Combining Results by Poisson Weights						
Poisson Wts			Sn			
N	0	0.364182	0.04270 (2)	0.05056 (16)	0.05056 (32)	0.05522 (1984)
	1	0.367861	0.05074 (8)	0.05475 (112)	0.05511 (480)	
	2	0.185738	0.05410 (24)	0.05730 (688)		
	3	0.062555	0.05578 (56)			
	4	0.015797	0.05662 (120)			
	5+	0.003817				
	Solution:		0.04887 (210)	(816+)	(512+)	(1984+)

When Are Savings Significant: Remove Redundancies

- Beast to Tackle – Number of realizations to quantify error
 - Program 1: Walks through realization criteria & counts
 - Program 2: Enters each geometry and calcs unique material combos

Number of Pseudo-interfaces	Realizations Required to Solve Quadrature Sets				
	Sn Quadrature Order				
	2	4	8	16	32
1	8	16	32	64	128
2	24	112	480	1984	8064
3	56	688	6752	59584	500096
4	120	3760	89184	1733824	
5	248	18736	1108832		
6	504	87472	13023840		
7	364	390448	145185632		
8	480	1689520			

Number of Pseudo-interfaces	Realizations Required: Redundancies Removed				
	Sn Quadrature Order				
	2	4	8	16	32
1	6	10	18	34	66
2	12	46	186	754	3042
3	12	102	970	8594	72482
4	12	132	3070	63194	1151282
5	12	132	6542	334010	
6	12	132	10070	1343018	
7	12	132	12102	4248778	
8	12	132	12612	10812478	

Introduction and Outline

- Old Method – Build Meshes Based on Material Segment Lengths

5 slides

- New Method – Build Meshes Based on Num of Material Segments

- Run many realizations

2 slides

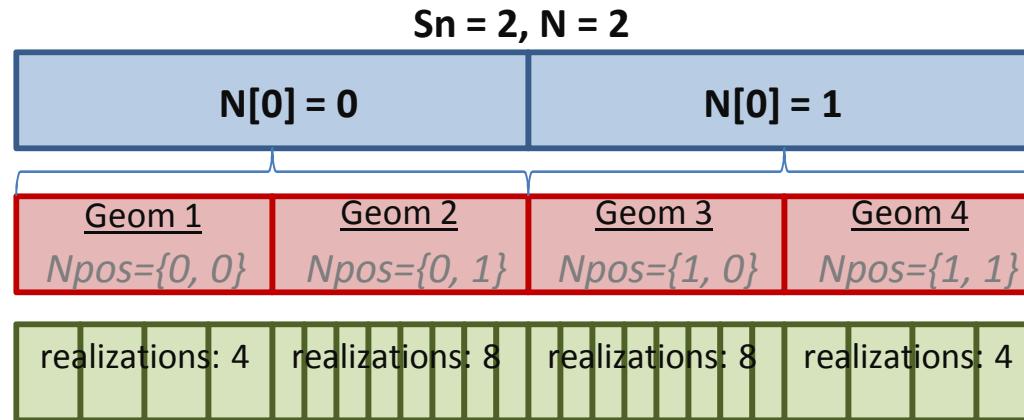
- With some parameters, run many fewer realizations **(when are there significant savings?)**

- Works for all types of mixes

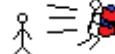
3 slides

- Works well for mixes with larger segments **(how well?)**

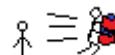
- Difficult to integrate with other approaches


1 slide

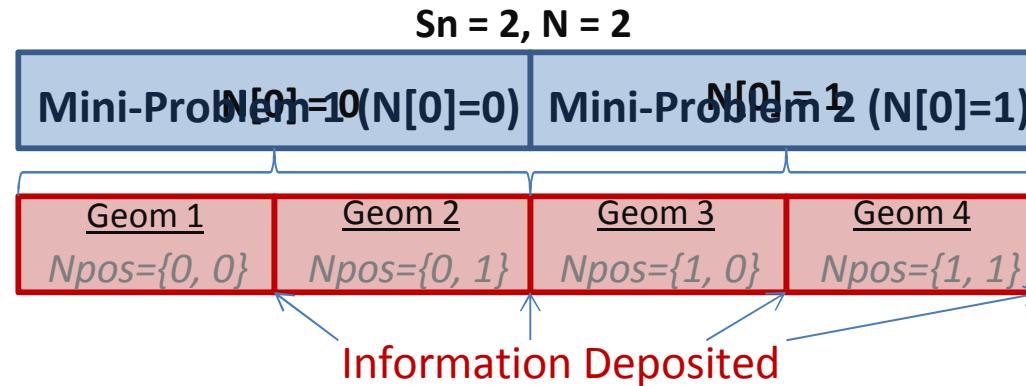
- Easier to integrate with other approaches **(such as?)**


Error Quantification: Original Script

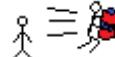
- **Loops of operation**


- Quadrature placement of first pseudo-interface (12 realizations here)
- Geometry (4-8 realizations here)
- Material arrangement (1 realization)

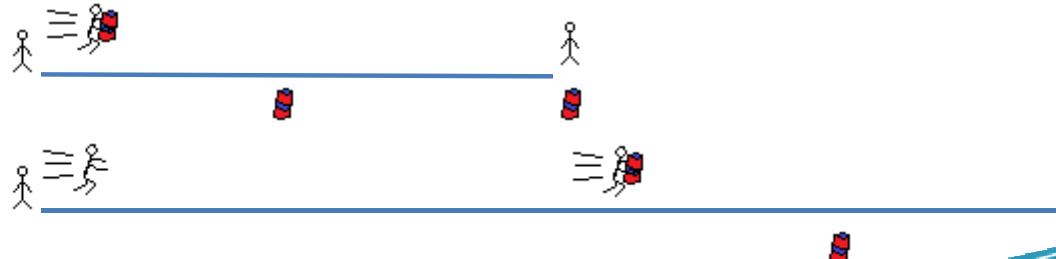
- Script either finishes and relays information



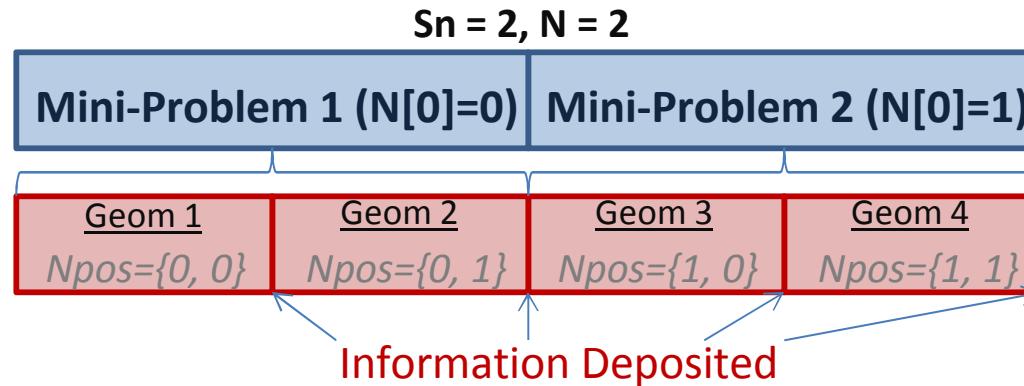
- Or doesn't, and information is lost



Error Quantification: New Script

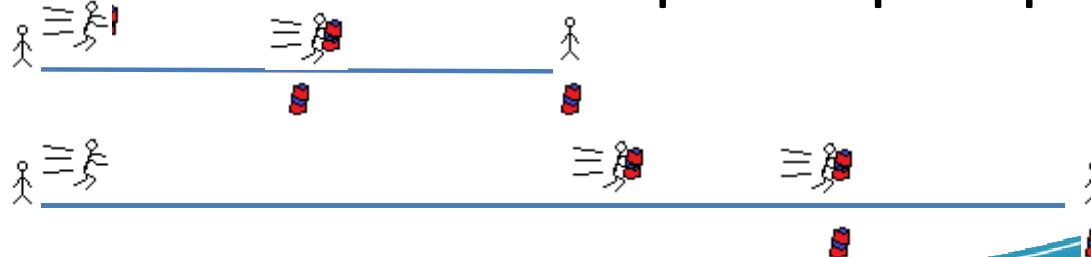

- Features for Calculating Large Realization Sets
 - Deposits information at end of every geometry
 - Split into mini-problems based on $N[0]$
 - Number of mini-problems possible = S_n order

- So this (potentially not finishing and losing all information)



- Becomes this:

Error Quantification: Robustness of New Script


- Features for Calculating Large Realization Sets
 - Deposits information at end of every geometry
 - Split into mini-problems based on $N[0]$
 - Number of mini-problems possible = S_n order

- So this (potentially not finishing and losing all information)

- Let's say a run doesn't finish... a subsequent run picks up at the last deposit

Introduction and Outline

- Old Method – Build Meshes Based on Material Segment Lengths

5 slides

- New Method – Build Meshes Based on Num of Material Segments

- Run many realizations

2 slides

- With some parameters, run many fewer realizations **(when are there significant savings?)**

- Works for all types of mixes

3 slides

- Works well for mixes with larger segments **(how well?)**

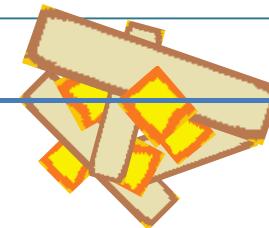
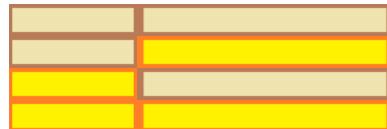
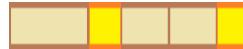
- Difficult to integrate with other approaches

1 slide

- Easier to integrate with other approaches **(such as?)**

Integration With Other Approaches

- Use Weighted Quadrature Method where efficient, with other approaches where not as efficient (especially larger N values)
 - Sparse Grid Quadrature
 - Random meshes

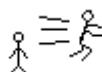



Combining Results by Poisson Weights						
Poisson Wts		Sn				
		2	4	8	16	
N	0	0.364182	0.04270 (2)			
	1	0.367861	0.05074 (8)	0.05056 (16)	0.05056 (32)	
	2	0.185788	0.05410 (24)	0.05475 (112)	0.05511 (480)	0.05522 (1984)
	3	0.062555	0.05578 (56)	0.05730 (688)		
	4	0.015797	0.05662 (120)			
	5+	0.003817				
Solution:			0.04887 (210)	(816+)	(512+)	(1984+)

Conclusions/Future Work

• Conclusions

- New Method good in low Sn, low N problems – how well mapped out

realization 1:


- Can improve more by removing redundancies – will get to later

Number of Pseudo-interfaces	Realizations Required to Solve Quadrature Sets				
	Sn Quadrature Order				
	2	4	8	16	32
1	8	16	32	64	128
2	24	112	480	1984	8064
3	56	688	6752	59584	500096
4	120	3760	89184	1733824	
5	248	18736	1108832		
6	504	87472	13023840		
7	364	390448	145185632		
8	480	1689520			

Number of Pseudo-interfaces	Realizations Required: Redundancies Removed				
	Sn Quadrature Order				
	2	4	8	16	32
1	6	10	18	34	66
2	12	46	186	754	3042
3	12	102	970	8594	72482
4	12	132	3070	63194	1351282
5	12	132	6542	334010	
6	12	132	10070	1343010	
7	12	132	12102	4248778	
8	12	132	12612	10812478	

• Future Work

- Will quantify present error in representative cases using newly developed scripting tools – rest of summer

- Look into integration of other methods – hopefully get to touch this summer

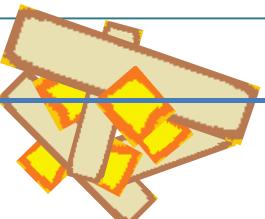
		Combining Results by Poisson Weights			
		Sn			
Poisson Wts		2	4	8	16
		0	0.04270 (2)		
N	0	0.364182	0.04270 (2)		
	1	0.367861	0.05074 (8)	0.05056 (16)	0.05056 (32)
	2	0.185788	0.05410 (24)	0.05475 (112)	0.05511 (480)
	3	0.062555	0.05578 (56)	0.05730 (688)	0.05522 (1984)
	4	0.015797	0.05662 (120)		
	5+	0.003817			
Solution:		0.04887 (210)	(816+)	(512+)	(1984+)

Acknowledgements/References

Thanks To:

Mentor – [Shawn Pautz](#)

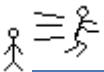
Collaborators – [Brian Franke](#), [Anil Prinja](#)


Technical and Coding Help – [Clif Drumm](#), [Mike Rigley](#), [Ayesha Athar](#), [Google](#)

SERRI and Everything Else – [Trish St. John](#)

References:

- M. L. Adams, E. W. Larsen, G. C. Pomraning, “Benchmark Results for Particle Transport in a Binary Markov Statistical Medium,” *J. Quant. Spectrosc. Radiat. Transfer*, 42, pp. 253-266 (1989).
- S. D. Pautz, B. C. Franke, “Generation of Accurate Benchmarks for Transport in Stochastic Media by Means of Dynamic Error Control,” *Proc. Int. Conf. on Mathematics and computational Methods Applied to Nuclear Science and Engineering*, Rio de Janeiro, Brazil (2011).


Questions

		Realizations Required to Solve Quadrature Sets				
		Sn Quadrature Order				
Number of Pseudo-interfaces	2	4	8	16	32	
	1	8	16	32	64	128
	2	24	112	480	1984	8064
	3	56	688	6752	59584	500096
	4	120	3760	89184	1733824	
	5	248	18736	1108832		
	6	504	87472	13023840		
	7	364	390448	145185632		
	8	480	1689520			

		Realizations Required: Redundancies Removed				
		Sn Quadrature Order				
Number of Pseudo-interfaces	2	4	8	16	32	
	1	6	10	18	34	66
	2	12	46	186	754	3042
	3	12	102	970	8594	72482
	4	12	132	3070	63194	1151282
	5	12	132	6542	334010	
	6	12	132	10070	1343018	
	7	12	132	12102	4248778	
	8	12	132	12612	10812478	

Are There Any Questions?

		Combining Results by Poisson Weights			
		Sn			
N	Poisson Wts.	2	4	8	16
		0.364162	0.04270 (2)		
	0	0.367861	0.05074 (8)	0.05056 (16)	0.05056 (32)
	1				
	2	0.185788	0.05410 (24)	0.05475 (112)	0.05511 (480)
	3	0.062555	0.05578 (56)	0.05730 (688)	0.05522 (1984)
	4	0.015797	0.05662 (120)		
	5+	0.003817			
Solution:		0.04887 (210)	(816+)	(512+)	(1984+)