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What is this talk about?

• Probabilistic/statistical methods to solve inverse/parameter 

estimation problems

– Useful when you think the estimated parameters may be wrong or 

uncertain

• When the model is not really a good fit to data

• When the data is limited

• When there are too many parameters to be estimated

• In such difficult parameter estimation scenarios, really 2 ways 

out

– Estimate parameters as probability distributions i.e. as PDFs

– Estimate only those parameters that can be constrained by the data

• Called dimensionality reduction

• But how do you find, a priori, the parameters to drop?



Some definitions

• Inverse problems – basically data fitting with a model

– With the aim of estimating model parameters (uncorrelated 

variables, a priori)

– Or model inputs e.g., a spatially variable material property field

• Often discretized on a grid

• Components of an inverse problem

– The data or observations, y(obs)

– The model inputs or parameters, p

– The forward model, M(p)

• y(obs) = M(p) + ,  is noise or measurement error

– A model for noise , if doing a probabilistic/statistical/Bayesian 

inverse problem

• Often, nothing more than i.i.d. Gaussians, N(0, 2)



Outputs and issues

• Bayesian inverse problems estimate p as a joint PDF

– All elements of p are included, even if the data contains no info on 

them

• When only “constrainable” elements of p are estimated

– Sparsity-enforced optimization/reconstruction

– Requires certain mathematical requirements before one attempts 

this

• Issues

– Bayesian inverse problems require many evaluations of forward 

model – impossible if dealing with a computationally expensive PDE

• Have to take recourse to surrogate models 

– Elegant simplifications for linear inverse problems i.e. if M(p) = [M]p



Outline of the talk

• Problem I – demonstrate Bayesian inversion in action

– Estimate 3 parameters of a computationally expensive climate 

model

– Issues in making a surrogate

– Derivation of the inverse problem; numerical scheme

– Calibration, results & implications

• Problem II – demonstrate sparsity-enforced reconstruction of a 

field

– Estimate anthropogenic CO2 emissions, on a grid

– Concept of compressive sensing and sparse reconstruction

– Estimate emissions in only those grid-cells which are constrained by 

observations, but ….

• We don’t know a priori which grid-cells are “constrainable”



Problem I – Calibration of the CLM

• CLM - Community Land Model

– Used in Earth System models; 

vegetation, hydrology, evaporation, 

heat balance etc.

• Expensive; 1 hr/invocation for 1 

site

• Desired: estimate p = {Fdrai, Qdm, 

Sy}, 3 hydrological parameters

– Data: monthly Latent Heat (LH) 

measurements @ US-Moz site

– “Nominal” values of p known

• What is the distribution of p?

– Compare with nominal value 



Formulation (1/2)

• Let y(obs) be the observations – y(obs) = {y(obs) 
i}, i = 1 … 12 

months

• Model predictions y(pred) = M(p), p = {Fdrai, log(Qdm), Sy}

• Error  = y(obs) – M(p), i ~ N(0, 2)

• P(|p) = P( y(obs)|p) is called the Likelihood
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Formulation (2/2)

• We desire P(p | y(obs)) (aka the posterior distribution) and 2

• Bayes rule

• Prior distribution for p

– Each of the components {Fdrai, log(Qdm), Sy}, are independent

– They have uniform distributions between a specified UB and LB

• We need to evaluate P(p | y(obs)) 

– How? Using a sampler – Markov Chain Monte Carlo (MCMC)
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What is MCMC?

• A way of sampling from an arbitrary distribution

– The samples, if histogrammed, recover  the distribution P(p | y(obs)) 

• Efficient and adaptive

– Given a starting point (1 sample), the MCMC chain will sequentially find 

the peaks and valleys in the distribution and sample proportionally

• Ergodic

– Guaranteed that samples will be taken from the entire range of the 

distribution

• Drawback

– Generating each sample requires one to evaluate the expression for the 

density P

– i.e., a model evaluation – very expensive!



An example, using MCMC

• Given: (Yobs, X), a bunch of n observations

• Model: yi
obs = axi + bi + i,  ~ N(0, )

• Priors : uniform distributions for a, b, 

• For a given value of (a, b, ), compute “error” i = yi
obs – (axi + bi)

– Likelihood of the set (a, b, ) =   exp( - i
2/2 )

• Solution:  ( a, b,  | Yobs, X ) =  exp( - i
2/2 ) * (bunch of uniform 

priors)

• Solution method:

– Sample from P( a, b,  | Yobs, X ) using MCMC; save them

– Generate a “3D histogram” from the samples to determine which 

region in the (a, b, ) space gives best fit 

– Histogram values of a, b and , to get individual PDFs for them

– Estimation of model parameters, with confidence intervals!



MCMC, pictorially

• Choose a starting point, On = 
(acurr, bcurr)

• Propose a new a, aprop ~ N(acurr, 
a)

• Evaluate P( aprop, bcurr | ...) / P( 
acurr, bcurr | … ) = m 

• Accept aprop (i.e. acurr <- aprop) with 
probability min(1, m)

• Repeat with b

• Loop over till you have enough 
samples

b

a

Proposal distribution

“good” values of (a, b)



Surrogate model

• Usually MCMC needs 103 – 107 steps to converge to a 

distribution

– Can’t use CLM as-is; need to make a surrogate (“curve-fit” model)

• Procedure

– Sample 128 points in p-space

• Used a method called quasi-Monte Carlo to spread out the samples 

evenly in the 3D parameter space

– Run CLM; obtain log(LH) = y(clm)
j, j = 1…128

– Propose a polynomial model, but where to stop?
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Making the surrogate model

• Pick a month – say April

• Make 5 competing models – 1st to 5th order

• Partition the 128 runs into a 118-run Learning Set (LS) and 10-

run Testing Set (TS)

• Resample the 128 runs again, make 500 {LS + TS} pairs

• For a given model, say quadratic

– Use LS to estimate i, ij etc using simple regression; compute 

polynomial model versus CLM prediction errors (relative)

– Predict log(LH)at the TS parameters; compute relative error vis-à-

vis CLM predictions

– Over 500 {LS+TS} pairs, one gets a distribution of LS and TS 

relative errors

• What do these look like?



Quadratic model predictions

• LS error about the same magnitude as TS errors (~0.13)

– Model has about the same predictive skill in LS as TS



4th-order model predictions

• Learning Set error very low, Testing set error 3x bigger

• Clear case of overfitting the LS

• So which model to retain – linear to 5th order?



Plotting errors across months

• Linear and quadratic models have similar errors for LS and TS

– No overfitting here

• But quadratic model has lower errors overall, so choose it.



Augmenting the quadratic model

• Quadratic model has pretty large 

error (~17%)

– Because it captures no more than the 

trend of log(LH) in p-space

• y(surr)(p) = y(quad)(p) + c(p), c is a 

correction

– It is smooth (correlated) function of p

– Model c(p) as a multivariate Gaussian

• With c(p) model, we can evaluate 

y(surr)(p) at arbitrary p

– Includes a quadratic prediction

– And a correction interpolated from the 

128 runs

Augmented model give max 10% 
error



Deterministic fit to US-Moz data

• Deterministic fit (w/ surrogate) and “nominal values” look similar

– But errors sum to zero in the surrogate case

Predictions with calibrated surrogate CLM predictions with nominal values



MCMC Results
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• MCMC produces 

50,000 samples of 

{Fdrai, log(Qdm), Sy, }

• Plot scatter plots of 2 

parameters at a time

– No correlations 

between them



Posteriors and nominal values

• Quite a few 

problems with 

being 

deterministic

• Vertical lines are 

nominal values

• Nominal value for 

2 is from the 

deterministic fit of 

surrogate

20



Posterior predictive test

• Sample 100 

parameter sets from 

posterior

• Run forward; add 

noise using 

• Plot observations

– Predictions capture 

observations, for sure

• Quantify the tightness 

of the prediction 

(goodness of 

calibration)

21



Gross statistics

22

Parameter Nominal 
Value

Mean Value 
from US-MOz

Median 
Value

Inter-quartile range

Fdrai 2.5 2.56 2.69 1.17—3.77

Qdm 5.5e-3 2.57e-3 1.06e-3 1.05e-4 – 4.63e-3

Sy 0.18 0.20 0.23 0.2 – 0.243

• The mean value from MCMC fit to MOz observations is “close” to 

nominal values

• But the skewed distributions mean that the mean/median are not very 

representations of the high-probability points



Interim conclusions – Bayesian inversion

• Bayesian methods allow us to estimate parameters as 

distributions

– Distributions narrow and steepen as more data become available or 

when fit improves

– Very useful, if we suspect that parameter estimates may be 

uncertain

– Allow probabilistic predictions, that enable us to calculate risk of 

failure / error in prediction

• Can be used with computationally expensive models, if 

surrogates can be made

– Often, this is the main challenge

• Can be expanded to spatial / spatio-temporal observations



Problem II – Estimation of fields

• Model parameters/inputs to be estimate can be fields

– E.g., estimating the fossil-fuel CO2 (ffCO2) emissions in US

– The emissions are described on a grid; number of emissions to be 

estimated = # of grid cells is HUGE!

• Aka “dimensionality of the problem is large”

– Nowhere near enough data

• How to do this? Reduce the “effective dimensionality” by 

regularization

– If field is smooth, adjacent cells cannot assume arbitrary values

– If the field has patterns, make a spatial model (with fewer 

independent parameters)

• General idea – introduce constraints and reduce the # of 

variables to estimate



The ffCO2 estimation problem

• Aim: Develop a technique to estimate anthropogenic CO2

emissions from sparse observations

• Motivations:

– An alternative to estimating CO2 emission using bottom-up 

(economic model) techniques

– Can provide independent verification in case of CO2 abatement 

treaties

• How is it done?

– Measure CO2 concentrations in flasks at measurement sites; also 

column-averaged satellite measurements

– Use an atmospheric transport model to invert for source locations



CO2 flux inversions (1/2)

• Biogenic CO2 fluxes:

– Smoothly variable in space

– Modeled using multivariate Gaussian

– Separate correlation lengths over 
land and oceans

• Anthropogenic (fossil fuel) 
emissions

• Currently, only bottom-up estimates 
exist 

• A few databases – Vulcan (US-only, 
2002); EDGAR (world)

• Gaussian process will probably not 
work

• What non-stationary covariance 
model to use?

Biogenic emissions: Mueller et al, JGR, 2008

Anthropogenic emissions: Gurney et 
al, EST, 2009



CO2 flux inversions (2/2)

• NOAA runs a set of towers which measure CO2 concentrations 

every 3 hours – main data source

– Meant for biospheric fluxes (far from cities)

– About 100 today

• ffCO2 emissions happen

– Electricity generation (source details at http://carma.org)

– Where people live (transport, light & heavy industry)

– Images of lights at nights at night provide a rough spatial pattern

• Simplification – CO2 transport (source – observation linkage) is 

that of a passive scalar

– y(pred) = [H]e, e = ffCO2 emissions on a grid – a linear problem!

– [H] called the transport matrix- links CO2 concentrations at sensors 

with emissions e



Technical challenges in inversion

• Atmospheric transport model - largest source of uncertainty

• Limited measurements - second-largest contribution to 

uncertainty

• Discriminating between anthropogenic and biogenic CO2 

(biogenic is 10x larger)

– But anthropogenic and biogenic CO2 and different (and known) 

proportions of 12CO2 and 14CO2

• Spatial models for anthropogenic CO2 emissions

– Non-stationary distribution in space – what is the spatial model?

– How to reduce the dimensionality of the spatial model?



Spatial modeling

• An emission field on 2N x  2N pixels grid

– Can be decomposed on a wavelet basis, N deep

– Each level s has 2s x 2s – (2s-1 x 2s-1) weights 

• Spatial model for emissions

–  are orthogonal bases (wavelet basis) of different resolution (scale)

– A priori, the model is not low-dimensional (w is large)

• Conjecture

– ws,i,j are mostly zero (i.e., is sparse)

– Most can be removed by comparing to a wavelet transform of 
nightlights

– Of the remaining, a fraction (near cities) may be estimated from 
observations; rest are small and can be set to zero
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How does one represent emissions with wavelets?

• Propose

– s,l(x) is a wavelet basis; s, l are its 

scale and location indices

– ws,l are weights

• So what are wavelets?

– Basis set with compact support

– Belong to different families 

– Within a family, can have different 

orders (high order ~ smoother)

– One chooses a family and an order, 

to expand E(x)

– The expansion consists of varying 

• s, to get different frequency content

• l, to shift in space (location)


ls

lsls xwE(x)
,

,, )( Daubechies, order 4

Daubechies, order 6

Symlet, order 6

Haars at different scales and locations



Dimensionality reduction

• Nightlights are a good proxy for FF emissions

– Except emissions from electricity generation and cement production

– Nightlights easily observed – DoD’s DMSP-OLS

• Use thresholded radiance-calibrated nightlights from 1997-98 to mask 

out unpopulated regions



Detour – sparsity enforced reconstruction

• Let e be a signal of length N– can be sampled as

– y(samp) = [A]e; lossless reconstruction of e requires y(samp) to be N

long

– [A] is usually random

• Suppose e = [w, where  is an orthogonal basis set

– And w is sparse; i.e., only k << N elements of w are non-zero (don’t 

know which)

– To estimate the k non-zero elements of w, one needs O(k log2(N/k)) 

elements (samples) in y(samp)

• Theory of compressive sampling

• Reconstruction from noisy samples posed as

– y(obs) = [A][]w + , w is sparse and  is noise



Reconstruction – via penalized optimization

• Typically, when fitting, we would solve

– minimize | y(obs) – [A][]w |2 wrt w

• Sparsity-enforced (we want a sparse w)

– minimize | y(obs) – [A][]w |2 + |w|1

– The last penalty cuts down on the # of elements in w

• Many algorithms to solve this – usually formulated as

– Minimize |w|1 under the constraint | y(obs) – [A][]w |2 < s

– We use StOMP

• The ffCO2 problem

– [] are the basis set – in our case, Haar wavelets; w are the 

wavelet coefficients; [A] is the transport matrix [H]

– y(obs) are tower measurements of CO2 concentrations

– minimize | y(obs) – [H][]w |2 + |w|1



Setting up the synthetic data inversion

• True emissions – Vulcan 

database for US, 2002

– Used to generate CO2

concentrations at towers

– 3 hr temporal resolution

• Nightlight images (for 1997) 

– used to remove wavelets 

from “dark” areas

• Emissions discretized on a 

grid

– 1 degree spatial resolution 

Fluxes assumed to be 

constant over 8-day periods 

(“a week”)

Emissions for a week in August 2002 

(Vulcan database, 1 deg resolution)



How good is the reconstruction?

• A week in September 2002

True emissions Reconstructed emissions



Can we reproduce tower observations?

• Tower concentration predictions with reconstructed fluxes (only 3 

weeks)

– Symbols : observations used in the inverse problem.



Did sparsification work?

• Only about half the 

wavelets could be 

estimated

• We are probably not 

over-fitting the 

problem

– Data-driven 

sparsification works



Reconstruction error in total US emission

• We get about 3.5% error, worst case



Is the spatial distribution correct?

• The spatial distribution of emissions is very close to truth

• Especially, if considering monthly fluxes



Which parts of US are well estimated?

• The NE has the lowest errors and best correlations

• The NW is generally the worst estimated



Interim conclusions – field estimation

• Sparsity-enforced estimation can deal with high-dimensional 

spatial random field models

– Of use when estimating complex, multiscale field

– For smooth fields, much simpler methods exist

• Not discussed here – non-negativity enforcement

– The emissions estimated by sparsity enforcement can sometimes 

be negative

– A post-processing step (non-sparsity enforcing) corrects it

– Simple and works only because we start with a very good guess



How far to engineering practice?

• These are NOT hero HPC codes

– All done in Matlab and R

– Sophisticated utilities (wavelets, sparsity-enforced optimization etc.) 

available as open-source toolboxes and packages

• Largest computational challenge – running ensemble of runs on 

clusters to generate data for surrogate models

– Naively, a book-keeping nightmare, but …

– DAKOTA (http://dakota.sandia.gov) does the sampling, running, 

batch-job submission and data collation for you

– Indispensable for O(104) runs if O(10) parameters have to be 

addressed



The summing up

• Bayesian inverse problems are close to being used in regular 

engineering practice

– Certainly escaped from the math labs into science labs

– Immense possibilities for quantification of margins and failure-risk 

estimation

– Limited to about 10-40 variables

• Sparsity-enforced reconstruction good for field estimation

– Simplifies / reduces dimensionality of inverse problem, based on 

info content of observations

– Can be done probabilistically too (error bars on each grid cell)

• Called Bayesian compressive sensing / relevance vector machines

• Can be done for nonlinear problems too



Questions?

Questions?


