

Solving inverse problems with quantified uncertainty

J. Ray¹

jairay [at] sandia [dot] gov

In collaboration with B. van BloemenWaanders², S. A. McKenna², Vineet Yadav³ and
A. M. Michalak³

¹Sandia National Laboratories, Livermore, CA,

²Sandia National Laboratories, Albuquerque, NM

³Carnegie Institution for Science, Stanford, CA

Funded by the LDRD program in Sandia National Labs and by DoE/Office of Science
SAND2012-ABCD

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

What is this talk about?

- Probabilistic/statistical methods to solve inverse/parameter estimation problems
 - Useful when you think the estimated parameters may be wrong or uncertain
 - When the model is not really a good fit to data
 - When the data is limited
 - When there are too many parameters to be estimated
- In such difficult parameter estimation scenarios, really 2 ways out
 - Estimate parameters as probability distributions i.e. as PDFs
 - Estimate only those parameters that can be constrained by the data
 - Called dimensionality reduction
 - But how do you find, *a priori*, the parameters to drop?

Some definitions

- Inverse problems – basically data fitting with a model
 - With the aim of estimating model parameters (uncorrelated variables, *a priori*)
 - Or model inputs e.g., a spatially variable material property field
 - Often discretized on a grid
- Components of an inverse problem
 - The data or observations, $\mathbf{y}^{(\text{obs})}$
 - The model inputs or parameters, \mathbf{p}
 - The forward model, $M(\mathbf{p})$
 - $\mathbf{y}^{(\text{obs})} = M(\mathbf{p}) + \boldsymbol{\varepsilon}$, $\boldsymbol{\varepsilon}$ is noise or measurement error
 - A model for noise $\boldsymbol{\varepsilon}$, if doing a probabilistic/statistical/Bayesian inverse problem
 - Often, nothing more than i.i.d. Gaussians, $N(0, \sigma^2)$

Outputs and issues

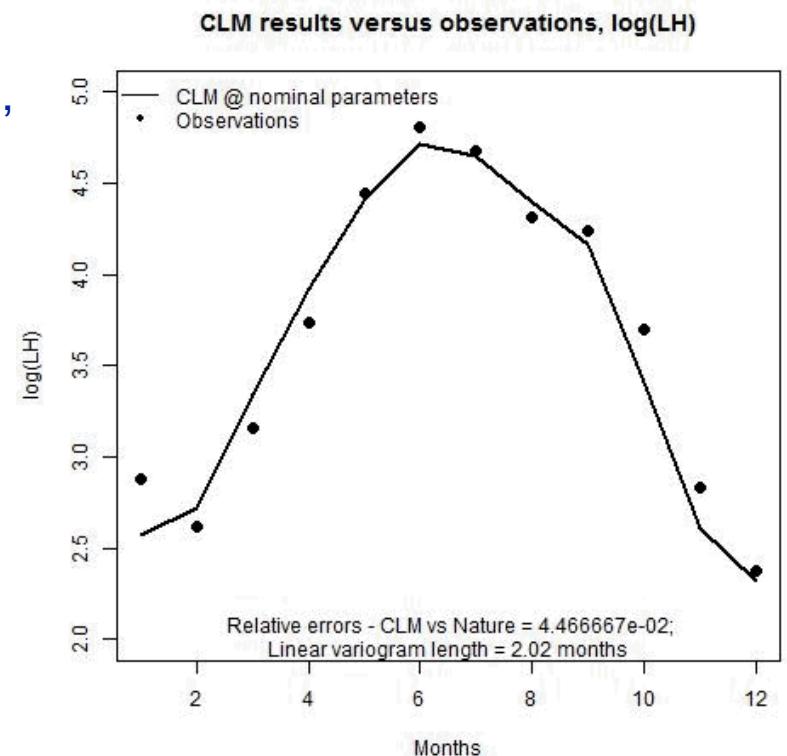
- Bayesian inverse problems estimate \mathbf{p} as a joint PDF
 - All elements of \mathbf{p} are included, even if the data contains no info on them
- When only “constrainable” elements of \mathbf{p} are estimated
 - Sparsity-enforced optimization/reconstruction
 - Requires certain mathematical requirements before one attempts this
- Issues
 - Bayesian inverse problems require many evaluations of forward model – impossible if dealing with a computationally expensive PDE
 - Have to take recourse to surrogate models
 - Elegant simplifications for linear inverse problems i.e. if $\mathbf{M}(\mathbf{p}) = [\mathbf{M}]\mathbf{p}$

Outline of the talk

- Problem I – demonstrate Bayesian inversion in action
 - Estimate 3 parameters of a computationally expensive climate model
 - Issues in making a surrogate
 - Derivation of the inverse problem; numerical scheme
 - Calibration, results & implications
- Problem II – demonstrate sparsity-enforced reconstruction of a field
 - Estimate anthropogenic CO₂ emissions, on a grid
 - Concept of compressive sensing and sparse reconstruction
 - Estimate emissions in only those grid-cells which are constrained by observations, but
 - We don't know a priori which grid-cells are “constrainable”

Problem I – Calibration of the CLM

- CLM - Community Land Model
 - Used in Earth System models; vegetation, hydrology, evaporation, heat balance etc.
- Expensive; 1 hr/invocation for 1 site
- Desired: estimate $\mathbf{p} = \{F_{\text{drai}}, Q_{\text{dm}}, S_y\}$, 3 hydrological parameters
 - Data: monthly Latent Heat (LH) measurements @ US-Moz site
 - “Nominal” values of \mathbf{p} known
- What is the distribution of \mathbf{p} ?
 - Compare with nominal value



Formulation (1/2)

- Let $y(\text{obs})$ be the observations – $\mathbf{y}^{(\text{obs})} = \{y^{(\text{obs})}_i\}$, $i = 1 \dots 12$ months
- Model predictions $\mathbf{y}^{(\text{pred})} = M(\mathbf{p})$, $\mathbf{p} = \{F_{\text{drai}}, \log(Q_{\text{dm}}), S_y\}$
- Error $\boldsymbol{\varepsilon} = \mathbf{y}^{(\text{obs})} - M(\mathbf{p})$, $\varepsilon_i \sim N(0, \sigma^2)$

$$P(\varepsilon_i | \mathbf{p}) \propto \exp\left(-\frac{\varepsilon_i^2}{\sigma^2}\right); \quad P(\boldsymbol{\varepsilon} | \mathbf{p}) \propto \prod_{i=1}^{12} \exp\left(-\frac{\varepsilon_i^2}{\sigma^2}\right) = \exp\left(-\frac{\|\boldsymbol{\varepsilon}\|_2^2}{\sigma^2}\right)$$

$$P(\mathbf{y}^{(\text{obs})} | \mathbf{p}) \propto \exp\left(-\frac{\|\mathbf{y}^{(\text{obs})} - M(\mathbf{p})\|_2^2}{\sigma^2}\right)$$

- $P(\boldsymbol{\varepsilon} | \mathbf{p}) = P(\mathbf{y}^{(\text{obs})} | \mathbf{p})$ is called the Likelihood

Formulation (2/2)

- We desire $P(\mathbf{p} | \mathbf{y}^{(\text{obs})})$ (aka the posterior distribution) and σ^2
- Bayes rule

$$\underbrace{P(\mathbf{p} | \mathbf{y}^{(\text{obs})})}_{\text{Posterior}} P(\mathbf{y}^{(\text{obs})}) = \underbrace{P(\mathbf{y}^{(\text{obs})} | \mathbf{p})}_{\text{Likelihood}} \underbrace{P(\mathbf{p})}_{\text{Prior}}$$

- Prior distribution for \mathbf{p}
 - Each of the components $\{F_{\text{drai}}, \log(Q_{\text{dm}}), S_y\}$, are independent
 - They have uniform distributions between a specified UB and LB
- We need to evaluate $P(\mathbf{p} | \mathbf{y}^{(\text{obs})})$
 - How? Using a sampler – Markov Chain Monte Carlo (MCMC)

What is MCMC?

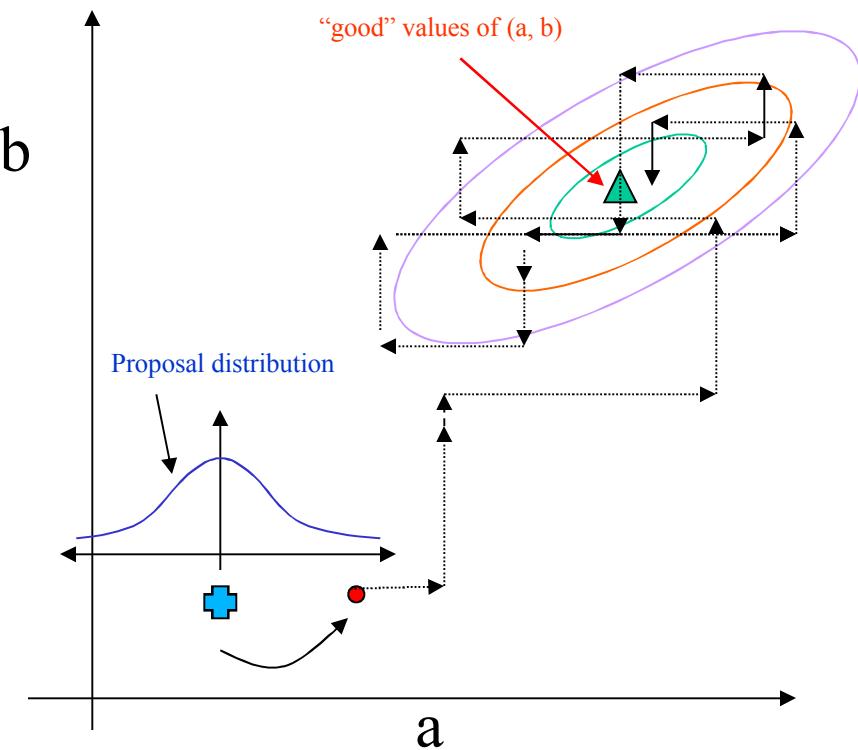
- A way of sampling from an arbitrary distribution
 - The samples, if histogrammed, recover the distribution $P(\mathbf{p} | \mathbf{y}^{(obs)})$
- Efficient and adaptive
 - Given a starting point (1 sample), the MCMC chain will sequentially find the peaks and valleys in the distribution and sample proportionally
- Ergodic
 - Guaranteed that samples will be taken from the entire range of the distribution
- Drawback
 - Generating each sample requires one to evaluate the expression for the density P
 - i.e., a model evaluation – very expensive!

An example, using MCMC

- Given: (Y^{obs}, X) , a bunch of n observations
- Model: $y_i^{\text{obs}} = ax_i + b_i + \varepsilon_i, \varepsilon \sim \mathcal{N}(0, \sigma)$
- Priors : uniform distributions for a, b, σ
- For a given value of (a, b, σ) , compute “error” $\varepsilon_i = y_i^{\text{obs}} - (ax_i + b_i)$
 - Likelihood of the set $(a, b, \sigma) = \prod \exp(-\varepsilon_i^2/\sigma^2)$
- Solution: $\pi(a, b, \sigma | Y^{\text{obs}}, X) = \prod \exp(-\varepsilon_i^2/\sigma^2) * (\text{bunch of uniform priors})$
- Solution method:
 - Sample from $P(a, b, \sigma | Y^{\text{obs}}, X)$ using MCMC; save them
 - Generate a “3D histogram” from the samples to determine which region in the (a, b, σ) space gives best fit
 - Histogram values of a, b and σ , to get individual PDFs for them
 - Estimation of model parameters, with confidence intervals!

MCMC, pictorially

- Choose a starting point, $O^n = (a_{curr}, b_{curr})$
- Propose a new a , $a_{prop} \sim \mathcal{N}(a_{curr}, \sigma_a)$
- Evaluate $P(a_{prop}, b_{curr} | \dots) / P(a_{curr}, b_{curr} | \dots) = m$
- Accept a_{prop} (i.e. $a_{curr} \leftarrow a_{prop}$) with probability $\min(1, m)$
- Repeat with b
- Loop over till you have enough samples



Surrogate model

- Usually MCMC needs 10^3 – 10^7 steps to converge to a distribution
 - Can't use CLM as-is; need to make a surrogate ("curve-fit" model)
- Procedure
 - Sample 128 points in **p**-space
 - Used a method called quasi-Monte Carlo to spread out the samples evenly in the 3D parameter space
 - Run CLM; obtain $\log(LH) = \mathbf{y}^{(\text{clm})}_j, j = 1 \dots 128$
 - Propose a polynomial model, but where to stop?

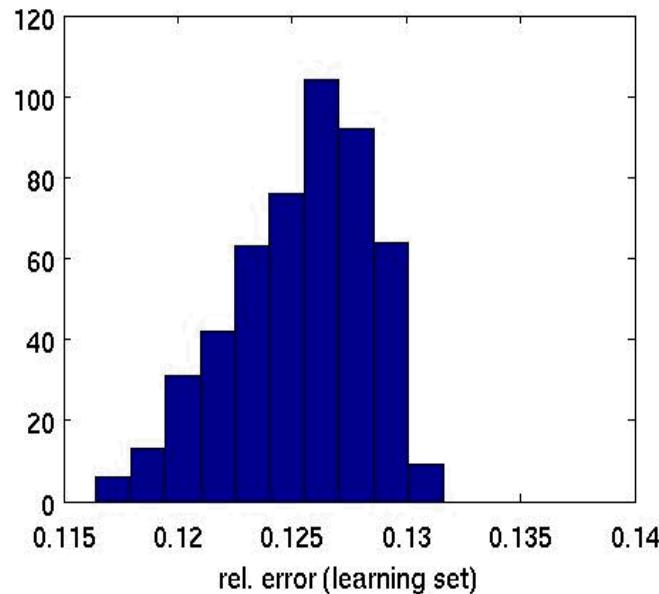
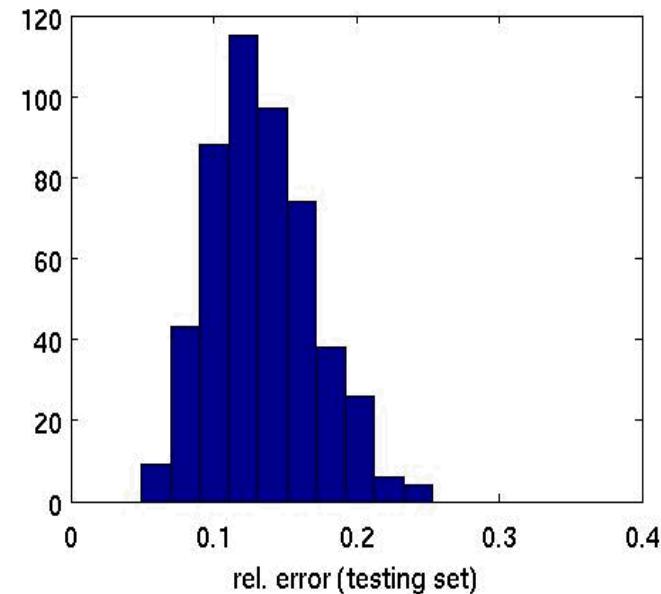
$$\log(LH) = \mathbf{y}^{(\text{clm})} = \sum_{i=1}^3 \alpha_i p_i + \sum_{i=1}^3 \sum_{j=i}^3 \beta_{ij} p_i p_j + \sum_{i=1}^3 \sum_{j=i}^3 \sum_{k=(i+j)}^3 \gamma_{ijk} p_i p_j p_k + \dots$$

Making the surrogate model

- Pick a month – say April
- Make 5 competing models – 1st to 5th order
- Partition the 128 runs into a 118-run Learning Set (LS) and 10-run Testing Set (TS)
- Resample the 128 runs again, make 500 {LS + TS} pairs
- For a given model, say quadratic
 - Use LS to estimate α_i , β_{ij} etc using simple regression; compute polynomial model versus CLM prediction errors (relative)
 - Predict log(LH) at the TS parameters; compute relative error vis-à-vis CLM predictions
 - Over 500 {LS+TS} pairs, one gets a distribution of LS and TS relative errors
 - What do these look like?

Quadratic model predictions

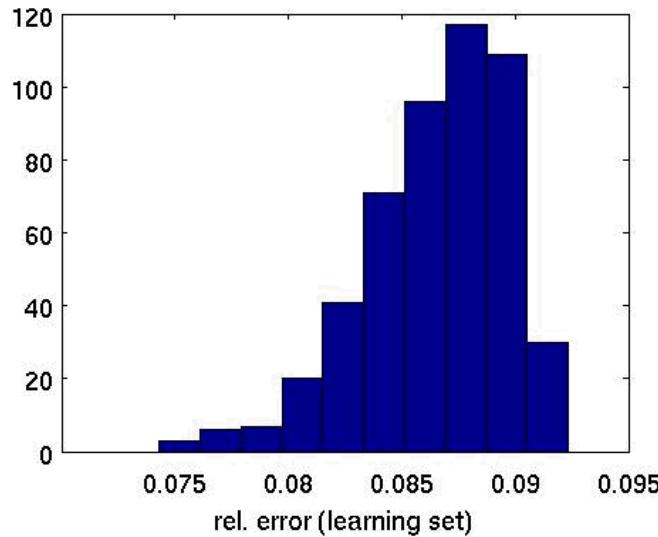
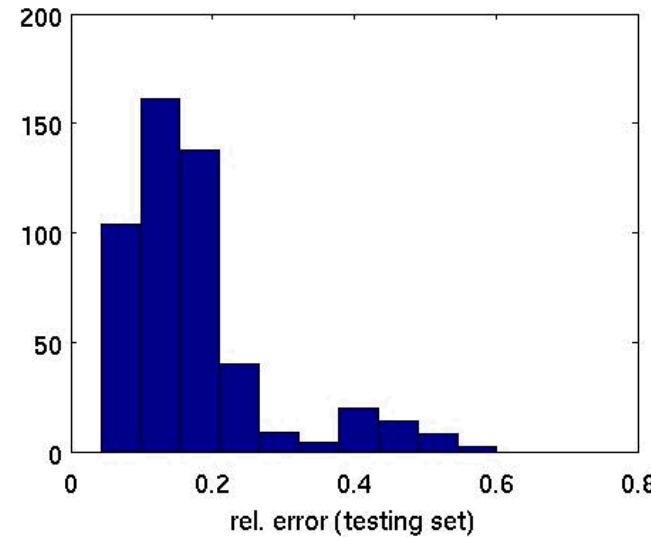
Order = 2, Threshold = 0.000000



- LS error about the same magnitude as TS errors (~ 0.13)
 - Model has about the same predictive skill in LS as TS

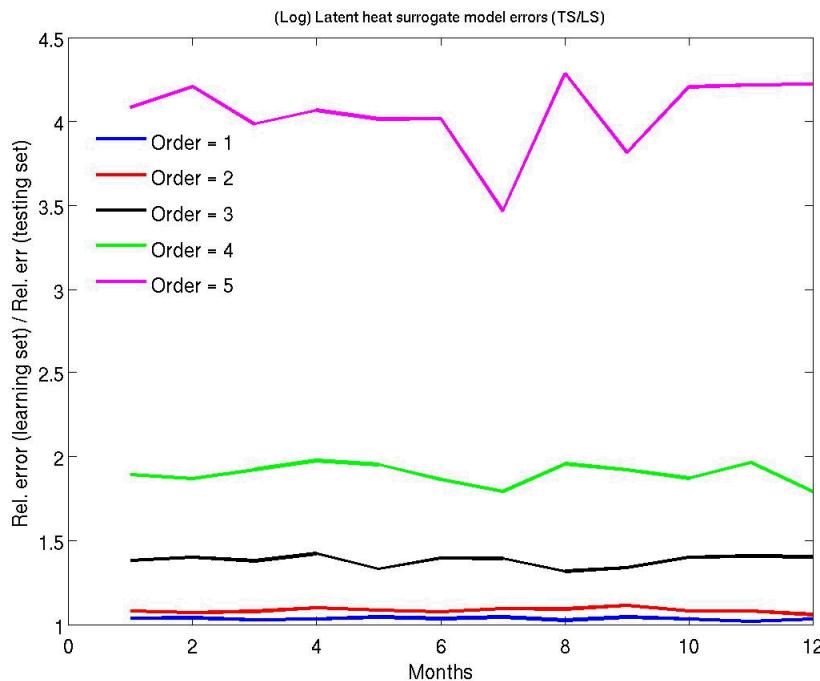
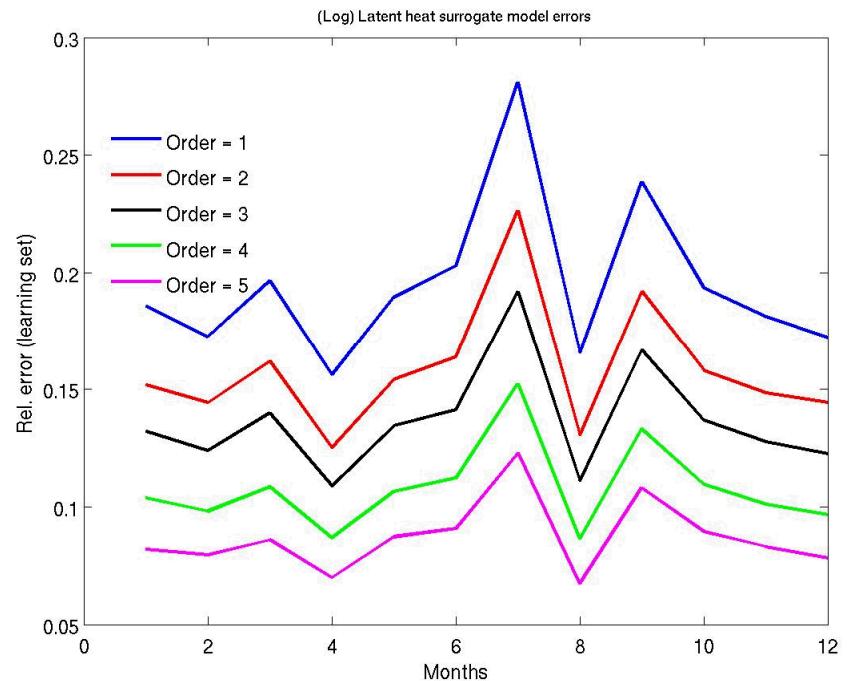
4th-order model predictions

Order = 4, Threshold = 0.000000



- Learning Set error very low, Testing set error 3x bigger
- Clear case of overfitting the LS
- So which model to retain – linear to 5th order?

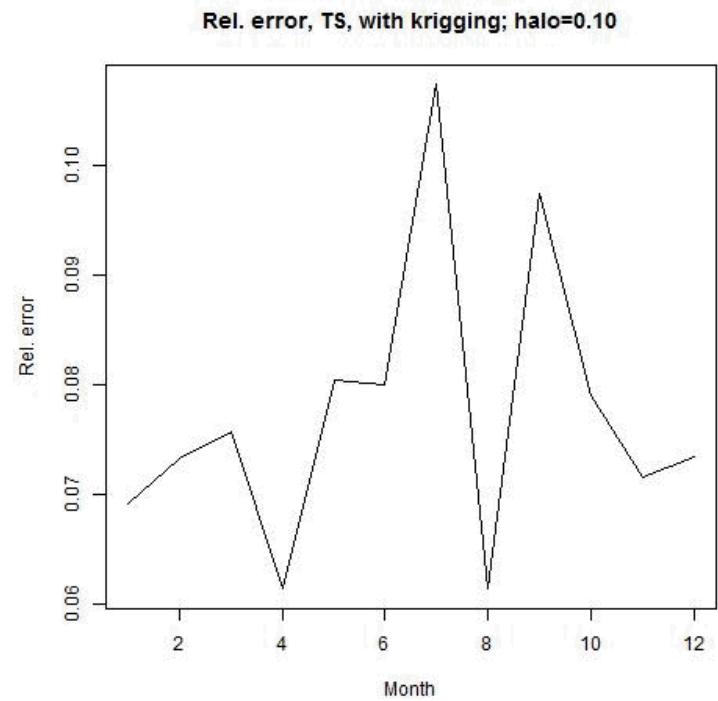
Plotting errors across months



- Linear and quadratic models have similar errors for LS and TS
 - No overfitting here
- But quadratic model has lower errors overall, so choose it.

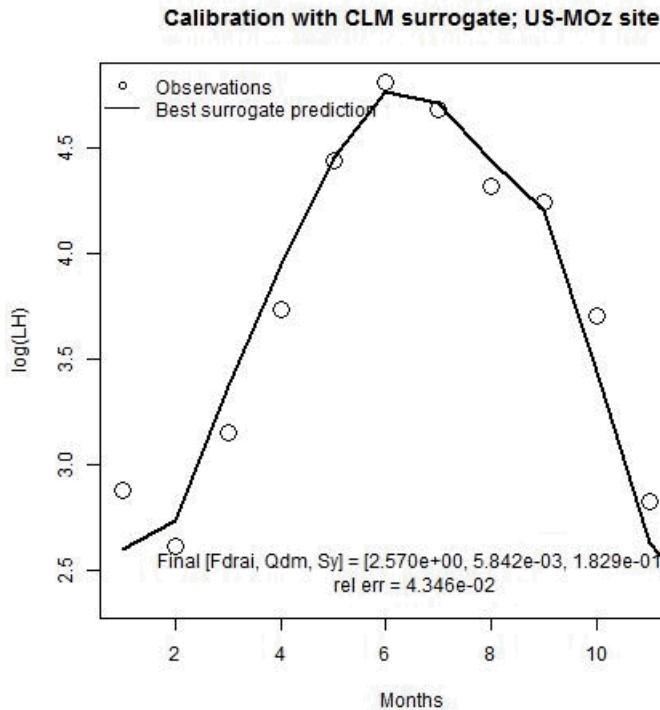
Augmenting the quadratic model

- Quadratic model has pretty large error (~17%)
 - Because it captures no more than the trend of $\log(LH)$ in \mathbf{p} -space
- $\mathbf{y}^{(\text{surr})}(\mathbf{p}) = \mathbf{y}^{(\text{quad})}(\mathbf{p}) + \mathbf{c}(\mathbf{p})$, \mathbf{c} is a correction
 - It is smooth (correlated) function of \mathbf{p}
 - Model $\mathbf{c}(\mathbf{p})$ as a multivariate Gaussian
- With $\mathbf{c}(\mathbf{p})$ model, we can evaluate $\mathbf{y}^{(\text{surr})}(\mathbf{p})$ at arbitrary \mathbf{p}
 - Includes a quadratic prediction
 - And a correction interpolated from the 128 runs

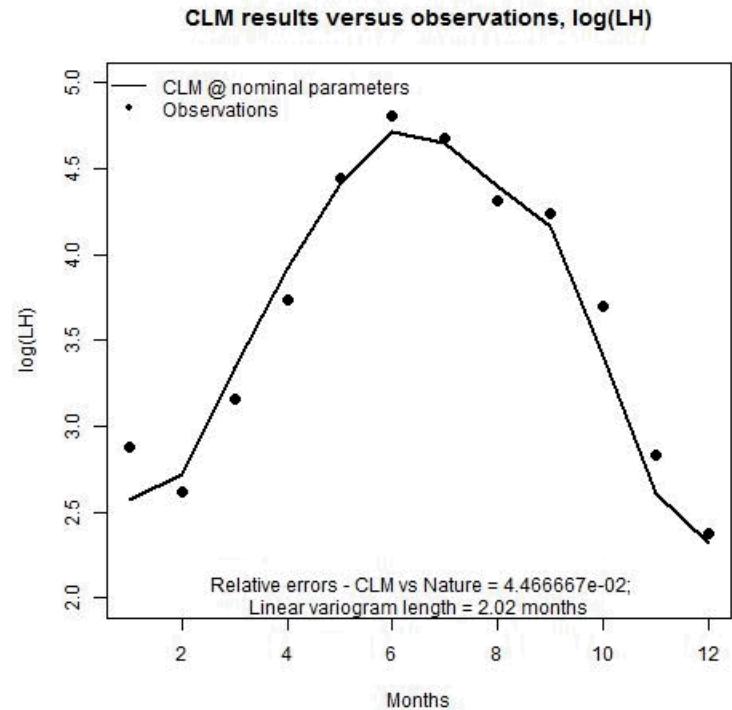


Augmented model give max 10% error

Deterministic fit to US-Moz data



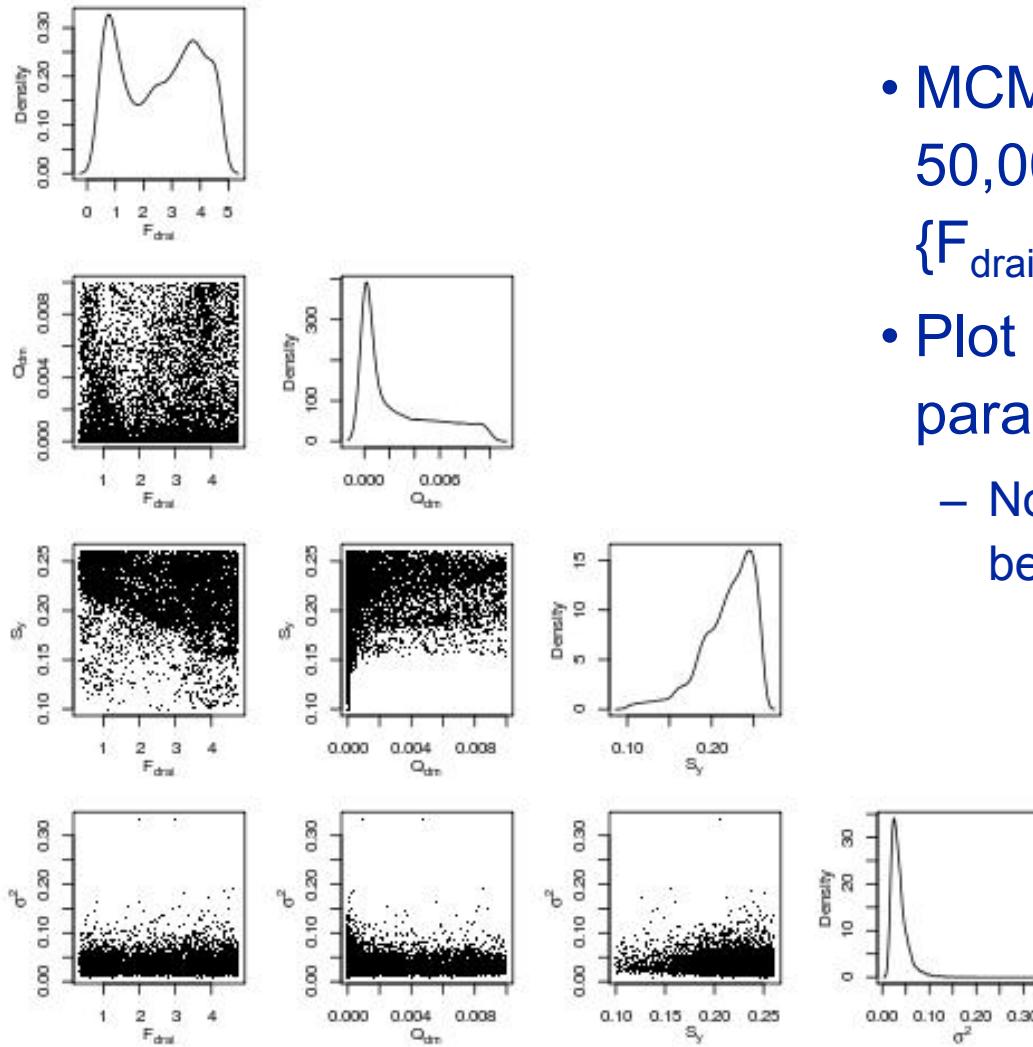
Predictions with calibrated surrogate



CLM predictions with nominal values

- Deterministic fit (w/ surrogate) and “nominal values” look similar
 - But errors sum to zero in the surrogate case

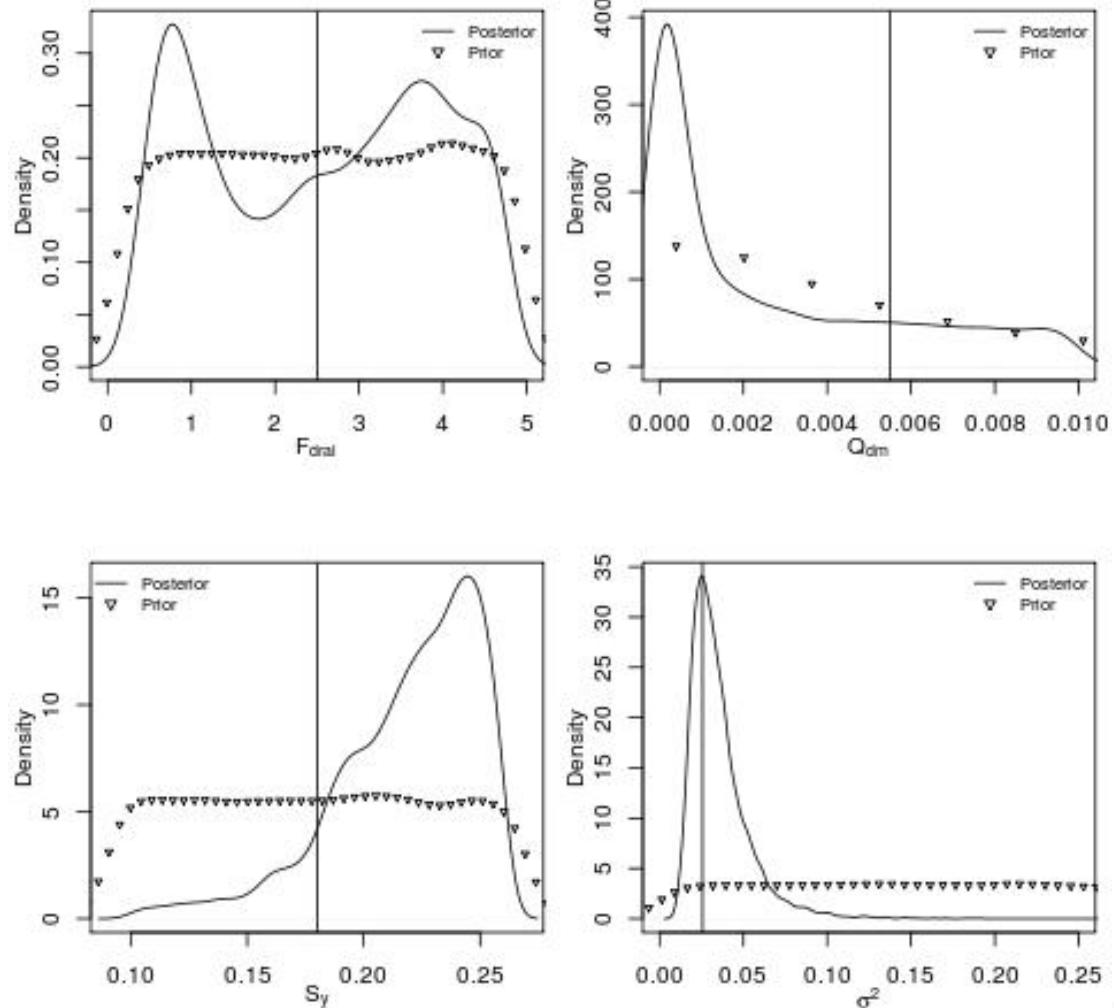
MCMC Results



- MCMC produces 50,000 samples of $\{F_{\text{drai}}, \log(Q_{\text{dm}}), S_y, \sigma\}$
- Plot scatter plots of 2 parameters at a time
 - No correlations between them

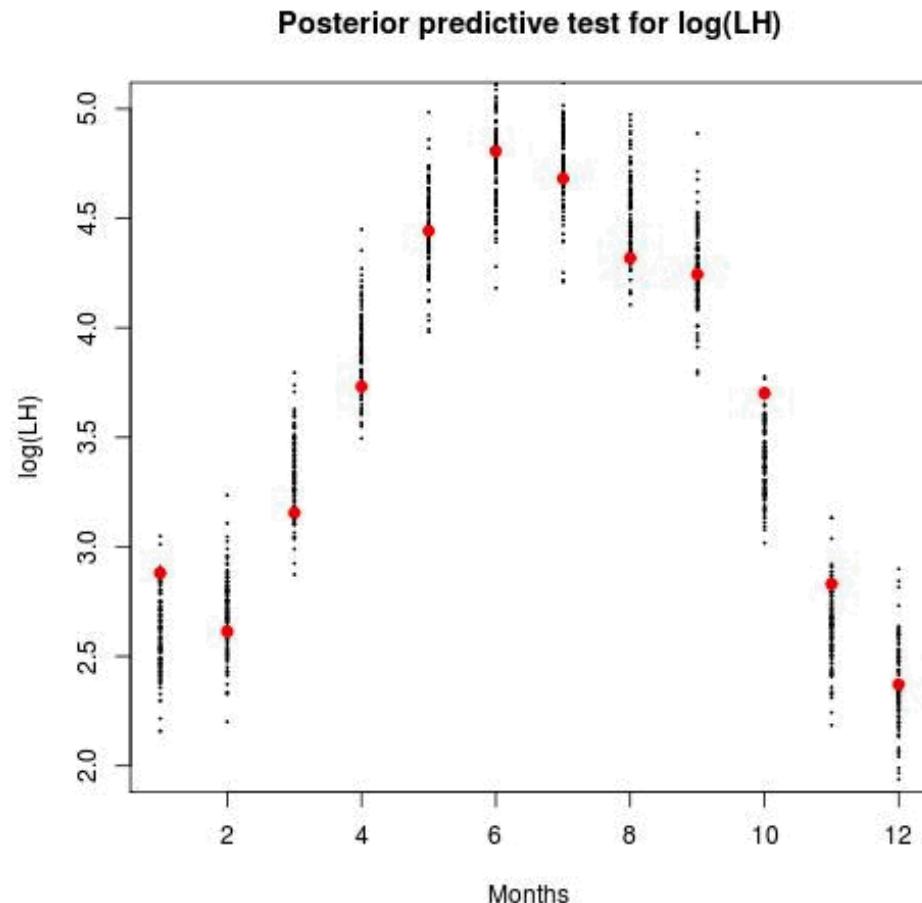
Posteriors and nominal values

- Quite a few problems with being deterministic
- Vertical lines are nominal values
- Nominal value for σ^2 is from the deterministic fit of surrogate



Posterior predictive test

- Sample 100 parameter sets from posterior
- Run forward; add noise using σ
- Plot observations
 - Predictions capture observations, for sure
- Quantify the tightness of the prediction (goodness of calibration)



Gross statistics

Parameter	Nominal Value	Mean Value from US-MOz	Median Value	Inter-quartile range
F_{drai}	2.5	2.56	2.69	1.17—3.77
Q_{dm}	5.5e-3	2.57e-3	1.06e-3	1.05e-4 – 4.63e-3
S_y	0.18	0.20	0.23	0.2 – 0.243

- The mean value from MCMC fit to MOz observations is “close” to nominal values
 - But the skewed distributions mean that the mean/median are not very representations of the high-probability points

Interim conclusions – Bayesian inversion

- Bayesian methods allow us to estimate parameters as distributions
 - Distributions narrow and steepen as more data become available or when fit improves
 - Very useful, if we suspect that parameter estimates may be uncertain
 - Allow probabilistic predictions, that enable us to calculate risk of failure / error in prediction
- Can be used with computationally expensive models, if surrogates can be made
 - Often, this is the main challenge
- Can be expanded to spatial / spatio-temporal observations

Problem II – Estimation of fields

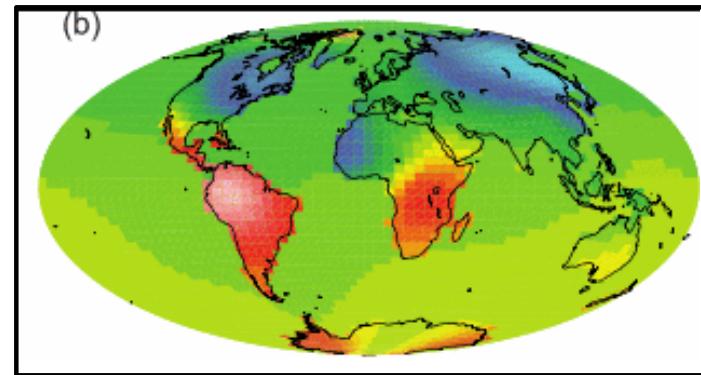
- Model parameters/inputs to be estimate can be fields
 - E.g., estimating the fossil-fuel CO₂ (ffCO₂) emissions in US
 - The emissions are described on a grid; number of emissions to be estimated = # of grid cells is **HUGE!**
 - Aka “dimensionality of the problem is large”
 - Nowhere near enough data
- How to do this? Reduce the “effective dimensionality” by regularization
 - If field is smooth, adjacent cells cannot assume arbitrary values
 - If the field has patterns, make a spatial model (with fewer independent parameters)
- General idea – introduce constraints and reduce the # of variables to estimate

The ffCO₂ estimation problem

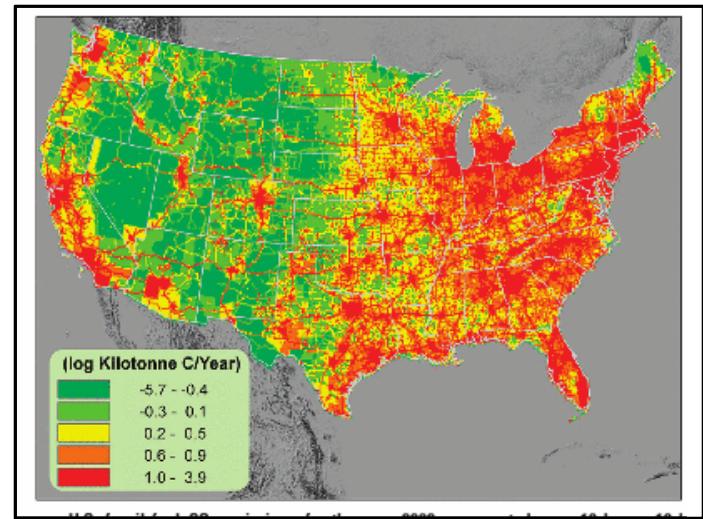
- **Aim:** Develop a technique to estimate anthropogenic CO₂ emissions from sparse observations
- **Motivations:**
 - An alternative to estimating CO₂ emission using bottom-up (economic model) techniques
 - Can provide independent verification in case of CO₂ abatement treaties
- **How is it done?**
 - Measure CO₂ concentrations in flasks at measurement sites; also column-averaged satellite measurements
 - Use an atmospheric transport model to invert for source locations

CO₂ flux inversions (1/2)

- Biogenic CO₂ fluxes:
 - Smoothly variable in space
 - Modeled using multivariate Gaussian
 - Separate correlation lengths over land and oceans
- Anthropogenic (fossil fuel) emissions
 - Currently, only bottom-up estimates exist
 - A few databases – Vulcan (US-only, 2002); EDGAR (world)
 - Gaussian process will probably not work
 - What non-stationary covariance model to use?



Biogenic emissions: Mueller et al, JGR, 2008



Anthropogenic emissions: Gurney et al, EST, 2009

CO₂ flux inversions (2/2)

- NOAA runs a set of towers which measure CO₂ concentrations every 3 hours – main data source
 - Meant for biospheric fluxes (far from cities)
 - About 100 today
- ffCO₂ emissions happen
 - Electricity generation (source details at <http://carma.org>)
 - Where people live (transport, light & heavy industry)
 - Images of lights at nights at night provide a rough spatial pattern
- Simplification – CO₂ transport (source – observation linkage) is that of a passive scalar
 - $y^{(pred)} = [H]e$, e = ffCO₂ emissions on a grid – a linear problem!
 - $[H]$ called the transport matrix- links CO₂ concentrations at sensors with emissions e

Technical challenges in inversion

- Atmospheric transport model - largest source of uncertainty
- Limited measurements - second-largest contribution to uncertainty
- Discriminating between anthropogenic and biogenic CO₂ (biogenic is 10x larger)
 - But anthropogenic and biogenic CO₂ and different (and known) proportions of ¹²CO₂ and ¹⁴CO₂
- Spatial models for anthropogenic CO₂ emissions
 - Non-stationary distribution in space – what is the spatial model?
 - How to reduce the dimensionality of the spatial model?

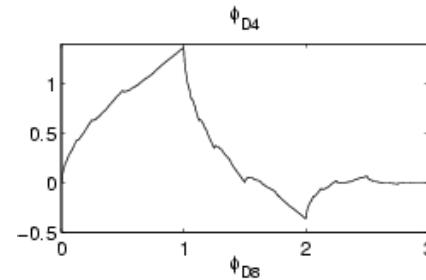
Spatial modeling

- An emission field on $2^N \times 2^N$ pixels grid
 - Can be decomposed on a wavelet basis, N deep
 - Each level s has $2^s \times 2^s - (2^{s-1} \times 2^{s-1})$ weights
- Spatial model for emissions
$$e(x) = \sum_{s=1}^N \sum_{i=1}^{2^s} \sum_{j=1}^{2^s} w_{s,i,j} \phi_{s,i,j}(x) = \Phi \mathbf{w}$$
 - ϕ are orthogonal bases (wavelet basis) of different resolution (scale)
 - A priori, the model is not low-dimensional (\mathbf{w} is large)
- Conjecture
 - $w_{s,i,j}$ are mostly zero (i.e., is sparse)
 - Most can be removed by comparing to a wavelet transform of nightlights
 - Of the remaining, a fraction (near cities) may be estimated from observations; rest are small and can be set to zero

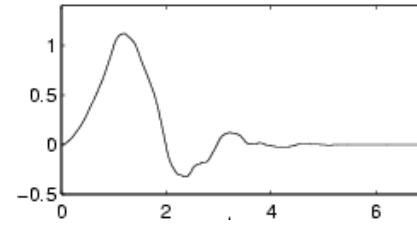
How does one represent emissions with wavelets?

- Propose $E(x) = \sum_{s,l} w_{s,l} \phi_{s,l}(x)$
 - $\phi_{s,l}(x)$ is a wavelet basis; s, l are its *scale* and *location* indices
 - $w_{s,l}$ are weights
- So what are wavelets?
 - Basis set with compact support
 - Belong to different families
 - Within a family, can have different orders (high order \sim smoother)
 - One chooses a family and an order, to expand $E(x)$
 - The expansion consists of varying
 - s , to get different frequency content
 - l , to shift in space (location)

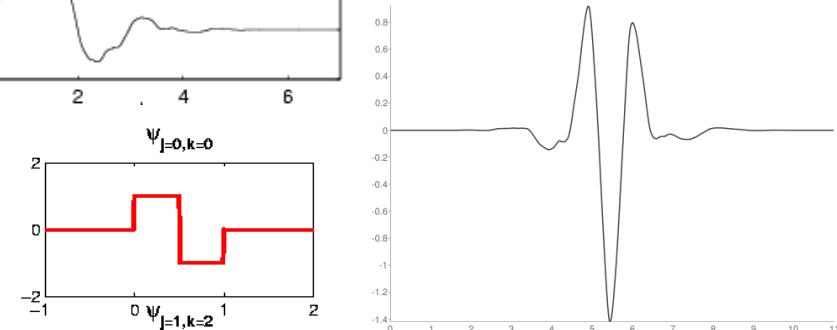
Haars at different scales and locations



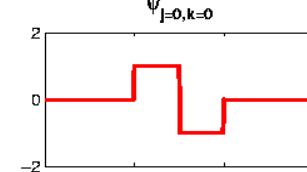
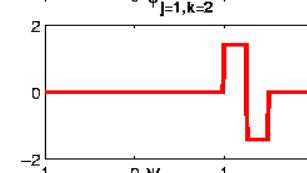
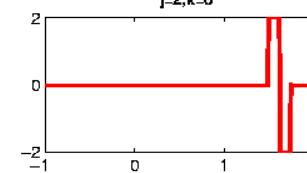
Daubechies, order 4



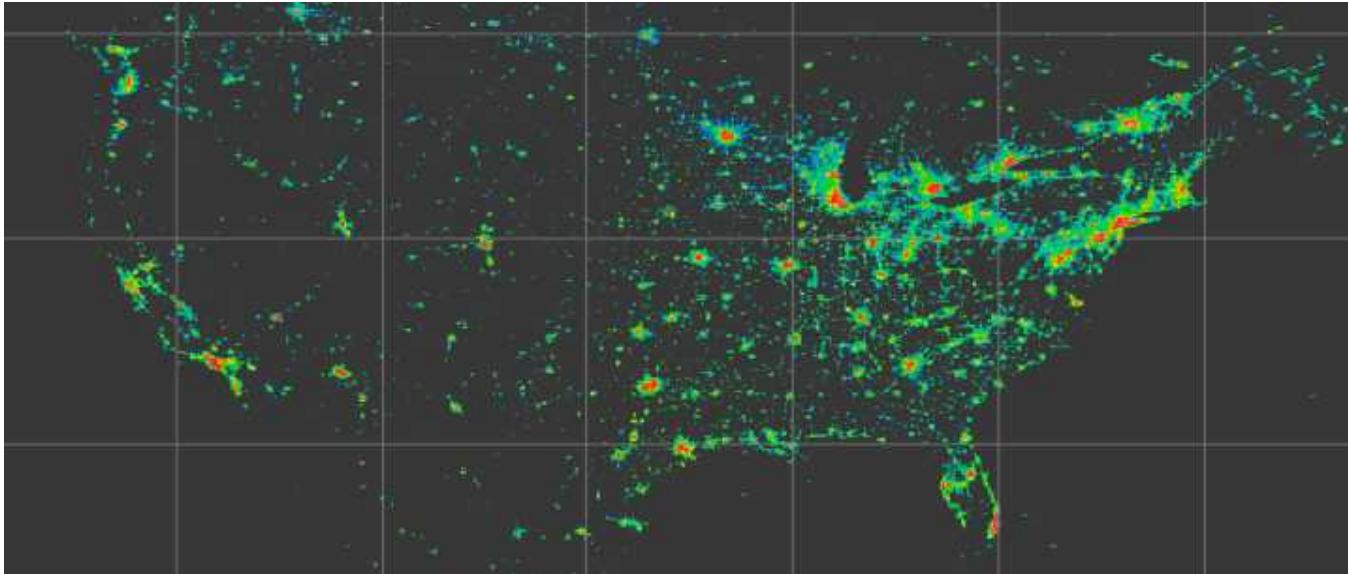
Daubechies, order 6



Symlet, order 6



Dimensionality reduction



- Nightlights are a good proxy for FF emissions
 - Except emissions from electricity generation and cement production
 - Nightlights easily observed – DoD's DMSP-OLS
- Use thresholded radiance-calibrated nightlights from 1997-98 to mask out unpopulated regions

Detour – sparsity enforced reconstruction

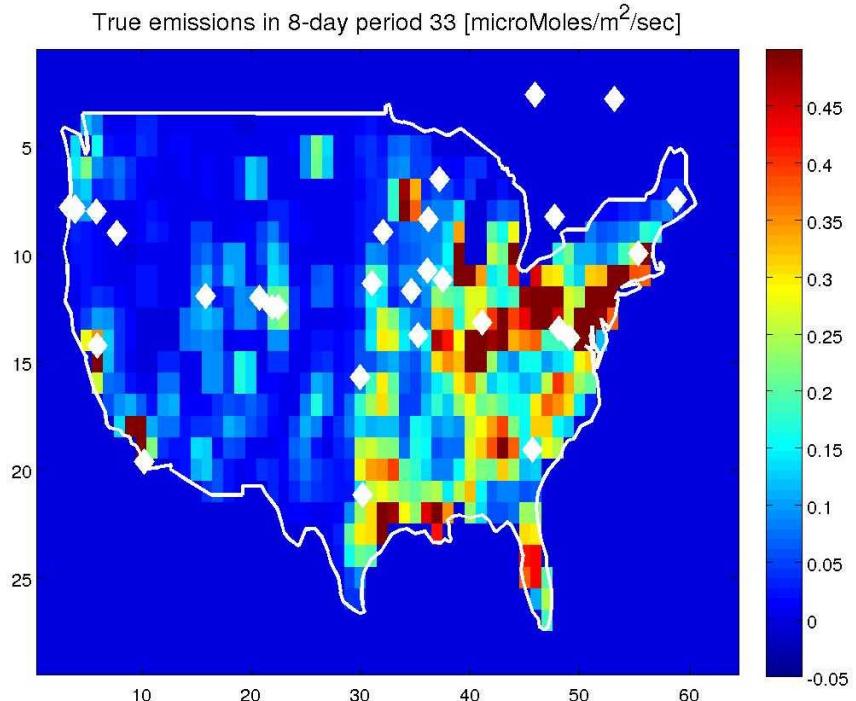
- Let \mathbf{e} be a signal of length N – can be sampled as
 - $\mathbf{y}^{(\text{samp})} = [\mathbf{A}]\mathbf{e}$; lossless reconstruction of \mathbf{e} requires $\mathbf{y}^{(\text{samp})}$ to be N long
 - $[\mathbf{A}]$ is usually random
- Suppose $\mathbf{e} = [\Phi] \mathbf{w}$, where Φ is an orthogonal basis set
 - And \mathbf{w} is sparse; i.e., only $k \ll N$ elements of \mathbf{w} are non-zero (don't know which)
 - To estimate the k non-zero elements of \mathbf{w} , one needs $O(k \log_2(N/k))$ elements (samples) in $\mathbf{y}^{(\text{samp})}$
 - Theory of compressive sampling
- Reconstruction from noisy samples posed as
 - $\mathbf{y}^{(\text{obs})} = [\mathbf{A}][\Phi]\mathbf{w} + \varepsilon$, \mathbf{w} is sparse and ε is noise

Reconstruction – via penalized optimization

- Typically, when fitting, we would solve
 - minimize $\| \mathbf{y}^{(\text{obs})} - [\mathbf{A}][\Phi]\mathbf{w} \|_2$ wrt \mathbf{w}
- Sparsity-enforced (we want a sparse \mathbf{w})
 - minimize $\| \mathbf{y}^{(\text{obs})} - [\mathbf{A}][\Phi]\mathbf{w} \|_2 + \|\mathbf{w}\|_1$
 - The last penalty cuts down on the # of elements in \mathbf{w}
- Many algorithms to solve this – usually formulated as
 - Minimize $\|\mathbf{w}\|_1$ under the constraint $\| \mathbf{y}^{(\text{obs})} - [\mathbf{A}][\Phi]\mathbf{w} \|_2 < \varepsilon_s$
 - We use StOMP
- The ffCO₂ problem
 - $[\Phi]$ are the basis set – in our case, Haar wavelets; \mathbf{w} are the wavelet coefficients; $[\mathbf{A}]$ is the transport matrix $[\mathbf{H}]$
 - $\mathbf{y}^{(\text{obs})}$ are tower measurements of CO₂ concentrations
 - minimize $\| \mathbf{y}^{(\text{obs})} - [\mathbf{H}][\Phi]\mathbf{w} \|_2 + \|\mathbf{w}\|_1$

Setting up the synthetic data inversion

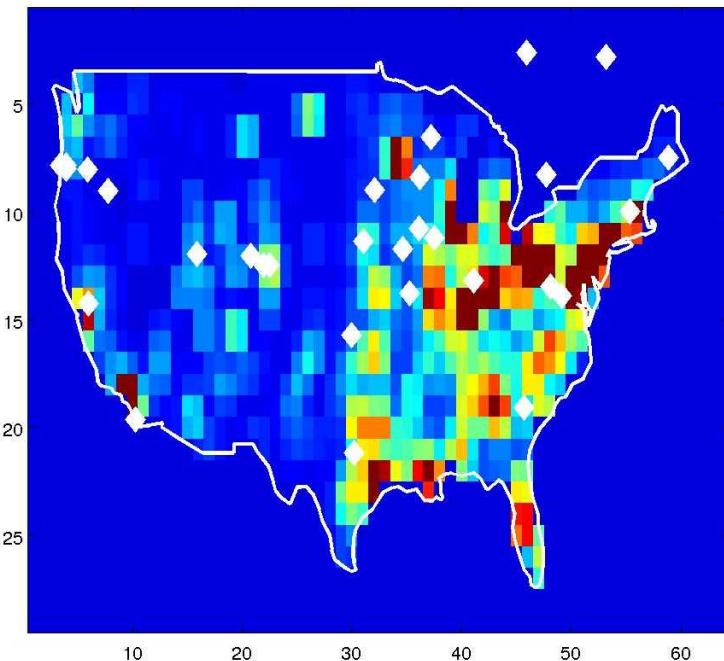
- True emissions – Vulcan database for US, 2002
 - Used to generate CO₂ concentrations at towers
 - 3 hr temporal resolution
- Nightlight images (for 1997)
 - used to remove wavelets from “dark” areas
- Emissions discretized on a grid
 - 1 degree spatial resolution
 - Fluxes assumed to be constant over 8-day periods (“a week”)



Emissions for a week in August 2002
(Vulcan database, 1 deg resolution)

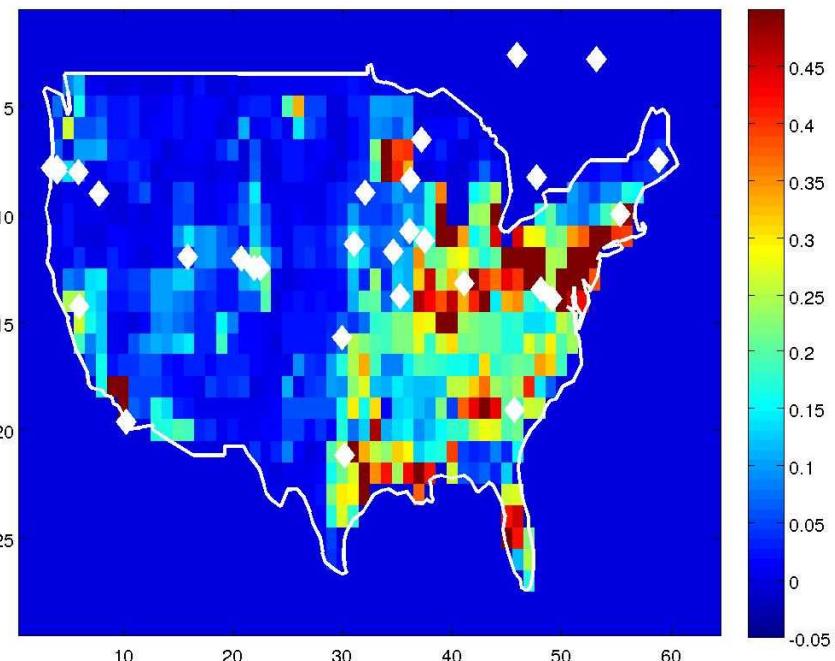
How good is the reconstruction?

True emissions in 8-day period 35 [microMoles/m²/sec]



True emissions

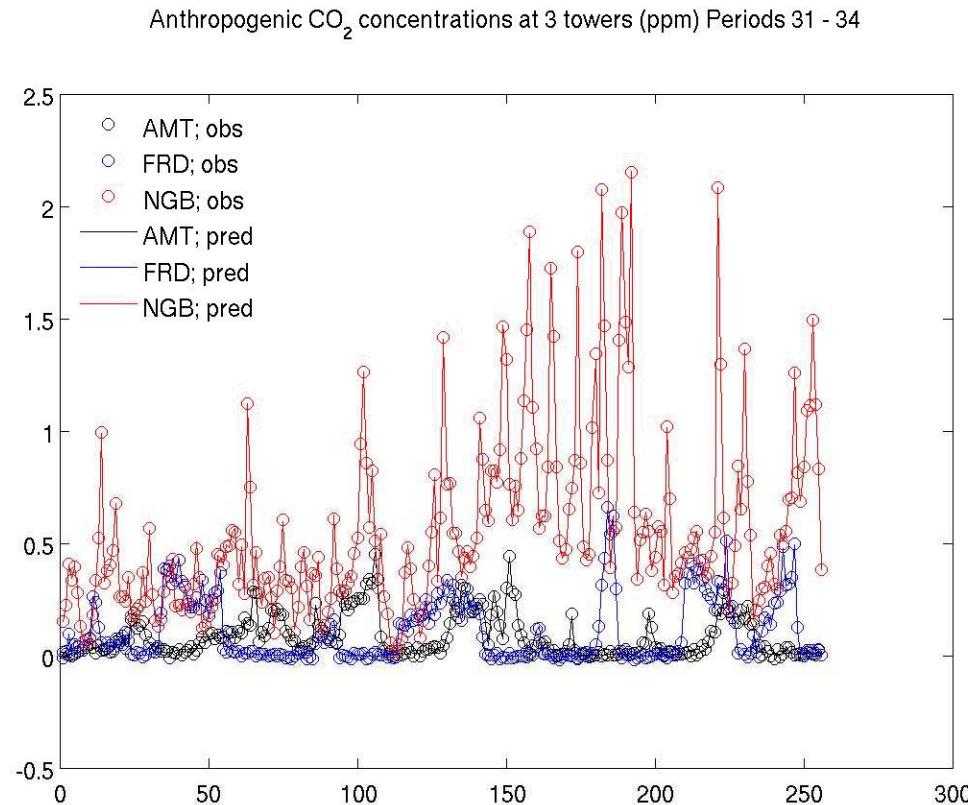
Reconstructed emissions in 8-day period 35 [microMoles/m²/sec]



Reconstructed emissions

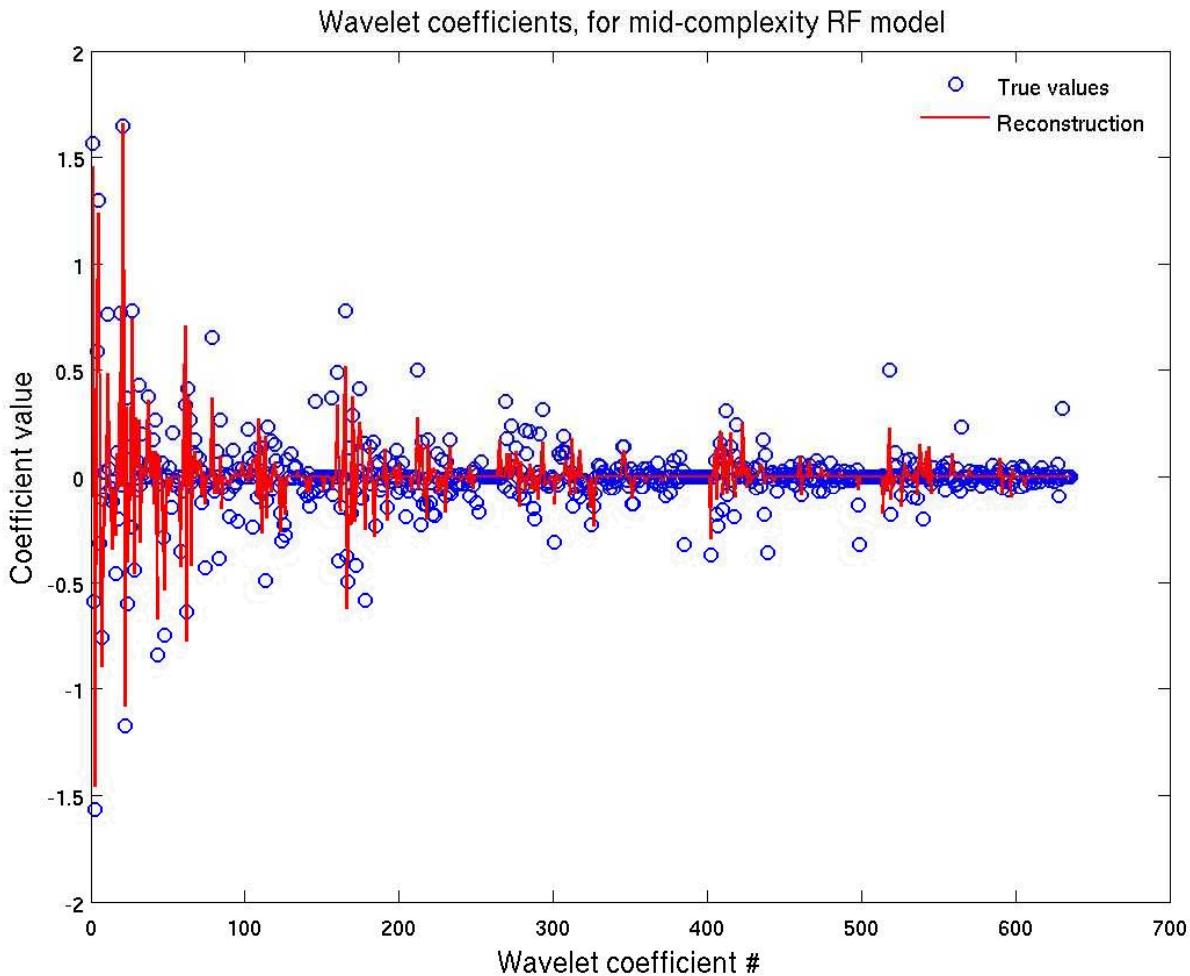
- A week in September 2002

Can we reproduce tower observations?



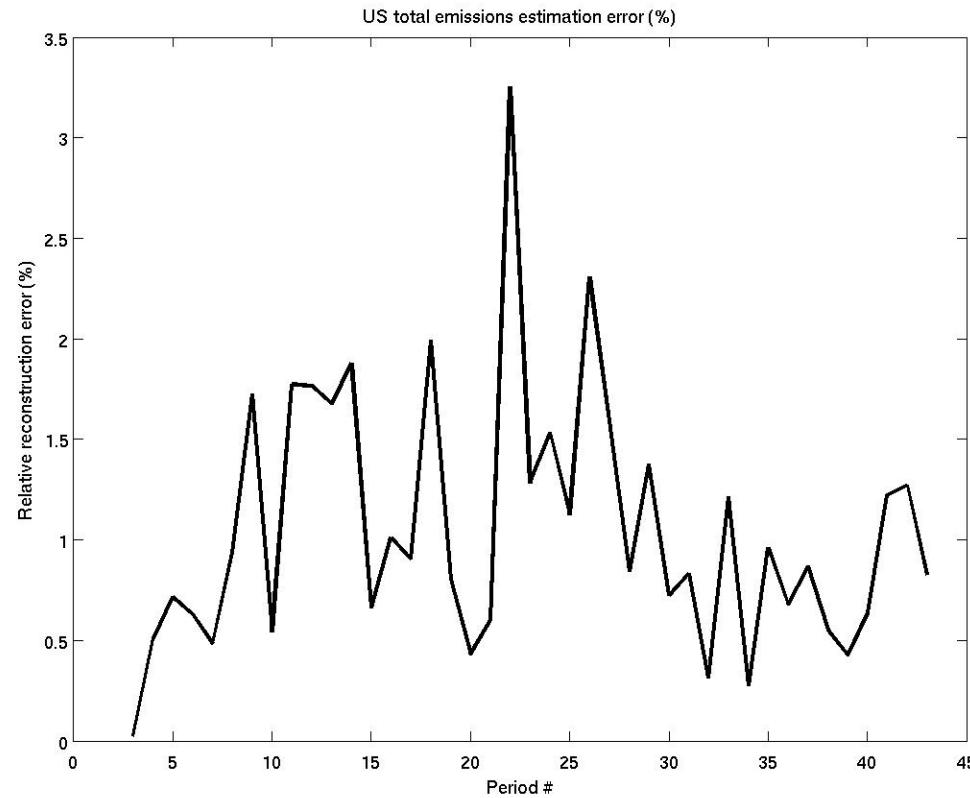
- Tower concentration predictions with reconstructed fluxes (only 3 weeks)
 - Symbols : observations used in the inverse problem.

Did sparsification work?



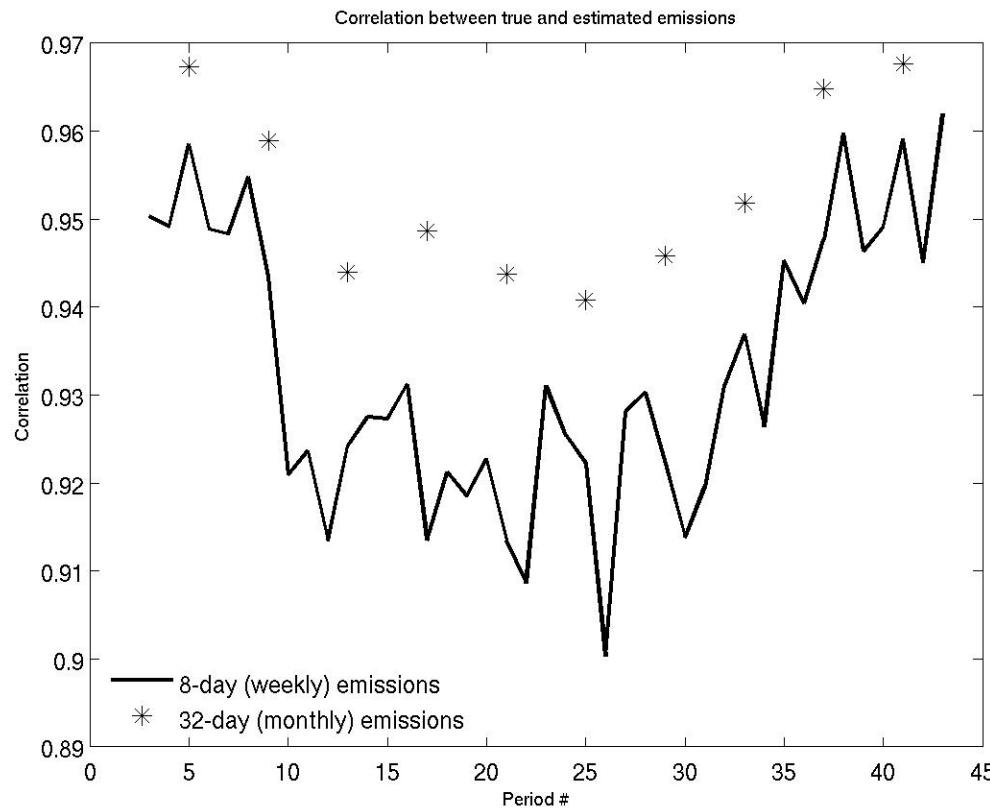
- Only about half the wavelets could be estimated
- We are probably not over-fitting the problem
 - Data-driven sparsification works

Reconstruction error in total US emission



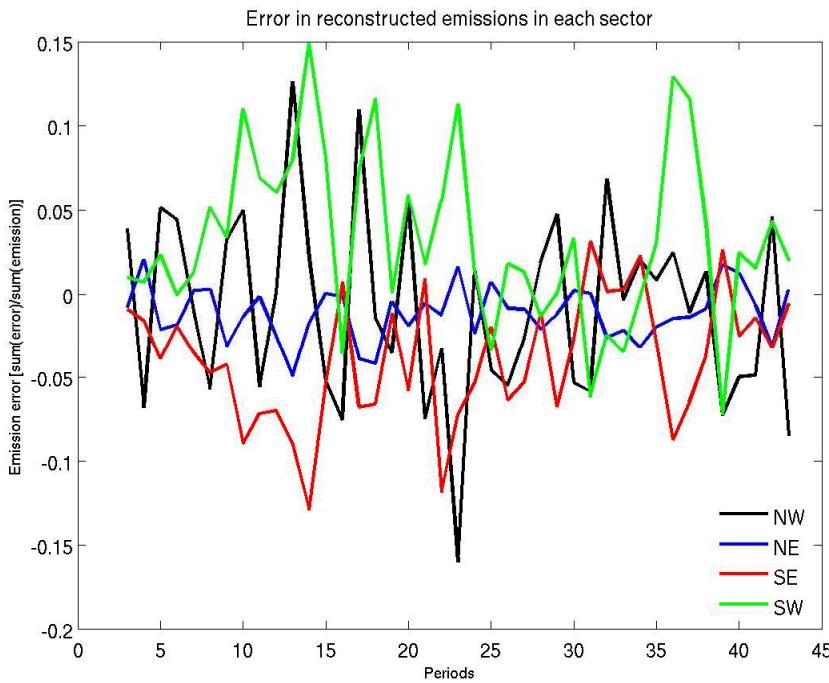
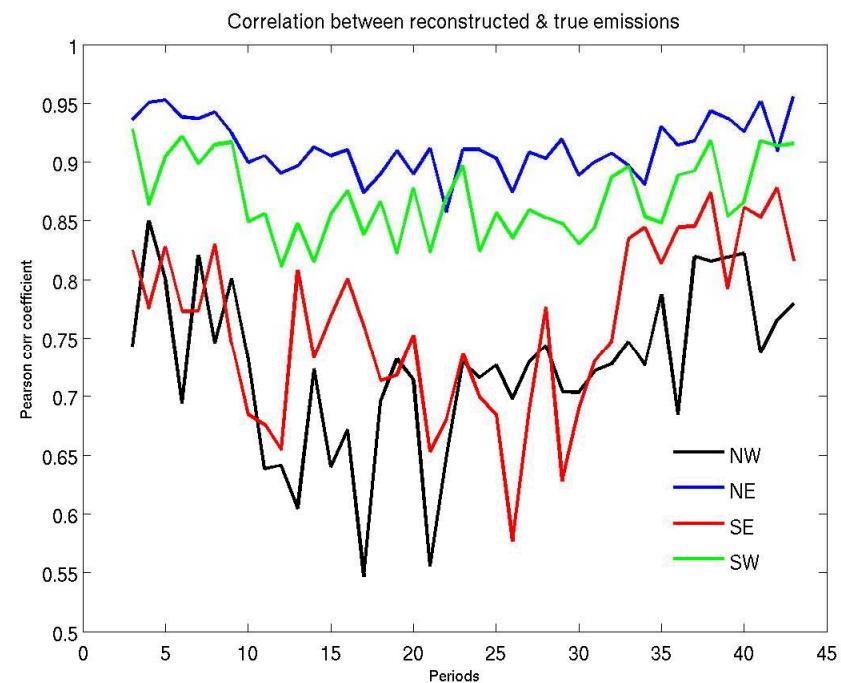
- We get about 3.5% error, worst case

Is the spatial distribution correct?



- The spatial distribution of emissions is very close to truth
- Especially, if considering monthly fluxes

Which parts of US are well estimated?



- The NE has the lowest errors and best correlations
- The NW is generally the worst estimated

Interim conclusions – field estimation

- Sparsity-enforced estimation can deal with high-dimensional spatial random field models
 - Of use when estimating complex, multiscale field
 - For smooth fields, much simpler methods exist
- Not discussed here – non-negativity enforcement
 - The emissions estimated by sparsity enforcement can sometimes be negative
 - A post-processing step (non-sparsity enforcing) corrects it
 - Simple and works only because we start with a very good guess

How far to engineering practice?

- These are NOT hero HPC codes
 - All done in Matlab and R
 - Sophisticated utilities (wavelets, sparsity-enforced optimization etc.) available as open-source toolboxes and packages
- Largest computational challenge – running ensemble of runs on clusters to generate data for surrogate models
 - Naively, a book-keeping nightmare, but ...
 - DAKOTA (<http://dakota.sandia.gov>) does the sampling, running, batch-job submission and data collation for you
 - Indispensable for $O(10^4)$ runs if $O(10)$ parameters have to be addressed

The summing up

- Bayesian inverse problems are close to being used in regular engineering practice
 - Certainly escaped from the math labs into science labs
 - Immense possibilities for quantification of margins and failure-risk estimation
 - Limited to about 10-40 variables
- Sparsity-enforced reconstruction good for field estimation
 - Simplifies / reduces dimensionality of inverse problem, based on info content of observations
 - Can be done probabilistically too (error bars on each grid cell)
 - Called Bayesian compressive sensing / relevance vector machines
 - Can be done for nonlinear problems too

Questions?

