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What is this talk about?

* Probabilistic/statistical methods to solve inverse/parameter
estimation problems
— Useful when you think the estimated parameters may be wrong or
uncertain
* When the model is not really a good fit to data
* When the data is limited
« When there are too many parameters to be estimated
* In such difficult parameter estimation scenarios, really 2 ways
out
— Estimate parameters as probability distributions i.e. as PDFs

— Estimate only those parameters that can be constrained by the data
 Called dimensionality reduction
« But how do you find, a priori, the parameters to drop?
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Some definitions

* Inverse problems — basically data fitting with a model

— With the aim of estimating model parameters (uncorrelated
variables, a priori)

— Or model inputs e.g., a spatially variable material property field
 Often discretized on a grid
« Components of an inverse problem
— The data or observations, y(°Ps)
— The model inputs or parameters, p

— The forward model, M(p)
« ylobs) = M(p) + ¢, € is noise or measurement error

— A model for noise g, if doing a probabilistic/statistical/Bayesian
inverse problem

« Often, nothing more than i.i.d. Gaussians, N(0, ¢?)

Sandia
National
Laboratories



Outputs and issues

« Bayesian inverse problems estimate p as a joint PDF

— All elements of p are included, even if the data contains no info on
them

* When only “constrainable” elements of p are estimated
— Sparsity-enforced optimization/reconstruction
— Requires certain mathematical requirements before one attempts
this
* Issues

— Bayesian inverse problems require many evaluations of forward
model — impossible if dealing with a computationally expensive PDE

» Have to take recourse to surrogate models
— Elegant simplifications for linear inverse problems i.e. if M(p) = [M]p
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Outline of the talk

* Problem | — demonstrate Bayesian inversion in action

— Estimate 3 parameters of a computationally expensive climate
model

— Issues in making a surrogate
— Derivation of the inverse problem; numerical scheme
— Calibration, results & implications

* Problem Il — demonstrate sparsity-enforced reconstruction of a
field

— Estimate anthropogenic CO, emissions, on a grid
— Concept of compressive sensing and sparse reconstruction

— Estimate emissions in only those grid-cells which are constrained by
observations, but ....

« We don’t know a priori which grid-cells are “constrainable”
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Problem | — Calibration of the CLM

 CLM - Community Land Model

— Used in Earth System mOdels; CLM results versus observations, log(LH)
vegetation, hydrology, evaporation, & 7 cw@uomnaparameters
heat balance etc. i
» Expensive; 1 hr/invocation for 1 N
site -
- Desired: estimate p = {Fy.;, Qqmy  ©
S,}: 3 hydrological parameters =
— Data: monthly Latent Heat (LH) S

measurements @ US-Moz site

) Relative errors - CLM vs Mature = 4 466667 e-02;
o Linearvariogram length = 2.02 months
T T T

— “Nominal” values of p known . . i ; % i

* What is the distribution of p? Months
— Compare with nominal value
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ormulation (1/2)

* Let y(obs) be the observations — y(obs) = {y(obs) 1 'j =1 12
months

* Model predictions y(Pred) = M(p), p = {Fy4;, 109(Qq), S,}
* Error ¢ = y(©°Ps) — M(p), &, ~ N(0O, c?)

g’ L2 g’ ‘8
P(g, |p) < exp[— = j; P(e|p) < 1 d_exp[— B j =exp| ——
o o o

i=1

obs
obe y —M(p)
P(y“™ |p) o eXp[— — J

* P(g|p) = P( y!°*®)|p) is called the Likelihood
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ormulation (2/2)

« We desire P(p | y©P)) (aka the posterior distribution) and 2

- Bayes rule
b b b
P(p|y*™)P(y*™) = P(y* |p)P(p)
Pos;grior Like;z;zood PI”\ZTOI’

* Prior distribution for p
— Each of the components {F,;, 109(Qqy,), S,}, are independent
— They have uniform distributions between a specified UB and LB

« We need to evaluate P(p | y(©bs))
— How? Using a sampler — Markov Chain Monte Carlo (MCMC)
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What is MCMC?

« A way of sampling from an arbitrary distribution

— The samples, if histogrammed, recover the distribution P(p | yt©®9))

« Efficient and adaptive

— Given a starting point (1 sample), the MCMC chain will sequentially find
the peaks and valleys in the distribution and sample proportionally

* Ergodic

— Guaranteed that samples will be taken from the entire range of the
distribution

 Drawback

— Generating each sample requires one to evaluate the expression for the
density P

— i.e., a model evaluation — very expensive!
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n example, using MCMC

* Given: (Y°Ps, X), a bunch of n observations
« Model: y°*s = ax, + b, + &, ¢ ~ N0, o)
* Priors : uniform distributions for a, b,
 For a given value of (a, b, ), compute “error” g, =y.°bs — (ax; + b))
— Likelihood of the set (a, b, ) = IT exp( - ¢%/c? )
« Solution: © (a, b, o | Yo, X ) =IT exp( - €%/c? ) * (bunch of uniform
priors)
 Solution method:
— Sample from P( a, b, o | Y°bs, X ) using MCMC; save them

— Generate a “3D histogram” from the samples to determine which
region in the (a, b, o) space gives best fit

— Histogram values of a, b and o, to get individual PDFs for them
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MCMC, pictorially

» Choose a starting point, O" = \ “good” values of (a, b)

(acurr’ bcurr) \ <
o

Propose a new a, a,, ~ Na,,

U
>
N
e

© S
e Evaluate P( a o Curr | ) / P( Proposal distribution P — vy
acurr’ bcurr | S =m X : >
. ACCGpt D (I €. a. urr prop) with ;—A‘
< | >
probablllfy min(1, m) M .

v

Repeat with b

Loop over till you have enough
samples

Sandia
National
Laboratories



Surrogate model

« Usually MCMC needs 102 — 107 steps to converge to a
distribution

— Can’t use CLM as-is; need to make a surrogate (“curve-fit” model)
* Procedure
— Sample 128 points in p-space

» Used a method called quasi-Monte Carlo to spread out the samples
evenly in the 3D parameter space

— Run CLM; obtain log(LH) = yleim), j=1...128
— Propose a polynomial model, but where to stop?

log(LH) =y“"™ = Za P, +ZZﬁ,,p P, +77 yyykp,p]pk -----

i=1 j=i i=1 j=i k=(i+))
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aking the surrogate model

* Pick a month — say April
« Make 5 competing models — 15t to 5" order

« Partition the 128 runs into a 118-run Learning Set (LS) and 10-
run Testing Set (TS)

» Resample the 128 runs again, make 500 {LS + TS} pairs

* For a given model, say quadratic

— Use LS to estimate o;, f;; etc using simple regression; compute
polynomial model versus CLM prediction errors (relative)

— Predict log(LH)at the TS parameters; compute relative error vis-a-
vis CLM predictions

— Over 500 {LS+TS} pairs, one gets a distribution of LS and TS
relative errors
« What do these look like?
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Quadratic model predictions

Order = 2, Threshold = 0.000000

120

100 [

80

60T

407

20T

0

0.115 0.12 0.125 0.13

rel. error (learning set)

0.135

0.14

120

1001

80T

60T

401

20T

0 0.1 0.2

rel. error (testing set)

0.3 0.4

* LS error about the same magnitude as TS errors (~0.13)
— Model has about the same predictive skill in LS as TS
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4th-order model predictions

Order = 4, Threshold = 0.000000

120 200
100 |
150 |
80 |
60 | 100 |
40 |
50 |
20|

0.075 0.08 0.085 0.09 0.095 0 0.2 0.4 0.6 0.8
rel. error (learning set) rel. error (testing set)

» Learning Set error very low, Testing set error 3x bigger
 Clear case of overfitting the LS
« So which model to retain — linear to 5" order?
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Plotting errors across months

(Log) Latent heat surrogate model errors (TS/LS) (Log) Latent heat surrogate model errors
4.5 T T T T T 0.3
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* Linear and quadratic models have similar errors for LS and TS
— No overfitting here

» But quadratic model has lower errors overall, so choose it.
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Augmenting the quadratic model

» Quadratic model has pretty large
error (~1 7%) Rel. error, TS, with krigging; halo=0.10

— Because it captures no more than the
trend of log(LH) in p-space

o y(surm)(p) = ylauad)(p) + ¢(p), cis a
correction

010
1

Rel. errar
0.0g
]

0.08
1

— It is smooth (correlated) function of p
— Model c(p) as a multivariate Gaussian

0.07

« With c(p) model, we can evaluate
y(sur(p) at arbitrary p E 0k & e %

Month

0.06
|

— Includes a quadratic prediction
Augmented model give max 10%

error
Sandia
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Laboratories

— And a correction interpolated from the
128 runs



log(LH)
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Predictions with calibrated surrogate
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Deterministic fit to US-Moz data

Calibration with CLM surrogate; US-MOz site

o Observations
— Best surrogate predictio

Fﬁﬁm [Fdrai, Qdm, Sy] =[2.570e+00, 5.842e-03, 1.829e-0
rel err = 4 346e-02

T T T T T
2 4 6 8 10

Months

T
12

logi(LH})

CLM predictions with nominal values

5.0

445

4.0

3.6

3.0

2.5

20

CLM results versus observations, log(LH)

— CLM @ nominal parameters
*  Observations -

Relative errors - CLM vs Mature = 4 466667e-02;

Linear variogram length = 2 02 maonths
T T T

T
2 4 G

Months

T
8 10 12

» Deterministic fit (w/ surrogate) and “nominal values” look similar

— But errors sum to zero in the surrogate case

()
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MCMC Results

| | « MCMC produces
F S 50,000 samples of
— F“_ {Fdrai’ Iog(Qdm)s Sy, G}
L - Plot scatter plots of 2
parameters at a time
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Posteriors and nominal values

* Quite a few "
problems with :g
being 5
deterministic .

- Vertical lines are
nominal values

* Nominal value for _

o2 is from the
deterministic fit of
surrogate
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osterior predictive test

e Sam p|e 100 Posterior predictive test for log(LH)
parameter sets from T
posterior : ’If *

_ : *

50

4.5

* Run forward; add
noise using o

4.0
I

* Plot observations

+ s i —

logiLH)

— Predictions capture
observations, for sure g ¢

» Quantify the tightness i ’
of the prediction Lo
(goodness of
calibration) 2 4 5 : 10 1
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Gross statistics

Parameter | Nominal Mean Value Median Inter-quartile range
Value from US-MOz Value
B s

2.56 2.69 1.17—3.77

B 553 2.57e-3 1.06e-3 1.05e-4 — 4.63¢-3
0.18 0.20 0.23 0.2 -0.243

« The mean value from MCMC fit to MOz observations is “close” to
nominal values

» But the skewed distributions mean that the mean/median are not very
representations of the high-probability points
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nterim conclusions — Bayesian inversion

« Bayesian methods allow us to estimate parameters as
distributions

— Distributions narrow and steepen as more data become available or
when fit improves

— Very useful, if we suspect that parameter estimates may be
uncertain

— Allow probabilistic predictions, that enable us to calculate risk of
failure / error in prediction

« Can be used with computationally expensive models, if
surrogates can be made

— Often, this is the main challenge
« Can be expanded to spatial / spatio-temporal observations
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roblem Il — Estimation of fields

* Model parameters/inputs to be estimate can be fields
— E.g., estimating the fossil-fuel CO, (ffCO2) emissions in US

— The emissions are described on a grid; number of emissions to be
estimated = # of grid cells is HUGE!

« Aka “dimensionality of the problem is large”
— Nowhere near enough data
* How to do this? Reduce the “effective dimensionality” by
regularization
— If field is smooth, adjacent cells cannot assume arbitrary values

— If the field has patterns, make a spatial model (with fewer
independent parameters)

 General idea — introduce constraints and reduce the # of
variables to estimate

Sandia
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The ffCO2 estimation problem

« Aim: Develop a technique to estimate anthropogenic CO,
emissions from sparse observations
* Motivations:

— An alternative to estimating CO, emission using bottom-up
(economic model) techniques

— Can provide independent verification in case of CO, abatement
treaties

* How is it done?

— Measure CO, concentrations in flasks at measurement sites; also
column-averaged satellite measurements

— Use an atmospheric transport model to invert for source locations

Sandia
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CO, flux inversions (1/2)

* Biogenic CO, fluxes:
— Smoothly variable in space
— Modeled using multivariate Gaussian
— Separate correlation lengths over
land and oceans
» Anthropogenic (fossil fuel)
emissions

» Currently, only bottom-up estimates
exist

» A few databases — Vulcan (US-only,
2002); EDGAR (world)

« Gaussian process will probably not
work

* What non-stationary covariance
model to use?

{lag Kllotenne ClYear)

||
| |
[iem]
[
]

Anthropogenic emissions: Gurney et Sa“_dia
al, EST, 2009 National
Laboratories
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O, flux inversions (2/2)

* NOAA runs a set of towers which measure CO, concentrations
every 3 hours — main data source

— Meant for biospheric fluxes (far from cities)
— About 100 today
 ffCO2 emissions happen
— Electricity generation (source details at http://carma.org)
— Where people live (transport, light & heavy industry)
— Images of lights at nights at night provide a rough spatial pattern

 Simplification — CO2 transport (source — observation linkage) is
that of a passive scalar

— ylpred) = [H]e, e = ffCO2 emissions on a grid — a linear problem!
— [H] called the transport matrix- links CO, concentrations at sensors

with emissions e
@ Sandia
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echnical challenges in inversion

« Atmospheric transport model - largest source of uncertainty

 Limited measurements - second-largest contribution to
uncertainty

» Discriminating between anthropogenic and biogenic CO,
(biogenic is 10x larger)

— But anthropogenic and biogenic CO, and different (and known)
proportions of 2CO, and *CO,

» Spatial models for anthropogenic CO, emissions
— Non-stationary distribution in space — what is the spatial model?

— How to reduce the dimensionality of the spatial model?

Sandia
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Spatial modeling

» An emission field on 2V x 2N pixels grid
— Can be decomposed on a wavelet basis, N deep
— Each level s has 23 x 25 — (251 x 25-1) weights
» Spatial model for emissions
N o o
e(x) = Zzzws,i,j¢s,i,j (X) = (I)W

s=1 i=1 j=1

— ¢ are orthogonal bases (wavelet basis) of different resolution (scale)
— A priori, the model is not low-dimensional (w is large)

» Conjecture
— wg;; are mostly zero (i.e., is sparse)

— Most can be removed by comparing to a wavelet transform of
nightlights

— Of the remaining, a fraction (near cities) may be estimated from
observations; rest are small and can be set to zero
Sandia
@ National
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How does one represent emissions with wavelets?

° PI’OpOSe E(X) — Z Ws,l¢s,l (X)
sl

— gbs,,(x) is a wavelet basis; s, | are its
scale and location indices

— wg, are weights

« So what are wavelets?
— Basis set with compact support
— Belong to different families

— Within a family, can have different
orders (high order ~ smoother)

— One chooses a family and an order,
to expand E(x)
— The expansion consists of varying
* s, to get different frequency content
« |, to shift in space (location)

0.5

=05

0.5

-0.5

Haars at different scales and locations

Vg

Daubechies, order 4

Daubechies, order 6

1 2 3 4 5 6 7 8 9 10 "

Symlet, order 6
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 Nightlights are a good proxy for FF emissions

— Except emissions from electricity generation and cement production
— Nightlights easily observed — DoD’s DMSP-OLS

» Use thresholded radiance-calibrated nightlights from 1997-98 to mask

out unpopulated regions
@ Sandia
National
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etour — sparsity enforced reconstruction

* Let e be a signal of length N— can be sampled as

— ylsamp) = [A]e; lossless reconstruction of e requires y(sampP) to be N
long

— [A] is usually random
* Suppose e = [®] w, where ® is an orthogonal basis set

— And w is sparse; i.e., only k << N elements of w are non-zero (don't
know which)

— To estimate the k non-zero elements of w, one needs O(k log,(N/k))
elements (samples) in y(samp)

» Theory of compressive sampling
» Reconstruction from noisy samples posed as
— ylobs) = [A][D]w + ¢, W is sparse and ¢ is noise

Sandia
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econstruction — via penalized optimization

* Typically, when fitting, we would solve
— minimize | y(°Ps) — [A][®]w |, wrt w

» Sparsity-enforced (we want a sparse w)
— minimize | y(°®s) — [A][®]w |, + |w]|,
— The last penalty cuts down on the # of elements in w

« Many algorithms to solve this — usually formulated as
— Minimize |w|,under the constraint | y{°Ps) — [A][D]w |, < &
— We use StOMP

* The ffCO2 problem

— [®@] are the basis set — in our case, Haar wavelets; w are the
wavelet coefficients; [A] is the transport matrix [H]

— y(°bs) are tower measurements of CO, concentrations
— minimize | y(°®s) — [H][®@]w |, + |w|,

Sandia
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Setting up the synthetic data inversion

 True emissions — Vulcan
database for US, 2002

— Used to generate CO,
concentrations at towers

— 3 hr temporal resolution

* Nightlight images (for 1997)
— used to remove wavelets
from “dark” areas

 Emissions discretized on a
grid
— 1 degree spatial resolution
Fluxes assumed to be

constant over 8-day periods
(“a week”)

True emissions in 8-day period 33 [microf\/loles/mzlsec]

0.45
0.4
F 1035
- 0.3
- 025
B 0.2

B 0.15

0.1

0.05

-0.05

10 20 30 40 50 60

Emissions for a week in August 2002
(Vulcan database, 1 deg resolution)
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How good is the reconstruction?

True emissions in 8-day period 35 [microf\/loles/mzlsec] Reconstructed emissions in 8-day period 35 [microMoIes/mZ/sec]

10 20 30 40 50 60 10 20 30 40 50 60

True emissions Reconstructed emissions

* A week in September 2002
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National
Laboratories



Can we reproduce tower observations?

Anthropogenic CO2 concentrations at 3 towers (ppm) Periods 31 - 34

2.5 \ T T
©  AMT,; obs
©  FRD; obs o
oL © NGB;obs ¢ ? i
— AMT; pred o -
— FRD; pred ¢
150 —NGB; pred ! 5 |

0 50 100 150 200 250 300

» Tower concentration predictions with reconstructed fluxes (only 3

weeks) Sandia
— Symbols : observations used in the inverse problem. el



Did sparsification work?

Wavelet coefficients, for mid-complexity RF model N Only about half the

2 T T T T T

o ;rue values Wavelets COUId be
econstruction
estimated

D
1.5

* We are probably not
over-fitting the
problem

| — Data-driven
sparsification works

Coefficient value

_155 |

2 | | | | | |
0 100 200 300 400 500 600 700

Wavelet coefficient #
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econstruction error in total US emission

US total emissions estimation error (%)

3.5

lati
P

0 5 10 15 20 25 30 35 40 45
Period #

» We get about 3.5% error, worst case

()
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Is the spatial distribution correct?

Correlation between true and estimated emissions

0.97

096

0951

0.94r

0931

Correlation

0921

0911

0.9
— 8-day (weekly) emissions

*  32-day (monthly) emissions

089 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Period #

* The spatial distribution of emissions is very close to truth

National
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error [sum(error)/sum(emission)]

Emission

0.15

0.1

0.051

o
T

-0.05

011

-0.151

-0.2

Which parts of US are well estimated?

Error in reconstructed emissions in each sector

095+
09r
0.85-
g 08r
£ 075
2

§ 07r
0.65-
06F

0.55

0.5

* The NE has the lowest errors and best correlations
* The NW is generally the worst estimated

Correlation between reconstructed & true emissions

()

45

Sandia
National
Laboratories



;,.'

nterim conclusions — field estimation

» Sparsity-enforced estimation can deal with high-dimensional
spatial random field models

— Of use when estimating complex, multiscale field
— For smooth fields, much simpler methods exist
* Not discussed here — non-negativity enforcement

— The emissions estimated by sparsity enforcement can sometimes
be negative

— A post-processing step (non-sparsity enforcing) corrects it
— Simple and works only because we start with a very good guess

Sandia
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ow far to engineering practice?

* These are NOT hero HPC codes
— All done in Matlab and R

— Sophisticated utilities (wavelets, sparsity-enforced optimization etc.)
available as open-source toolboxes and packages

 Largest computational challenge — running ensemble of runs on
clusters to generate data for surrogate models
— Naively, a book-keeping nightmare, but ...

— DAKOTA (http://dakota.sandia.gov) does the sampling, running,
batch-job submission and data collation for you

— Indispensable for O(10%) runs if O(10) parameters have to be
addressed

Sandia
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The summing up

« Bayesian inverse problems are close to being used in regular
engineering practice

— Certainly escaped from the math labs into science labs

— Immense possibilities for quantification of margins and failure-risk
estimation

— Limited to about 10-40 variables
» Sparsity-enforced reconstruction good for field estimation

— Simplifies / reduces dimensionality of inverse problem, based on
info content of observations

— Can be done probabilistically too (error bars on each grid cell)
 Called Bayesian compressive sensing / relevance vector machines
» Can be done for nonlinear problems too

Sandia
National
Laboratories



Questions?

Reconstructed emissions in 8-day period 3 [microMoIesfmzz’sec]

0.45

0.4

—10.35

0.3

0.25

0.2

0.15

0.1

0.05

-0.05

()
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