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Climate science celebrates three 40th anniversaries in 2019: release of the Charney report, 

publication of a key paper on anthropogenic signal detection, and the start of satellite 

temperature measurements. This confluence of scientific understanding and data led to the 

identification of a human fingerprint in atmospheric temperature.

We discuss these three events below. Our focus is on understanding how the scientific advances 

arising from the events aided efforts to identify human influences on the thermal structure of the 

atmosphere. 

The Charney report

In 1979, the U.S. National Academy of Sciences published the findings of an “Ad Hoc Study 

Group on Carbon Dioxide and Climate”. This is frequently referred to as the Charney report1. 

The authors did not have many of the scientific advantages available today: international climate 

science assessments based on thousands of relevant peer-reviewed scientific papers2,3,4, four 

decades of satellite measurements of global climate change5, land and ocean surface temperature 

datasets spanning more than 120 years6, estimates of natural climate variability7,8, and 

sophisticated three-dimensional numerical models of Earth’s climate system. Nevertheless, the 

report’s principal findings have aged remarkably well. Consider conclusions regarding the 

equilibrium climate sensitivity (ECS): “We estimate the most probable global warming for a 

doubling of CO2 to be near 3C with a probable error of +/- 1.5C”. These values are in accord 

with current understanding9 and are now supported by multiple lines of evidence that were 

unavailable in 1979. Examples include observed patterns of surface warming, greenhouse gas 

and temperature changes on Ice Age timescales, and results from multi-model ensembles of 

externally forced simulations3,4,9. 

There is also better process-level understanding of the feedbacks contributing to ECS 

uncertainties10,11,12. Charney et al. understood that the factor of three spread in ECS

was mainly due to uncertainties in the net effect of high and low cloud feedbacks13.

Reliable assessment of cloud feedbacks required “comprehensive numerical modeling of the 

general circulations of the atmosphere and the oceans together with validation by comparison of 
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the observed with the model-produced cloud types and amounts”. This conclusion foreshadowed 

rigorous evaluation of model cloud properties with satellite data14. Such comparisons ultimately 

led to the elucidation of robust cloud responses to greenhouse warming15, and to the 2013 

conclusion of the Intergovernmental Panel on Climate Change (IPCC) that “the sign of the net 

radiative feedback due to all cloud types is... likely positive”10. 

The ocean’s role in climate change featured prominently in the Charney report. The authors 

noted that ocean heat uptake would delay the emergence of a human-caused warming signal 

from the background noise of natural variability16. This delay, they wrote, meant that

humanity “...may not be given a warning until the CO2 loading is such that an appreciable 

climate change is inevitable”. The finding that “On time scales of decades... the coupling 

between the mixed layer and the upper thermocline must be considered” provided impetus for 

the development of atmosphere-ocean General Circulation Models (GCMs). 

The authors also knew that scientific uncertainties did not negate the reality and seriousness of 

human-caused climate change: “We have examined with care all known negative feedback 

mechanisms, such as increase in low or middle cloud amount, and have concluded that the 

oversimplifications and inaccuracies in the models are not likely to have vitiated the principal 

conclusion that there will be appreciable warming”. Although the GCMs available in 1979 were 

not yet sufficiently reliable for predicting regional changes, Charney et al. cautioned that the 

“associated regional climate changes so important to the assessment of socioeconomic 

consequences may well be significant”.

In retrospect, the Charney report seems like the scientific equivalent of the handwriting on the 

wall. Forty years ago, its authors issued a clear warning of the potentially significant 

socioeconomic consequences of human-caused warming. Their warning was accurate and 

remains more relevant than ever. 

Hasselmann’s optimal detection paper

The second scientific anniversary marks the publication of a paper by Klaus Hasselmann
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entitled: “On the signal-to-noise problem in atmospheric response studies”17. This is now widely 

regarded as the first serious effort to provide a sound statistical framework for identifying a 

human-caused warming signal.

In the 1970s, there was recognition that GCM simulations yielded both “signal” and “noise”

when forced by changes in atmospheric CO2 or other external factors18. The signal was the 

climate response to the altered external factor. The noise arose from natural internal climate 

variability. Noise estimates were obtained from observations or by running an atmospheric GCM

coupled to a simple model of the upper ocean. In the presence of intrinsic noise, statistical 

methods were required to identify areas of the world where first detection of a human-caused

warming signal might occur. 

One key insight in Hasselmann’s 1979 paper was that analysts should look at the statistical 

significance of global geographical patterns of climate change. Previous work had assessed the 

significance of the local climate response to a particular external forcing at thousands of 

individual model grid-points. Climate information at these individual locations was correlated in 

space and in time, hampering assessment of overall significance. Hasselmann noted that “...it is 

necessary to regard the signal and noise fields as multi-dimensional vector quantities... and the 

significance analysis should accordingly be carried out with respect to this multi-variate 

statistical field, rather than in terms of individual gridpoint statistics”. Instead of looking

for a needle in a tiny corner of a large haystack (and then proceeding to search the next tiny 

corner), Hasselmann advocated for a more efficient strategy – searching the entire haystack 

simultaneously. 

He also pointed out that theory, observations, and models provide considerable information 

about signal and noise properties. For example, changes in solar irradiance, volcanic aerosols,

and greenhouse gases produce signals with different patterns, amplitudes, and frequencies2,3,4,8,19.

These unique signal characteristics (“fingerprints”) can be used to distinguish climate signals 

from climate noise. 
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Hasselmann’s paper was a statistical roadmap for hundreds of subsequent climate change 

detection and attribution (“D&A”) studies. These investigations identified anthropogenic 

fingerprints in a wide range of independently monitored observational datasets2,3,4. D&A 

research provided strong scientific support for the conclusion reached by the IPCC in 2013: 

“it is extremely likely that human influence has been the dominant cause of the observed 

warming since the mid-20th century”4. 

Forty years of satellite temperature data 

In November 1978, Microwave Sounding Units (MSUs) on NOAA polar-orbiting satellites 

began monitoring the microwave emissions from oxygen molecules. These emissions are 

proportional to the temperature of broad atmospheric layers5. A successor to MSU, the Advanced 

Microwave Sounding Unit (AMSU), was deployed in 1998. Estimates of global changes in 

atmospheric temperature can be obtained from MSU and AMSU measurements. 

Over their 40-year history, MSU and AMSU data have been essential ingredients in hundreds of 

research investigations. These datasets allowed scientists to study the size, significance, and

causes of global trends and variability in Earth’s atmospheric temperature and circulation, to 

quantify the tropospheric cooling after major volcanic eruptions, to evaluate climate model 

performance, and to assess the consistency between observed surface and tropospheric

temperature changes2,3,4,20. 

Satellite atmospheric temperature data were also a useful test-bed for Hasselmann’s signal 

detection strategy. They had continuous, near-global coverage5. Data products were available 

from multiple research groups, providing a measure of structural uncertainty in the temperature 

retrievals. Signal detection studies with MSU and AMSU revealed that human fingerprints were 

identifiable in the warming of the troposphere and cooling of the lower stratosphere8, confirming 

model projections made over 50 years ago21. Tropospheric warming is largely due to increases in 

atmospheric CO2 from fossil fuel use2,3,4,8,20, while lower stratospheric cooling over the 40-year 

satellite record22 is mainly attributable to anthropogenic depletion of stratospheric ozone23. 
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While enabling significant scientific advances, MSU and AMSU temperature data have also 

been at the center of scientific and political imbroglios. Some controversies were related to 

differences between surface warming inferred from thermometers and tropospheric warming

estimated from satellites. Claims that these warming rate differences cast doubt on the reliability 

of the surface data have not been substantiated20,24. Other disputes focused on how to adjust for 

non-climatic artifacts arising from orbital decay and drift, instrument calibration drift,

and the transition between MSU and AMSU instruments5,20. More recently, claims of no 

significant warming since 1998 have been based on artfully selected subsets of satellite 

temperature data. Such claims are erroneous and do not call into question the reality of long-term 

tropospheric warming25. 

A confluence of scientific understanding

The zeitgeist of 1979 was favorable for anthropogenic signal detection. From the Charney report, 

which relied on basic theory and early climate model simulations, there was clear recognition

that fossil fuel burning would yield an appreciable global warming signal1. Klaus Hasselmann’s 

paper17 outlined a rational approach for detecting this signal. Satellite-borne microwave sounders 

began to monitor atmospheric temperature, providing global patterns of multi-decadal climate 

change and natural internal variability – information required for successful application of 

Hasselmann’s signal detection method.

Because of this confluence in scientific understanding, we can now answer the following 

question: when did a human-caused tropospheric warming signal first emerge from the 

background noise of natural climate variability? We addressed this question by applying a 

fingerprint method related to Hasselmann’s approach (see online Methods). An anthropogenic 

fingerprint of tropospheric warming is identifiable with high statistical confidence in all currently 

available satellite datasets (Figure 1). In two out of three datasets, fingerprint detection at a 5

threshold – the gold standard for discoveries in particle physics – occurs no later than 2005, only 

27 years after the 1979 start of the satellite measurements. Humanity cannot afford to ignore 

such clear signals.
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Figure captions

Figure 1: Signal-to-noise ratios (S/N) used for identifying a model-predicted anthropogenic 

fingerprint in 40 years of satellite measurements of annual-mean tropospheric temperature. The 

MSU and AMSU measurements are from three different research groups: Remote Sensing 

Systems (RSS), the Center for Satellite Applications and Research (STAR), and the University 

of Alabama at Huntsville (UAH). The grey and black horizontal lines are the 3 and 5

thresholds that we use for estimating the signal detection time. By 2002, all three satellite 

datasets yield S/N ratios exceeding the 3 threshold. By 2016, an anthropogenic signal is 

consistently detected at the 5 threshold. Note that the STAR annual-mean temperature data are 

not yet available for 2018. Further details of the model and satellite data and the fingerprint 

method are provided in the online Methods.
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Online Methods

Satellite atmospheric temperature data

In calculating the signal detection times shown in Figure 1, we used satellite estimates of

atmospheric temperature produced by Remote Sensing Systems5,26, the Center for Satellite 

Applications and Research27,28, and the University of Alabama at Huntsville29,30. We refer to 

these groups subsequently as RSS, STAR, and UAH (respectively). All three groups provide 

satellite measurements of the temperatures of the mid- to upper troposphere (TMT) and the lower 

stratosphere (TLS). Our focus here is on estimating the detection time for an anthropogenic

fingerprint in satellite TMT data. TLS is required for correcting TMT for the influence it receives 

from stratospheric cooling24 (see below).

Satellite datasets are in the form of monthly means on 2.5 2.5 latitude/longitude grids. At the 

time our analysis was performed, RSS and UAH temperature data were available for the 480-

month period from January 1979 to December 2018. STAR data were unavailable for December 

2018, so STAR annual means could not be calculated for 2018. We used the most recent TLS 

and TMT versions from each group: 4.0 (RSS), 4.0 (STAR), and 6.0 (UAH).

Studies of the size, patterns, and causes of atmospheric temperature changes have also relied on 

information from radiosondes20,31,32,33,34. Non-climatic factors, such as refinements over time

in radiosonde instrumentation and thermal shielding, hamper the identification of true climate

changes20,35. Additionally, radiosonde data have much sparser coverage than satellite data, 

particularly in the Southern Hemisphere. The spatially complete coverage of MSU and AMSU 

offers advantages for obtaining reliable estimates of hemispheric- and global-scale temperature 

trends and patterns of temperature change.

Details of model output

We used model output from phase 5 of CMIP, the Coupled Model Intercomparison Project36.

The simulations analyzed here were contributed by 19 different research groups (see 

Supplementary Table S1). Our focus was on three different types of numerical experiment: 1) 

simulations with estimated historical changes in human and natural external forcings; 2) 
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integrations with 21st century changes in greenhouse gases and anthropogenic aerosols

prescribed according to the Representative Concentration Pathway 8.5 (RCP8.5), with radiative 

forcing of approximately 8.5 W/m2 in 2100, eventually stabilizing at roughly 12 W/m2; and 3) 

pre-industrial control runs with no changes in external influences on climate. Details of these 

simulations are provided in Supplementary Tables S2 and S3.

Most CMIP5 historical simulations end in December 2005. RCP8.5 simulations were typically

initiated from conditions of the climate system at the end of the historical run. To avoid 

truncating comparisons between modeled and observed atmospheric temperature trends

in December 2005, we spliced together synthetic satellite temperatures from the historical 

simulations and the RCP8.5 runs. Splicing allows us to compare actual and synthetic temperature 

changes over the full 40-year length of the satellite record (39 years in the case of STAR data; 

see above). We use the acronym “HIST+8.5” to identify these spliced simulations.

Method used for correcting TMT data

Trends in TMT estimated from microwave sounders receive a substantial contribution from the 

cooling of the lower stratosphere24,37,38,39. In Fu et al. (2004), a regression-based method was 

developed for removing the bulk of this stratospheric cooling component of TMT24. This method

has been validated with both observed and model atmospheric temperature data37,40,41. Here, we 

refer to the corrected version of TMT as TMTcr. The main text discusses corrected TMT only, 

and does not use the subscript cr to identify corrected TMT.

For calculating tropical averages of TMTcr, Fu et al. (2005)38 used:

����� = ������ + (1 − ���)��� (1)

where ��� = 1.1. For the global domain considered here, lower stratospheric cooling makes a 

larger contribution to TMT trends, so ��� is larger24,39. In Fu et al. (2004)24 and Johanson and Fu 

(2006)39, ��� ≈ 1.15 was applied directly to near-global averages of TMT and TLS. Since we

are performing corrections on local (grid-point) data, ��� = 1.1 between 30N and 30S, and 

��� = 1.2 poleward of 30. All results in the main text rely on this correction approach, which is 
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approximately equivalent to use of the ��� = 1.15 for globally-averaged data. Use of a more 

conservative approach (assuming ��� = 1.1 at all latitudes) yields smaller tropospheric warming,

but the model-predicted HIST+8.5 fingerprint is still identifiable at a stipulated 5 threshold in 

all three satellite TMTcr datasets.

Calculation of synthetic satellite temperatures

We use a local weighting function method developed at RSS to calculate synthetic satellite 

temperatures from model output42. At each model grid-point, simulated temperature profiles 

were convolved with local weighting functions. The weights depend on the grid-point surface

pressure, the surface type (land or ocean), and the selected layer-average temperature (TLS or 

TMT).

Fingerprint method

Detection methods generally require an estimate of the true but unknown climate-change signal 

in response to an individual forcing or set of forcings16,17,43,44,45,46. This is often referred to as the 

fingerprint �(�).

We define �(�) as follows. Let �(�, �, �, �) represent annual-mean synthetic MSU temperature

data at grid-point x and year t from the ith realization of the jth model’s HIST+8.5 simulation, 

where:

� = 1, … ��(�) the number of realizations for the jth model

� = 1, … �� the number of models used in fingerprint estimation

� = 1, … �� the total number of grid-points

� = 1, … �� the time in years.

Here, �� ranges from 1 to 5 realizations and �� = 37 models. After transforming synthetic MSU 

temperature data from each model’s native grid to a common 1010 latitude/longitude grid,

�� = 576 grid-points for corrected TMT. The fingerprint is estimated over the full satellite era 

(1979 to 2018), so �� is 40 years. Because the RSS TMT data do not have coverage poleward of 



15

82.5, the latitudinal extent of the regridded data is 80N to 80S. This is the minimum common 

coverage in the three satellite datasets.

The multi-model average atmospheric temperature change, �̿(�, �), was calculated by first 

averaging over an individual model’s HIST+8.5 realizations (where multiple realizations were

available), and then averaging over models. The double overbar denotes these two averaging 

steps. Anomalies were then defined at each grid-point x and year t with respect to the local 

climatological annual mean. The fingerprint �(�) is the first Empirical Orthogonal Function 

(EOF) of the anomalies of �̿(�, �).

We seek to determine whether the pattern similarity between the time-varying observations and 

�(�) shows a statistically significant increase over time. To address this question, we require 

control run estimates of internally generated variability in which we know a priori that there is 

no expression of the fingerprint (except by chance).

We obtain these variability estimates from control runs performed with multiple models.

Because the length of the 36 control runs analyzed here varies by a factor of up to 4, models with 

longer control integrations could have a disproportionately large impact on our noise estimates. 

To guard against this possibility, the noise estimates rely on the last 200 years of each model’s 

pre-industrial control run, yielding 7,200 years of concatenated control run data. Use of the last 

200 years reduces the contribution of any initial residual drift to noise estimates.

Synthetic TMT data from individual model control runs are regridded to the same 1010 target 

grid used for fingerprint estimation. After regridding, anomalies are defined relative to the local 

climatological annual means calculated over the full length of each control run. Since control run 

drift can bias S/N estimates, its removal is advisable. We assume here that drift can be well-

approximated by a least-squares linear trend at each grid-point. Trend removal is performed over

the last 200 years of each control run (since only the last 200 years are concatenated).

Observed annual-mean TMT data are transformed to the same 1010 latitude/longitude grid 

used for the model simulations and are expressed as anomalies relative to climatological annual 
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means over 1979 to 2018 (1979 to 2017 in the case of STAR data; see above). Observed 

temperatures are then projected onto the time-invariant fingerprint �(�):

��(�) = ∑ �(�, �)�(�)
��
��� � = 1,2, … 39 (STAR) or 40 (RSS and UAH) (2)

where �(�, �) denotes the observed annual-mean TMT data. This projection is equivalent to a 

spatially uncentered covariance between the patterns �(�, �) and �(�) at year t. The signal time 

series ��(�) provides information on the fingerprint strength in the observations. If observed 

patterns of temperature change are becoming increasingly similar to �(�), ��(�) should increase 

over time. A recent publication47 provides figures showing both �(�) and the observed patterns 

of annual-mean trends in TMT.

Hasselmann’s 1979 paper discusses the rotation of �(�) in a direction that maximizes the signal 

strength relative to the control run noise17. Optimization of �(�) generally leads to enhanced 

signal detectability48,49. In all cases considered here, optimization of �(�) was not required in 

order to detect an externally-forced fingerprint in satellite TMT data. We therefore show only 

non-optimized results.

All model and observational temperature data used in the fingerprint analysis are appropriately 

area-weighted. Weighting involves multiplication by the square root of the cosine of the grid 

node’s latitude50.

Estimating detection time

We assess the significance of changes in ��(�) by comparing trends in ��(�) with a null

distribution of trends. To generate this null distribution, we require a case in which �(�, �) is 

replaced by a record in which we know a priori that there is no expression of the fingerprint, 

except by chance. Here we replace �(�, �) by the concatenated noise data set �(�, �), after first 

regridding and removing residual drift from �(�, �) (see above). The noise time series ��(�) is 

the projection of �(�, �) onto the fingerprint:

��(�) = ∑ �(�, �) �(�)��
��� � = 1, … 7200 (3)
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Our detection time �� is based on the signal-to-noise ratio, S/N. As in our previous work47, we 

calculate S/N ratios by fitting least-squares linear trends of increasing length L years to

��(�) and then comparing these with the standard deviation of the distribution of non-

overlapping L-length trends in ��(�). The numerator of the S/N ratio measures the trend in the 

pattern agreement between the model-predicted “human influence” fingerprint and observations; 

the denominator measures the trend in agreement between the fingerprint and patterns of natural 

climate variability. Detection occurs after �� years, when the S/N ratio first exceeds some 

stipulated signal detection threshold, and then remains continuously above that threshold for all 

values of � > ��. For example, �� = 10 would signify that �� = 1988 – i.e., that detection of a 

human-caused tropospheric warming fingerprint occurred in 1988, 10 years after the start of the 

satellite temperature record.

We estimated �� with both 3 and 5 signal detection thresholds. The more stringent 5

threshold is often employed in particle physics (as in the recent discovery of the Higgs boson).

For detection at a 3 threshold, there is a chance of roughly one in 741 that the “match” between

the model-predicted anthropogenic fingerprint and the observed patterns of tropospheric 

temperature change could actually be due to natural internal variability (as represented by the 36 

models analyzed here). With a 5 detection threshold, this complementary cumulative 

probability decreases to roughly one in 3.5 million.

We make three assumptions in order to calculate ��. First, we assume that our knowledge of 

observed tropospheric temperature change is derived from the latest versions of the MSU and 

AMSU datasets produced by RSS, UAH, and STAR. Second, we assume that large ensembles of 

forced and unforced simulations performed with state-of-the-art climate models provide the best 

current estimates of a human fingerprint and natural internal climate variability. Third, we 

assume that although the strength of the fingerprint in observations changes over time, the 

fingerprint pattern itself is relatively stable – an assumption that is justifiable for TMT47.
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Our assumption regarding the adequacy of model variability estimates is critical. Observed 

temperature records are simultaneously influenced by both internal variability and multiple 

external forcings. We do not observe “pure” internal variability, so there will always be 

some irreducible uncertainty in partitioning observed temperature records into internally 

generated and externally forced components. All model-versus-observed variability comparisons 

are affected by this uncertainty, particularly on less well-observed multi-decadal timescales. 

The model-data variability comparisons that have been performed, both for surface

temperature3,4,43,48,51 and tropospheric temperature47,52 indicate that current climate models do not 

systematically underestimate the amplitude of observed decadal-timescale temperature

variability. For tropospheric temperature, the converse is the case – on average, CMIP3 and 

CMIP5 models appear to slightly overestimate the amplitude of observed temperature variability 

on 5 to 20-year timescales47,52. While we cannot definitively rule out a significant deficit in the

amplitude of simulated TMT variability on longer 30-to 40-year timescales, the observed TMT 

variability on these timescales would have to be underestimated by a factor of 2 or more in order 

to negate the positive fingerprint identification results obtained here for a 3 detection threshold.

Detection time results

At the 3 threshold, �� = 1998 for RSS and STAR and 2002 for UAH (Figure 1). This means 

that �� is 20 years for RSS and STAR and 24 years for UAH. With a more stringent 5 threshold 

the detection time is longer: �� = 2003 for STAR, 2005 for RSS, and 2016 for UAH, yielding

�� values of 25, 27, and 38 years, respectively. The UAH results are noteworthy. Even though 

UAH tropospheric temperature data have consistently shown less warming than other 

datasets24,53,54,55, UAH still yields confident 5 detection of an anthropogenic fingerprint.
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