A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra: Supporting Data

DOI: 10.5440/1647365
NGEE Arctic Record ID: NGA232

Abstract

Remote sensing data collected from Brookhaven National Laboratory’s (BNL) heavy-lift unoccupied aerial system (UAS) octocopter platform – the Osprey – operated by the Terrestrial Ecosystem Science and Technology (TEST) group. Data was collected from a single flight over the Kougarok hillslope site on 26 July, 2018. The Osprey is a multi-sensor UAS platform that simultaneously measures very high spatial resolution optical red/green/blue (RGB) and thermal infrared (TIR) surface “skin” temperature imagery, as well as surface reflectance at 1nm intervals in the visible to near-infrared spectral range from ~350-1000 nm measured at regular intervals along each flight path. Derived image products include ortho-mosaiced RGB and TIR images, an RGB-based digital surface model (DSM) using the structure from motion (SfM) technique, digital terrain model (DTM), and a canopy height model. Ancillary aircraft data, flight mission parameters, and general flight conditions are also included. 

The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 10-year research effort (2012-2022) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy’s Office of Biological and Environmental Research.

The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska.

Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy’s Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).

Dataset Citation

Shawn Serbin, Dedi Yang, Andrew McMahon. 2020. A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra: Supporting Data. Next Generation Ecosystem Experiments Arctic Data Collection, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, USA. Dataset accessed on [INSERT_DATE] at https://doi.org/10.5440/1647365.

Dates:

2018-07-26 - 2018-07-26

Geographic Location:

NGEE Arctic Kougarok Site, Mile Marker 64, Alaska

Bounding Coordinates:

N:65.171006
S:65.153612
E:-164.801947
W:-164.837755

Place Keywords:

Subject Keywords:

,

GCMD Keywords:

EARTH SCIENCE > BIOSPHERE > VEGETATION

EARTH SCIENCE > BIOSPHERE > ECOSYSTEMS

EARTH SCIENCE > SPECTRAL/ENGINEERING > INFRARED WAVELENGTHS

GCMD Variables:

Dataset Usage Rights
Public Datasets

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0.

See the NGEE Arctic Data Policies for more details https://ngee-arctic.ornl.gov/data-policies.