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High Order Implicit Residual-Based Spatial Discretization
Error Estimation for SN Neutron Transport

Nathan H Harta,1, Yousry Y Azmya

aNorth Carolina State University
Department of Nuclear Engineering

2500 Stinson Drive, Raleigh, NC 27606

Abstract

This work demonstrates our novel residual source spatial discretization error estimator (LeR/TE-

AD) for a DGFEM-1 discretization and assesses it along with two contemporary estimators, Ragusa

and Wang’s h-refinement estimator (RW) and Duo, Azmy, and Zikatanov’s explicit residual-based

estimator (DAZ), on a suite of Method of Manufactured Solutions (MMS) 2D problems and three

realistic problem geometries. LeR/TE-AD is attractive because it directly estimates the local error

in the angular flux, as opposed to a mere indicator of the error’s behavior, on the same mesh and

method order as the original numerical solution, thus typically being less computationally intensive

than a refinement-based method. On the MMS suite, LeR/TE-AD consistently displayed a reduced

performance versus its DGFEM-0 results in terms of accuracy and precision metrics, though it was

not typically grossly inaccurate. This is attributed to the irregularities in the true solution across

singular characteristics limiting the local accuracy of the numerical flux solution, leading to poor

derivative approximations used in the residual approximations. The error transport problem then

spreads the error in the residual to nearby cells, causing a greater degree of imprecision that did not

afflict DAZ or RW.

In testing the estimators on realistic problem geometries, however, LeR/TE-AD fared better. In

practice, the true error is much larger in non-idealized geometries like in MMS, and a superlinear

true solution means that RW and DAZ are not beneficially biased for DGFEM-1 error estimation.

LeR/TE-AD was typically first or second in accuracy, primarily competing with RW, but the latter

usually consumed 2-4 times the computational time as LeR/TE-AD, and requires a solution with

four times as many unknowns. Furthermore, RW and LeR/TE-AD can be used to compute direct

estimates of the error in any quantity of interest that is based on the angular flux solution, such as the

fission rate density in a fuel pin, whereas DAZ requires a heuristic extension due to its norm-based

nature.

1Currently at Los Alamos National Laboratory, nhhart@lanl.gov



1. Introduction

The SN form of the steady-state, one-speed particle transport equation typically requires a spatial

discretization scheme in order to be solved. The solution to this discretized transport equation incurs

error vis-a-vis the solution to the spatially undiscretized transport equation (the “true solution”).

Since the latter is usually an unknown quantity, an estimate of the error is required for any error-

driven scheme such as adaptive mesh refinement (AMR) ([1, 2, 3]) or error analysis ([4, 5]).

As the spatial discretization scheme is refined either in mesh size or method order, the discrete

solution can better approximate the true solution where it is smooth. However, in multidimensional

geometries, singular characteristics propagate from irregularities in the boundary conditions ([6]),

as well as source discontinuities and material heterogeneities, across which the true solution is not

infinitely differentiable, and they incur additional error in the solution if the order of irregularity is

not sufficiently high as to be adequately captured by the truncated scheme. For the discontinuous

Galerkin finite element method of order Λ ([7]), DGFEM-Λ, the effect of true solution irregularity

order on the convergence of the global L2 norm of the error has been determined to be

||ψΛ
h − ψ||L2(D) ≤ Chmin(Λ+1,r), (1)

where ψ is the true angular flux solution, ψΛ
h is the solution to the discretized transport equation

on an h-level mesh and with method order Λ, C is a constant independent of mesh size, D is

the domain, and r is the true solution regularity order ([8, 9, 10]). This result demonstrates that,

globally, irregularity can limit the accuracy of the numerical solution, and there comes a point where

increasing Λ fails to improve accuracy by this metric. The true solution regularity order is represented

by the Sobolev space in which the true solution belongs; in 2D, for continuous solutions, the space

is at most ψ ∈ H3/2−ν(D), and for discontinuous solutions, the space is at least ψ ∈ H1/2−ν(D),

where ν is very small and positive ([11, 10, 12]).

The above information is vital to understanding how error estimation may change with order

refinement. A posteriori error estimation requires using the numerical solution to recover some

truncated features of the true solution and either directly approximate the error or approximate

a residual term to either solve an auxiliary partial differential equation or inform a bound on the

global error in some norm ([13, 14, 15, 16, 17, 18]). Because solution convergence rate with mesh

refinement is limited by regularity order, improved estimator performance with increasing method

order is not necessarily expected. In Wang and Ragusa, [19], difference-based and projection-based

h-refinement estimators appear to become more accurate in an absolute sense with increasing method

order, but the jump-based error indicator exhibits no such improvement. Examining error estimators
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over a set of Method of Manufactured Solutions (MMS) test problems in [20], O’Brien and Azmy

demonstrate that Ragusa and Wang’s difference-based h-refinement estimator ([21]) becomes more

accurate in a relative sense as well with increasing method order. However, O’Brien and Azmy also

demonstrate that, despite becoming more accurate in an absolute sense, a jump-based indicator

and implicit finite element residual-based error estimator actually become less accurate in a relative

sense with increasing method order ([20]). This is attributed to the failure of the basis space to

capture singularities.

We have previously developed a novel implicit discrete residual-based error estimator named the

“residual source estimator” and assessed it against Ragusa and Wang’s h-refinement estimator and

Duo, Azmy, and Zikatonov’s explicit residual-based error bound ([22]) in [23, 24], finding it to be

accurate and precise at a reduced computational cost to the h-refinement estimator for a DGFEM-0

method. However, it was found that the estimators exhibited generally worse performance, per a

parameter-wide metric-based evaluation using MMS, when examined for discontinuous solutions.

That is, the estimators were adversely affected when the limiting exponential in Eq. 1 was the

regularity order. Hence, in increasing the method order to DGFEM-1, all problem configurations

will have the regularity order setting the limiting exponential.

We are primarily interested in evaluating the residual source estimator on more state-of-the art

methods, namely a piecewise linear DGFEM-1 method, and on realistic problem geometries, to

demonstrate the advantages and disadvantages of using the method in practical applications. The

work will proceed as follows. In Sec. 2 the relevant transport and error estimation methodology and

residual source estimator will be detailed, and the required residual and derivative approximations for

DGFEM-1 will be introduced. In Sec. 3.1 the residual source estimator and the two aforementioned

estimators will be evaluated via an MMS case study. In Sec. 3.2 a parameter-wide metric-based eval-

uation, similar to [24], will be performed to reach general conclusions about estimator behavior with

method order. In Sec. 4 the estimators will be evaluated on several realistic problem geometries with

Richardson extrapolation-derived reference solutions for DGFEM-0 and DGFEM-1 discretizations

to assess the generality of the conclusions obtained from the parameter-wide evaluations. Finally,

conclusions will be given in Sec. 5.
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2. Methodology

2.1. Terminology

The true solution is considered the solution to the one-speed, steady-state transport equation in

2D Cartesian geometry with a non-multiplying medium characterized by isotropic scattering,(
µm

∂

∂x
+ ηm

∂

∂y
+ σt(x, y)

)
ψm(x, y) = Sψm(x, y) + q(x, y),

m = 1, . . . ,M, (x, y) ∈ D,
(2)

where M is the total number of discrete ordinates, σt and σs are the macroscopic total and scattering

cross-sections, respectively, and

Sψm(x, y) = σs(x, y)

M∑
m

wmψm(x, y) = σs(x, y)φ(x, y), (3)

is the isotropic scattering source. Standard notation applies otherwise ([25]). Though these simplifi-

cations incur their own error ([26, 27, 28]), standard practice is to consider the spatial discretization

error as separable from other sources of error ([13, 16]). The explicit boundary conditions (BCs)

are,

ψm(x, y) = Ψm(x, y), ∀ n̂ · ~Ωm < 0, (x, y) ∈ ∂D, (4)

where ∂D is the boundary of the rectangular domain, D = (0, X)× (0, Y ). Equation 2 is rewritten

in operator form,

Lψ = Sψ + q, (5)

with angle subscripts henceforth dropped for brevity, unless otherwise noted. Because the solution

to Eqs. 2 and 4 cannot typically be computed analytically, the Method of Manufactured Solutions

(MMS), as outlined in [29], is utilized in this work to acquire reference solutions against which the

numerical solution’s true error is computed. To keep the problems somewhat consistent across the

MMS suite, dimensions of D are fixed at X = Y = 1 cm, and S4 Level-Symmetric quadrature is

exclusively used. All parameters are constant across the domain, and solutions are manipulated by

adjusting three parameters: the optical thickness via σt, the scattering ratio c = σs/σt, and the

solution regularity via the BCs.

The DGFEM-Λ scheme, detailed in [7, 30, 31], is used exclusively. The crux of the method is

that the solution spatial dependency is represented within a cell, K(i,j) = (xi−1, xi)× (yj−1, yj), as

a series of smooth Legendre polynomials up to order Λ, with coefficients determined by solving the

discretized transport equation, Eq. 6,

LΛ
hψ

Λ
h = SψΛ

h + ΠΛ
hq, (6)
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where LΛ
h is the discretized transport operator, and ΠΛ

h is an L2 projection operator onto the

DGFEM-Λ test space and h-level mesh. BCs are obtained by L2 projection of Eq. 4 onto the test

space.

The spatial discretization error is then defined as the difference between the projected true

solution and the numerical solution Eq. 7, and it exists in the same space as the numerical angular

flux solution, i.e, it is an angular quantity represented by a series of Legendre polynomials within a

cell.

εΛ
h ≡ ψΛ

h −ΠΛ
hψ (7)

Henceforth, an estimate of this quantity will be denoted εΛh . The error and error estimates are

condensed into cell-wise L2 norms, E(i,j) and e(i,j), respectively, and a local “effectivity index” is

computed,

θ(i,j) ≡ e(i,j)

E(i,j)
=

√∑M
m wm

∫
K(i,j) dA (εΛh,m)2√∑M

m wm
∫
K(i,j) dA (εΛ

h,m)2
. (8)

A global effectivity index is likewise computed from global L2 norms of the error, E, and error

estimate, e,

θ ≡ e

E
=

√∑Nx

i

∑Ny

j (e(i,j))2√∑Nx

i

∑Ny

j (E(i,j))2

. (9)

This is a relative quantity, which means that even if the error converges in an absolute sense, i.e.,

limh→0 e− E = 0, it may not be “asymptotically exact” ([16]), i.e., limh→0 θ = 1.

2.2. Residual Source Estimator

We have previously derived and demonstrated the residual source estimator for DGFEM-0

method in [23, 24], but a brief overview of the estimator follows here. Residual-based estimation

can be explicit, that is, used to build a bound ([22, 32, 33]), or implicit, used to directly estimate

the error via an auxiliary procedure ([17, 20, 34]). For the residual source estimator, the discrete

residual, Eq. 10, is utilized, which represents the deviation in particle balance realized when the

projected true solution is inserted into the discretized transport equation,

RΛ
h ≡ SΠΛ

hψ + ΠΛ
hq − LΛ

hΠΛ
hψ. (10)

Combining Eqs. 6, 7, and 10, and taking advantage of the linearity of the discretized transport

operator, gives the error transport equation, Eq. 11,

LΛ
hε

Λ
h = SεΛ

h +RΛ
h , (11)
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where inflow error at the boundary is necessarily zero for explicit BCs, per Eq. 7. The solution to

Eq. 11 is the true error provided the residual is computed exactly, but since the true solution is

generally not known, the residual must be approximated.

2.3. DGFEM-1 Residual Approximation

To approximate the residual in a cell K(i,j), we use the Taylor expansion,

ψ(x, y) ≈ ψ(i,j)
TE (x, y) =

 N∑
nx=0

N−nx∑
ny=0

sgn(µ)nxsgn(η)ny

× (x− xo)nx(y − yo)ny

nx!ny!

[
∂nx

∂xnx

∂ny

∂xny
ψ

]
(xo,yo)

K(i,j)

]
,

(12)

centered at

(xo, yo)K(i,j) = (xi−(1+sgn(µ))/2, yj−(1+sgn(η))/2). (13)

Then we project Eq. 12 onto the trial space to acquire the necessary true solution moments needed

by Eq. 10. Thus, when considering the residual in a given cell K(i,j), the kl-moments of the true

solution in cell K(u,v), denoted by ψ
(u,v)
kl , are approximated as

ψ
(u,v)
kl ≈ 1

∆xu∆yv

(
v

(u,v)
k,l , ψ

(i,j)
TE (x, y)

)
, (14)

where the two-dimensional inner product notation is used,(
f (u,v)(x, y), g(i,j)(x, y)

)
=

∫ xu

xu−1

dx

∫ yv

yv−1

dy f (u,v)(x, y)g(i,j)(x, y). (15)

The cell dimensions are evaluated as ∆xu = (xu − xu−1) and ∆yv = (yv − yv−1). For DGFEM-Λ,

the trial function v
(u,w)
k,l belongs to the test space,

V (K(u,v)) =
{
v

(u,v)
k,l (x̃, ỹ) = Pk(x̃u)Pl(ỹv) | ∀k, l = 0, ...,Λ

}
, (16)

where Pk(x̃u) is the k-order Legendre polynomial associated with the x-dimension, and analogously

for Pl(ỹv) for the y-dimension. The variables

x̃u = 2(x− xc,u)/∆xu, (17)

where xc,u is the x-coordinate of the cell midpoint, and analogously for ỹ, are transformed spatial

variables that allow for proper scaling of the Legendre polynomials’ domain. The resultant approx-

imated true solution in a cell K(u,v) for use in approximating the residual in that cell K(i,j) then

takes the form

ΠΛ
hψ ≈

Λ∑
k=0

Λ∑
l=0

(2k + 1)(2l + 1)Pk(x̃u)Pl(ỹv)ψ
(u,v)
kl . (18)
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Equation 18 is evaluated for each cell K(u,v) that features in the expression of the residual in cell

K(i,j)2, and the approximations are inserted into Eq. 10. Note that there are as many residual

moments as there are solution moments. The resultant residual moment approximations for a

given cell K(i,j) and direction of flight ~Ωm, assuming constant material properties within a cell, for

DGFEM-1 follow3 in Eqs. 19-22:

R
1,(i,j)
00 = |µ|(1− C2

x)
∆xi
12

∂2

∂x2
ψ + |η|(1− C2

y)
∆yj
12

∂2

∂y2
ψ

+ sgn(η)|µ|(1− C2
x)

∆xi∆yj
24

∂3

∂x2∂y
ψ

+ sgn(µ)|η|(1− C2
y)

∆xi∆yj
24

∂3

∂x∂y2
ψ

+
∆x2

i

12

(
∂2

∂x2
Q− σ(i,j)

t

∂2

∂x2
ψ − η ∂3

∂x2∂y
ψ

)
+

∆y2
j

12

(
∂2

∂y2
Q− σ(i,j)

t

∂2

∂y2
ψ − µ ∂3

∂x∂y2
ψ

)
+O(∆3),

(19)

R
1,(i,j)
10 = |µ|(1 + C2

x)
∆xi
12

∂2

∂x2
ψ +O(∆2), (20)

R
1,(i,j)
01 = |η|(1 + C2

y)
∆yj
12

∂2

∂y2
ψ +O(∆2), (21)

R
1,(i,j)
11 = sgn(µ)sgn(η)

∆xi∆yj
36

×

(
µ

(1 + C2
x)

2

∂3

∂x2∂y
ψ + η

(1 + C2
y)

2

∂3

∂x∂y2
ψ

)
+O(∆3).

(22)

∆ is a generic cell size term that assumes uniform refinement in the x- and y-dimensions. All

derivatives are pointwise and evaluated at (xo, yo). The local mesh nonuniformity factors are

Cx =
∆xi−sgn(µ)

∆xi
, (23)

and

Cy =
∆yj−sgn(η)

∆yj
, (24)

and Q(x, y) = Sψ(x, y) + q(x, y) is the combined scattering and fixed source. In order to evaluate

these expressions for a cell that shares an inflow boundary with ∂D, the appropriate nonuniformity

factor(s) is set to 0. Because the Taylor expansion, Eq. 12, assumes sufficient solution regularity,

2In this work, the cells where this is necessary are K(i,j), K(i−sgn(µ),j), and K(i,j−sgn(η)). In the event that K(i,j)

shares an inflow boundary with the domain boundary, the procedure is analogous, but with reduced dimensionality.
3More detailed discussions on the residual approximation and its derivation are found in [23, 24] for DGFEM-0

and in [35] for DGFEM-1.
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the above expressions are invalid in cells intersected by SCs and their downwind first neighbors

(by virtue of one of the necessary inflow moments requiring approximation). In practice, this is

an accepted failing of the method, but the interested reader is referred to Chapter 6 in [35] for a

discussion on this issue.

Note that all necessary pointwise derivatives evaluate to nil in the finite element representation

of the solution. In fact, like in the case of DGFEM-0 ([24]), all derivatives one order higher than

those captured by the DGFEM-Λ representation are required to approximate the residual. This

signifies that, for sufficiently regular solutions, the DGFEM-1 residual is nil for true solutions that

have a linear dependence in the spatial variables, meaning that the numerical solution is exact. Also

like DGFEM-0 ([24]), the residual’s 00-moment proportionality with ∆ is dependent on the local

uniformity of the mesh. Because the pointwise derivatives evaluate to nil in the finite element space,

the derivatives must be approximated to elicit an a posteriori estimator.

The approximated residuals are henceforth denoted with RΛ
h notation, and the residual source

estimator with Taylor expansion-approximated residuals and approximated derivatives will be ab-

breviated as LeR/TE-AD.

2.4. DGFEM-1 Derivative Approximation

2.4.1. Patch Recovery Method

One method we have traditionally used for derivative approximation is an adaptation of the

patch recovery method [15]. The true solution moments in the four cells that share a vertex with

(xo, yo), Fig. 1 (or associated boundary surfaces, if K(i,j) shares an inflow boundary with ∂D), are

approximated using Eq. 14. This produces a system of equations that can be solved a couple different

ways. One uses more solution moments to build the approximation, but theoretically gives a greater

order of accuracy when the mesh is locally uniform. The other requires fewer solution moments to

build the approximation, but maintains a reduced order of accuracy, even when the mesh is locally

uniform. The approximated xx-derivative is

∂2

∂x2
ψ =

12Cy
(1 + Cx)(1 + Cy)∆x2

i

(
ψ

(i,j)
10 − 1

Cx
ψ

(i−sgn(µ),j)
10

+
1

Cy
ψ

(i,j−sgn(η))
10 − 1

CxCy
ψ

(i−sgn(µ),j−sgn(η))
10

)
+ (C2

x − 1)O(∆) +O(∆2),

(25)

or by accepting a reduced order of accuracy in the particular case of a uniform mesh and using fewer

moments,
∂2

∂x2
ψ =

12

(1 + Cx)∆x2
i

(
ψ

(i,j)
10 − 1

Cx
ψ

(i−sgn(µ),j)
10

)
+O(∆). (26)
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Figure 1: Example Patch of Cells for Angular Quadrant 1

The approximated yy-derivative can be found via rotation of Eqs. 25 and 26. The approximated

xxy-derivative is

∂3

∂x2∂y
ψ = sgn(η)

36

(1 + Cx)∆x2
i∆yj

(
ψ

(i,j)
11 − 1

Cx
ψ

(i−sgn(µ),j)
11

+
1

Cy
ψ

(i,j−sgn(η))
11 − 1

CxCy
ψ

(i−sgn(µ),j−sgn(η))
11

)
+ (C2

x + C2
y − 2)O(∆) +O(∆2),

(27)

or by accepting a reduced order of accuracy when the mesh is uniform and using fewer moments,

∂3

∂x2∂y
ψ = sgn(η)

72

(1 + Cx)∆x2
i∆yj

(
ψ

(i,j)
11 − 1

Cx
ψ

(i−sgn(µ),j)
11

)
+O(∆). (28)

The approximated xyy-derivative can also be found via rotation of Eqs. 27 and 28. The scalar

flux derivatives are found by integrating the above equations, and the fixed source derivatives are

considered known. The above equations are not valid on ∂D, but the derivation of the applicable

expressions for that case is done in an analogous manner, hence they are not included here for

brevity, but the full set can be found in Chapter 3 of [35]. Two important points about Eqs. 25-28:
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1) because Eq. 12 assumes sufficient regularity of the true solution, these equations are not valid

when one of the cells in the patch is intersected by a SC. Furthermore, the order of accuracy of

these methods assumes that the true solution moments are being used to recover the derivatives.

In practice, the numerical solution may not be accurate enough to generate accurate derivative

approximations.

In fact, this is found to be true when one of the local nonuniformity factors is not unity. It was

noted in [24] that the derivative approximations on the boundary needed to be divided by a factor

of two in order to converge to the correct value for DGFEM-0, and this is the case for DGFEM-1

also. However, it has been further determined that this is true for any local mesh nonuniformity; it

was only previously apparent for the boundary cells because only uniform meshes were considered.

Ultimately, this is a consequence of a failing in the DGFEM-Λ method, but it does not imply

nonconvergence, as the solution still converges in an absolute sense; it is merely the derivative

approximation that fails to converge in a relative sense.

2.4.2. Weak Derivative Recovery Method

To address the failing of the patch recovery method, we have developed an ad hoc derivative

recovery method that is consistent with the DGFEM-Λ method termed the “weak derivative recovery

method”. This method acknowledges that the unknown derivatives do exist in the finite element

space, albeit in their weak form. We start by applying Eq. 18 to the x-derivative of the angular flux,

ΠΛ
h

[
∂

∂x
ψ

]∣∣∣∣
(x,y)

=

[
∂

∂x
ψ

](i,j)

00

+ 3

[
∂

∂x
ψ

](i,j)

10

x̃

+ 3

[
∂

∂x
ψ

](i,j)

01

ỹ + 9

[
∂

∂x
ψ

](i,j)

11

x̃ỹ.

(29)

Taking the x-derivative and evaluating at x̃ = ỹ = −1 (the transformed coordinates of (xo, yo)) gives

∂

∂x
ΠΛ
h

[
∂

∂x
ψ

]∣∣∣∣
(xo,yo)

=
6

∆xi

[
∂

∂x
ψ

](i,j)

10

− 18

∆xi

[
∂

∂x
ψ

](i,j)

11

. (30)

Integrating by parts and applying the upwinding condition gives[
∂

∂x
ψ

](i,j)

10

=
3

∆xi

(
ψ

(i,j)
10 + ψ

(i−sgn(µ),j)
10 − ψ

(i,j)
00 − ψ(i−sgn(µ),j)

00

3

)
, (31)

and [
∂

∂x
ψ

](i,j)

11

=
3

∆xi

(
ψ

(i,j)
11 + ψ

(i−sgn(µ),j)
11 − ψ

(i,j)
01 − ψ(i−sgn(µ),j)

01

3

)
. (32)
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Then, the resultant xx-derivative approximation for a cell not sharing an inflow boundary with ∂D

is
∂2

∂x2
ψ ≈ ∂

∂x
ΠΛ
h

[
∂

∂x
ψ

]∣∣∣∣
(xo,yo)

=

18

∆x2
i

(
ψ

(i,j)
10 + ψ

(i−sgn(µ),j)
10 − ψ

(i,j)
00 − ψ(i−sgn(µ),j)

00

3

)

+
54

∆x2
i

(
ψ

(i,j)
11 + ψ

(i−sgn(µ),j)
11 − ψ

(i,j)
01 − ψ(i−sgn(µ),j)

01

3

)
.

(33)

Taking the xy-derivative of Eq. 29 instead leads to the xxy-derivative for a cell not sharing an inflow

boundary with ∂D,

∂3

∂x2∂y
ψ ≈ ∂2

∂x∂y
ΠΛ
h

[
∂

∂x
ψ

]∣∣∣∣
(xo,yo)

=

108

∆x2
i∆yj

(
ψ

(i,j)
11 + ψ

(i−sgn(µ),j)
11 − ψ

(i,j)
01 − ψ(i−sgn(µ),j)

01

3

)
.

(34)

Approximations of the yy- and xyy-derivatives are found by rotation of Eqs. 33 and 34, respectively.

The complete set of approximations, including those for cells that share inflow boundaries with ∂D

can be found in [35], but are omitted here for brevity.

(a) Patch Recovery Method (b) Weak Derivative Recovery Method

Figure 2: log10-Scale Ratio of Approximated to True xx-Derivatives for Single Ordinate

Figures 2 and 3 show the resultant relative error of the xx- and xxy-derivative approximations,

respectively, on the µ = η = 0.35002 ordinate for a nonuniform mesh for an MMS-generated problem

where the true solution is irregular in its second derivative (to prevent nil derivatives and minimize

SC-induced effects). The location of the nonuniformity-affected cells, including the boundary, is

apparent in Fig. 2(a) as being the values that have the greatest error aside from the SC-intersected

cells. The weak derivative method suffers no such penalty in these cells. However, the weak derivative
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(a) Patch Recovery Method (b) Weak Derivative Recovery Method

Figure 3: log10-Scale Ratio of Approximated to True xxy-Derivatives for Single Ordinate

recovery method appears to suffer on the inflow boundaries, but not other cells that abut cells of

different size, for the high order cross derivative terms, Fig. 3(b).

Because nonuniformities are not present in this work, the patch recovery method with correction

on the boundaries will continue to be used to keep consistent with previous work, but it is recom-

mended that if the residual source estimator is to be implemented in any problem with numerous

nonuniformities (e.g., AMR-generated meshes), the weak derivative method be used.

2.5. LeR/TE-AD Implementation

The error transport problem, Eq. 11, that is solved using the approximated residual as a fixed

source is solved using the same code used to compute the initial numerical solution. In practice, little

to no modification needs to be made to an existing transport code to perform this computation aside

from removing likely restrictions on negative sources and solutions. For both transport computations,

the source iteration method is employed with stopping criterion set to either an iterative error less

than 10−10 or a max number of iterations of 500, whichever comes first, in order to produce an

accurate scattering source.

LeR/TE-AD’s computational process is summarized by the flowchart in Fig. 4. The inputs

are the problem parameters, viz., mesh parameters, solver inputs, and material properties, the

numerical angular and scalar flux moments, and fixed source and BC derivatives, which are presumed

known quantities. These quantities are used to approximate high-order derivatives required by

Eqs. 19-22 and generate the error transport problem input. After the residual’s approximated

spatial distribution is computed, it is fed to the error transport problem routines with zero boundary

conditions on ∂D. After solving the error transport problem, the error is condensed into the local
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Figure 4: LeR/TE-AD Flow Chart

and global L2 norms, which provide the sought error estimate.

3. MMS Evaluation

LeR/TE-AD is evaluated against two estimators, Ragusa and Wang’s difference-based h-refinement

estimator ([21]) with projected h-mesh solution preconditioning of the h/2-mesh solution (RW), and

Duo, Azmy, and Zikatanov’s explicit residual-based error bound ([22]) applied as a local indicator

(DAZ). We implement the DAZ estimator by approximating the element residual and jump terms

with a single-sweep of order DGFEM-Λ + 1, preconditioned with the numerical DGFEM-Λ solution.
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By focusing on MMS-generated solutions, we are able to observe the behavior of the estimators in

idealized test conditions and attribute the effects of SCs to various features.

3.1. Case Study

Before examining LeR/TE-AD over the parameter space of the MMS suite, a case study is

conducted to gain insight on estimator performance that will be generalized with metrics in the

parametric evaluation. The MMS parameters for the case study follow: true solution irregular in

the first derivative across SCs, total cross section σt = 1.0 cm−1, and scattering ratio c = 0.94. This

problem is chosen because its angular flux solution is nonflat, and the magnitude of the irregularity

is attenuated moderately by the transport processes in the host materials. The true scalar flux

solution is plotted for a coarse (32 × 32) and fine (512 × 512) meshes in Fig. 8 below. The ratios

(a) Coarse Mesh (b) Fine Mesh

Figure 5: Case Study: Cell-Averaged MMS Scalar Flux

of the resultant TE-AD residual moments approximations (derivatives approximated with corrected

patch recovery) to the true residual moments are plotted over the domain in Fig. 6 on the coarse

mesh for the ordinate µ = 0.35002, η = 0.86889. Note that white space denotes that the denominator

is zero due to the log10-scale applied to the ratio. Due to the MMS employed ([29]), all y-derivatives

and cross derivatives are nil above the SC, and similarly all x-derivatives and cross derivatives are nil

below the SC. Hence, per Eqs. 20-22, the true residual evaluates to zero in the corresponding regions.

We notice that for the 00-moment, the residual in cells intersected by the SC associated with the

ordinate are large outliers and tend to underapproximate the true residual. This is attributed to

the noted failure of the Taylor expansion in the TE-AD residual approximation in the presence of

4This case is identical to that outlined in Section 5.1 in [24].
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Figure 6: Case Study: Absolute Value of the Approximate/True Residual Moment Ratios, Coarse Mesh

irregularities. An additional “plume” of cells around the SCs also are large outliers, and they tend

to overapproximate the true residual. In effect, the error in the streaming term resulting from the

irregularity is numerically spread to nearby cells ([36]), making the numerical solution insufficiently

accurate to acquire accurate derivative, and by extension residual, approximations. Some of the SCs

belonging to other ordinates also appear due to the error in the scattering source incurred by the

same effect. Apart from these localized effects, the residual generally is well approximated by the

method. In examining the relative error of the 00-moment of the TE-AD residual on the fine mesh,

Fig. 7, it is noted that as the measure of the set of cells traversed by the SCs decreases, the measure

of the set of cells with high residual approximation error decreases, but the largest residual error

magnitude increases greatly.

The resultant error estimates, plotted in Fig. 8, show that the estimator is quite consistent with

the residual approximation. In cells surrounding SCs the error estimator is poor and oscillates
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Figure 7: Case Study: log10 |R1
00,n/R

1
00,n|, Fine Mesh

µ = 0.35002, η = 0.86889

(a) Coarse Mesh (b) Fine Mesh

Figure 8: Case Study: Local log10-Effectivity Index

about the true value, though the oscillation is due to oscillation in the true error near high gradient

regions, per Godunov ([37]). Away from the SCs, however, the estimate appears to be accurate.

The data plotted in Fig. 8(b) is recast as a histogram in Fig. 9, and shows that the estimator is

accurate; i.e., there is a large peak centered near perfect agreement with the true error. However, the

inaccuracies from the SCs manifest as long tails that extend in either direction. Furthermore, there

is a small subpeak centered at slight overestimation of the true error. This is unlike the estimator

for DGFEM-0 ([24]), and it is caused by accumulation of the error in the estimate from the residual

approximation, spread by the error transport problem, in the center of the problem domain. Though

the estimator suffers from the same effects for DGFEM-0, these are more influential for DGFEM-1

because the relative error in the residual approximation in the plume is greater. This is because
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Figure 9: Case Study: LeR/TE-AD log10 Local Effectivity Index Histogram, Fine Mesh

the local convergence of the numerical solution is limited by true solution regularity in and near

SC-intersected cells, the latter due to the numerical spread of error. Hence, the numerical solution

locally maintains the same accuracy, but the residual goes to zero at a faster rate (than DGFEM-

0), causing the residual approximation, which is constructed with the numerical solution, to have

greater relative error vis-a-vis the DGFEM-0 residual approximation in the plume.

Finally, the color-coding of the histograms is related to the absolute error in the error estimate,

scaled by the L2 norm of the maximum scalar flux. In theory, if the absolute error is small and

the relative error is large, this would signify that the true error is very nearly zero, and though

the estimate cannot perfectly approximate its value, it is possibly “close enough” to zero to be

considered a good estimate. This reduces the adverse implications of the subpeak in Fig. 9, since it

is associated with a region with low absolute error in the error estimate.

The RW and DAZ estimator histograms for the same problem, Figs. 10 and 11, demonstrate

that these estimators are highly precise; specifically, they exhibit tall and narrow peak heights.

Additionally, RW is quite accurate. In both cases, the estimators’ performance are superior to their

performance for DGFEM-0 ([24]), unlike LeR/TE-AD. This is because LeR/TE-AD is unique in

that it utilizes the error transport problem, which spreads locally-incurred inaccuracies near the SCs

throughout the rest of the domain.

The absolute and relative convergence trends of the global error estimators are plotted in Fig. 12.

The true residual is treated as an error indicator, i.e., Eq. 8 is computed with εΛh = RΛ
h , and analo-

gously for the TE-AD residual as an error indicator usingRΛ
h . The two estimators requiring auxiliary
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Figure 10: Case Study: RW log10 Local Effectivity Index Histogram, Fine Mesh

Figure 11: Case Study: DAZ log10 Local Effectivity Index Histogram, Fine Mesh

solutions, LeR/TE-AD and RW, are most accurate for this problem, though both underestimate the

global error. Previously in [24], ad hoc analysis showed that h-refinement-based estimators will

exhibit a propensity to underestimate the error and to not be asymptotically exact, and this is

demonstrated in Fig. 12(b) for the RW h-refinement estimator, as its effectivity index does not

approach 1 (0 in log10-scale) as h−1 → ∞. However, LeR/TE-AD, which was not asymptotically

exact for DGFEM-0, appears to be asymptotically exact for DGFEM-1 given this problem and set
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(a) Error Norm (b) Effectivity Index

Figure 12: Case Study: Error Estimator Convergence with Mesh Refinement

of meshes, since its effectivity index is trending towards 1 for the last five meshes.

DAZ shows two different convergence rates, and these are attributed to the dominance of method

truncation order, hΛ at coarser meshes, by way of the element residual, and to the dominance of

solution irregularity order, hr, at finer meshes, by way of the jump terms. Finally, for DGFEM-Λ, it

is not feasible to use the discrete residual alone as an error bound, as its L2 norm does not converge

at the same rate as the true error ([23]), as demonstrated for both the TE-AD and true residuals.

3.2. Metric-Based Evaluation

We have defined four metrics that are indicative of estimator performance: 1) the fraction of cells

that have θ(i,j) ≥ 0, an indicator of local boundedness, and useful for error analysis so long as the

esitmate is not grossly inaccurate; 2) the fraction of cells that have |θ(i,j)−1| ≤ β, where β indicates

a relative error in the error estimate and can be expressed as a percentage, an indicator of accuracy;

3) the standard deviation of log10 θ
(i,j), an indicator of precision, useful for AMR applications; and

4) the additional computational cost incurred in computing the error estimate.

Along with the global effectivity index, these metrics are plotted over a range in MMS parameter

space. Optical thickness, controlled by the total cross section, is examined over the range σt =

19



[0.01, 0.1, 1.0, 10.0, 100.0]. The scattering ratio range is c = [0.1, 0.9]. True solutions are either

discontinuous or irregular in the first derivative across SCs. Furthermore, the mesh utilized is

square and uniform in the range Nx ×Ny = [32× 32, 512× 512].

(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 13: Global Effectivity Index vs. σt, Irregular Solution

The global effectivities of the estimators over the parameter range are plotted in Fig. 13 for

irregular solutions and Fig. 14 for discontinuous solutions. For irregular solutions, LeR/TE-AD is

the most accurate global error estimator, with RW being a very close second. For discontinuous

solutions, RW is marginally superior to LeR/TE-AD on coarse meshes, but the trend is reversed for

fine meshes. DAZ and the TE-AD residual both provide global bounds in all cases except the most

optically thick σt = 100.0 cm−1 case. When the problem is very optically thick, the MMS solution

is essentially flat aside from a thin boundary layer around the problem’s periphery ([29, 22]), thus

well approximated by a DGFEM-1 method. In effect, the assumption that other sources of error,

viz. iterative error and computer roundoff error, are negligible is no longer true, and the resultant
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 14: Global Effectivity Index vs. σt, Discontinuous Solution

spatial discretization error estimate is poor.

The local boundedness metric of the estimators over the parameter range are plotted in Fig. 15

for irregular solutions and Fig. 16 for discontinuous solutions. Aside from the special case of large

optical thickness, the estimators that globally bound the error, DAZ and the TE-AD residual as an

indicator, nearly universally locally bound the error for the problem set considered. Conversely, RW

is predisposed to underestimate the local error, as it does the global error. However, LeR/TE-AD’s

local boundedness metric appears to be dependent on mesh refinement and optical thickness. The

former can be explained by the fact that the truncated terms in Eqs. 19-22 may be large if not

dominant at coarser meshes, indicating the solution is not yet asymptotically converging, leading to

an underapproximated residual and, as a result, an underestimated error. The latter appears to be

related to the SC-induced plume. In optically thin problems, the attenuation of the irregularities

along the path of the SCs is weak, and the residual error within the plume is of greater magnitude.
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32
(d) c = 0.9, NX = NY = 512

Figure 15: Local Boundedness vs. σt, Irregular Solution

This effect is re-enforced by the increase in the metric for the σt = 10.0 case for discontinuous

solutions versus irregular solutions.

The accuracy metric of the estimators over the parameter range with values of β = [10%, 25%, 50%]

are plotted in Fig. 17 for irregular solutions and Fig. 18 for discontinuous solutions. In instances

where DAZ has no cells with estimates in the metric range, it is omitted. Neither DAZ nor the TE-

AD residual as an indicator are appreciably accurate for this set of problem configurations, but as

they are intended as global error bounds, this is unsurprising. In contrast to the DGFEM-0 results

([24]), RW is superior to LeR/TE-AD in most instances, with the exception of the most restrictive

(β = 10%) relative error bound for optically thick problems. As seen in the case study, LeR/TE-AD

is double penalized by the error transport problem numerically spreading errors incurred by the

residual approximation.

Furthermore, a second special case, σt = 0.1 and c = 0.1, is exposed. For discontinuous solutions
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 16: Local Boundedness vs. σt, Discontinous Solution

with low scattering ratio, as the optical thickness decreases, the solution’s spatial profile becomes

more linear on either side of the SC. At very low optical thickness, i.e., σt = 0.01, there is very

little attenuation of the discontinuity by the host materials, thus there is a large source of spatial

discretization error. However, at the optical thickness σt = 0.1, the increased attenuation of the

discontinuities and linear behavior of the solution combine to produce near-zero errors at many points

within the domain, thus breaking the assumptions of spatial discretization error estimation, viz., that

the iterative and floating point errors are negligible when compared to the spatial discretization error.

The precision metric of the estimators over the parameter range, plotted in Fig. 19 for irregular

solutions and Fig. 20 for discontinuous solutions, demonstrate an overall decrease in precision for

LeR/TE-AD, whereas RW and DAZ generally improve aside from the degenerate cases. Once again,

this is due to the double penalization of LeR/TE-AD caused by the error transport problem and
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(a) c = 0.1, NX = NY = 32
(b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32
(d) c = 0.9, NX = NY = 512

(e) Legend

Figure 17: Accuracy vs. σt, Irregular Solutions
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

(e) Legend

Figure 18: Accuracy vs. σt, Discontinuous Solutions
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 19: Precision vs. σt, Irregular Solutions

the large relative error in the residual approximation in the plume caused by irregularities limiting

local accuracy of the numerical solution.

Finally, the computational cost of each estimator is plotted in Fig. 21 for irregular solutions

and Fig. 22 for discontinuous solutions. RW is typically the most computationally expensive esti-

mator, as it requires an additional auxiliary solution with four times as many unknowns, in this

2D configuration, as the original numerical solution. However, this cost is mitigated somewhat by

the preconditioning. Thus, LeR/TE-AD, whose auxiliary solution requires the same number of un-

knowns as the numerical solution, is usually 1.5-3 times less computationally expensive than RW,

and in some instances it actually takes longer to run than RW. However, the special case c = 0.9

and σt = 0.1 with discontinuous solution causes the computational cost of LeR/TE-AD to jump

appreciably. This is caused by LeR/TE-AD failing to reach the iterative error convergence criterion,

and instead hitting the maximum number of iterations. On closer inspection, the cell with maximum
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(a) c = 0.1, NX = NY = 32 (b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 20: Precision vs. σt, Discontinuous Solutions

iterative error oscillates about the value 2.4 × 10−8, and it has near-zero estimated and true error

in the angular flux, so it would be considered sufficiently converged in an absolute sense, but fails

the set stopping criterion. Thus, this case illustrates the potential pitfall of an iterative auxiliary

solution5. DAZ is more computationally expensive than LeR/TE-AD for cases that require few

iterations by the latter to reach the iterative stopping criterion, but as this number increases, DAZ

maintains its computational cost supremacy, since it does not require an iterative auxiliary solution.

5Preliminary testing has shown that reasonably reducing the iterative error stopping criterion for the auxiliary

transport problems has little negative effect on the error estimate so long as the iterative error is small vis-a-vis the

spatial discretization error, and can serve to both reduce computational cost of the estimators and prevent “runaway”

iterations.
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(a) c = 0.1, NX = NY = 32

(b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 21: Computational Cost vs. σt, Irregular Solutions

3.3. MMS Evaluation Conclusions

While LeR/TE-AD is still useful for estimating global and local solution accuracy and tends to

overestimate the error locally, it significantly suffers in increasing method order from Λ = 0 to Λ = 1

from the capped local accuracy of the numerical solution due to solution regularity characteristic of

practical configurations. RW, in contrast, improves in accuracy and precision, and DAZ improves in

precision. LeR/TE-AD is uniquely affected by this phenomenon because local errors in the residual

approximation are spread globally by the auxiliary error transport problem, whereas other estimators

deposit their errors merely locally.

However, RW and DAZ are both refinement-based estimators. RW directly approximates the

numerical solution with h-refinement, and DAZ uses a pseudo Λ-refinement to generate the residual

and jump terms that build the local contributions to the error bound. Thus, for this MMS set of
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(a) c = 0.1, NX = NY = 32
(b) c = 0.1, NX = NY = 512

(c) c = 0.9, NX = NY = 32 (d) c = 0.9, NX = NY = 512

Figure 22: Computational Cost vs. σt, Discontinuous Solutions

problems, in which many derivative terms are nil, a refinement of a DGFEM-1 solution will be of

particularly high quality, and it is likely that these two estimators are at least somewhat biased

to exhibit superior performance than they would attain in a more realistic configuration. This

conjecture is borne by the numerical tests reported in Sec. 4.
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4. Realistic Problem Geometry Evaluation

To examine a less ideal sequence of problems and avoid potential biasing of estimators’ per-

formance due to nil solution moments as mentioned in Sec. 3.3, the estimators are evaluated for

non-MMS realistic problem geometries. A Richardson Extrapolation procedure ([38]) is utilized to

generate reference solutions, and the refinement sequence is chosen to ensure that it does not inter-

sect the space of the numerical solutions in order to prevent potential biasing. That is, if for each

case we obtain DGFEM-0 and DGFEM-1 solutions on a Nx × Ny mesh, the refinement sequence

is performed on DGFEM-2 solutions with N ′x ×N ′y = [4Nx × 4Ny, 8Nx × 8Ny, 16Nx × 16Ny]. The

choice of Λ = 2 and omission of N ′x × N ′y = 2Nx × 2Ny in the sequence are intended to further

prevent biasing of the refinement-based estimators.

Because multigroup spatial discretization error estimation is a nascent field of investigation ([39])

and to conform with our previous evaluations, the realistic problems are uncoupled in energy and

examined as one-speed problems. Three benchmark configurations are employed: the C5G7 bench-

mark unreflected UO2 assembly fast and thermal groups, and a dogleg duct shielding problem. In

each case, the true solution is irregular in the first derivative across SCs.

4.1. Fast C5G7 UO2 Assembly

The 2D C5G7 benchmark is a reactor mini-geometry established for the verification of neutron

transport codes ([40, 41]). The original benchmark is a multigroup problem, with seven energy

groups, and it has seven material compositions. The modified version utilized in this work isolates

a single UO2 assembly, depicted as part of a quarter-geometry in Fig. 23, as a fixed source problem

with explicit BCs. Each square in Fig. 23 corresponds to a pin cell geometry detailed in Fig. 24,

where the diameter of the fuel-clad mix is 1.08 cm, and the length of each side of the square pin cell is

1.26 cm (note that we only consider the 2D benchmark, so height details are omitted, but additional

geometry details can be found in [41]). The material that makes up the “fuel-clad mix” regime in

Fig. 24 is denoted by the legend at the bottom of Fig. 23. Each assembly contains 17×17 pin cells,

giving single assembly dimensions of 21.42 cm × 21.42 cm. A 14×14 square mesh is overlaid on each

pin cell, with no further homogenization, corresponding to Fig. 25, where red cells are metal (fuel

or other material) and white cells are moderator (note that the total area of the red cells does not

conserve the area of the undiscretized fuel pin). This corresponds to a 238×238 mesh over the entire

single assembly used in our reduced model. Note that the material composition per cell remains

invariant over mesh refinement levels.

For the fast group, the material properties of g = 1 from [41] are used, also shown in Table 1,

and scattering ratios are computed with the in-group scattering cross-sections. To keep consistent
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Figure 23: C5G7 Assembly Geometry (Without the Reflector Layer) [41]

Material σt (cm−1) c

UO2 Fuel 2.12450E-01 0.600315

Fission Chamber 1.90730E-01 0.346909

Guide Tube 1.90730E-01 0.346909

Moderator 2.30070E-01 0.193322

Table 1: Fast Group Material Properties ([41])

with previous work, which only utilized non-multiplying materials, the materials are treated as non-

fissioning. However, to mimic the neutron source in the fast group, the fixed source in fuel cells is

set to unity. BCs are set to zero. Because the total cross section of the materials is in the optically

thin region, per the parameters of the MMS evaluation, we would expect the irregularities across

SCs to remain largely non-smooth, and therefore produce worse error estimates.
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Figure 24: C5G7 Fuel Pin Geometry [41]

Figure 25: Square Mesh Discretization of Fuel Pin for 238× 238 Mesh

The diamond fractal-like pattern of the reference scalar flux solution6 for S4 LS quadrature7

6The Richardson Extrapolation that led to the DGFEM-0 reference solution had 7.0% of scalar flux moments

non-monotonic and 24.5% of angular flux moments non-monotonic. This difference is expected, since the scalar flux

is an integrated quantity; thus, non-dominant and non-monotonic behavior is more likely to be suppressed in the
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(a) Reference (b) DGFEM-0

Figure 26: Cell-Average Scalar Flux Solution, Fast Group

on a 238×238 mesh, depicted in Fig. 26(a), demonstrates the preponderance of SCs in a realistic

problem, and the corresponding DGFEM-0 solution, Fig. 26(b), cannot capture the spatial behavior

of the reference solution.

Figure 27: Fast Group: LeR/TE-AD log10 Local Effectivity Index Histogram, DGFEM-0

The three selected estimator histograms for DGFEM-0, Figs. 27-29, demonstrate that for non-

summed quantity.
7Note that while this pattern indicates a poor angular discretization, this is irrelevant when evaluating the spatial

discretization error, per the definition in Eq. 7.
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Figure 28: Fast Group: RW log10 Local Effectivity Index Histogram, DGFEM-0

Figure 29: Fast Group: DAZ log10 Local Effectivity Index Histogram, DGFEM-0

MMS problems, the estimators exhibit far worse precision and accuracy than before. All three

estimators exhibit roughly the same overall range of effectivities and comparable peak widths. DAZ

is marginally more accurate than LeR/TE-AD in terms of peak distance from log10 θ
(i,j) = 0, which

is, in turn, marginally more accurate than RW. In an absolute sense, the error in the error estimate

is generally in the fourth decimal point of the maximum scalar flux’s magnitude.
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Figure 30: Fast Group: LeR/TE-AD log10 Local Effectivity Index Histogram, DGFEM-1

Figure 31: Fast Group: RW log10 Local Effectivity Index Histogram, DGFEM-1

In increasing the numerical method’s order from Λ = 0 to Λ = 18, LeR/TE-AD suffers a reduction

in relative and absolute accuracy, Fig. 30. The former was anticipated from the MMS study in

8Associated Richardson Extrapolation for DGFEM-1 reference solution had 9.2% of scalar flux moments non-

monotonic and 22.0% of angular flux moments non-monotonic.
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Figure 32: Fast Group: DAZ log10 Local Effectivity Index Histogram, DGFEM-1

Sec. 3, in which LeR/TE-AD saw worse accuracy metrics across the parameter range for a DGFEM-

1 discretization versus DGFEM-0 ([24]). The latter is reflective of the complex geometry; the true

and estimated errors are not as small as they are in the MMS problems. RW, on the other hand,

Fig. 31, exhibits better accuracy and precision for DGFEM-1, but the effectivity distribution is

noticeably worse than that for the MMS case study, Fig. 10, with reduced peak height, precision,

and accuracy. DAZ, Fig. 32, improves in precision for Λ = 1.

DGFEM-0 DGFEM-1

Estimator log10 θ Time (s) log10 θ Time (s)

Numerical Solution – 5.34 – 17.1

LeR/TE-AD -0.417 8.74 -0.560 29.1

RW -0.583 20.4 -0.301 66.2

DAZ 0.424 7.84 0.380 36.6

Table 2: Global Effectivity, Fast Group

The global effectivities of the estimators more or less align with the peak location of the local

effectivity index, Table 2. DAZ maintains its advantage as a bound on global error from above

in non-degenerative problems. LeR/TE-AD consumes almost two times the execution time of the

numerical solution, suggestive of a configuration and residual approximation that produce an error
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transport problem requiring more iterations. RW is slightly less than four times the cost of the

numerical solution, which is reflective of the h/2-mesh solution computational cost, plus pre- and

post-processing, minus the reduction in cost from preconditioning the refined solution.
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4.2. Thermal C5G7 UO2 Assembly

The total cross sections and scattering ratios for the thermal group associated with each material

in the UO2 assembly described in the previous section are given in Table 3. Compared to the fast

Material σt (cm−1) c

UO2 Fuel 5.70610E-01 0.478576

Fission Chamber 1.43450E+00 0.766190

Guide Tube 1.43450E+00 0.766204

Moderator 3.30570E+00 0.750431

Table 3: Thermal Group Cross-Sections ([41])

group data, Table 1, here the total cross sections and scattering ratios are larger. Because of the

former, the irregularities across the SCs will be attenuated to a greater degree, thereby smoothing

the true solution. Furthermore, the moderator cells have fixed source set to unity, and the BCs are

set to unity, in order to mimic downscatter of fission neutrons into the thermal group within the

assembly and their reflection or in-leakage from teh assembly’s surroundings.

(a) Reference (b) DGFEM-0

Figure 33: Cell-Average Scalar Flux Solution, Thermal Group

The reference solution9, Fig. 33(a), indeed is smoother than its fast-group counterpart. As a

result, the DGFEM-0 numerical solution, Fig. 33(b), visually matches the reference.

From the LeR/TE-AD histogram for DGFEM-0, Fig. 34, we observe that the estimate is more

precise, both in terms of peak width and overall range of effectivities, than the fast group problem,

94.4% of scalar flux moments and 14.8% of angular flux moments are non-monotic in the Richardson Extrapolation.
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Figure 34: Thermal Group: LeR/TE-AD log10 Local Effectivity Index Histogram, DGFEM-0

Figure 35: Thermal Group: RW log10 Local Effectivity Index Histogram, DGFEM-0

and the estimate is accurate in both a relative and absolute sense. RW, Fig. 35, incurs a large

increase in precision, with all values being contained in a narrow range, but the location of the mean

value underestimates the reference error by over a factor of 2. DAZ appears to be less precise for

this problem due to the presence of many subpeaks, Fig. 36, and it also overestimates the error to

a greater degree than the fast group, thus reducing its accuracy.
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Figure 36: Thermal Group: DAZ log10 Local Effectivity Index Histogram, DGFEM-0

Figure 37: Thermal Group: LeR/TE-AD log10 Local Effectivity Index Histogram, DGFEM-1

The LeR/TE-AD estimate, Fig. 37, for the DGFEM-1 solution10 demonstrates less precision,

due to the prominent subpeak separated from the main peak. However, the two peaks are accurate,

particularly the smaller subpeak. The other noticeable difference between this and the DGFEM-0

1012.7% of scalar flux moments and 11.4% of angular flux moments are non-monotonic in the Richardson Extrap-

olation.
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Figure 38: Thermal Group: RW log10 Local Effectivity Index Histogram, DGFEM-1

Figure 39: Thermal Group: DAZ log10 Local Effectivity Index Histogram, DGFEM-1

estimate is that the DGFEM-1 estimate largely underestimates the error. RW is more precise in

its range of values for DGFEM-1, and the mean value is closer to agreement with the true error.

DAZ is even less precise, but still provides total local boundedness from above. Again, the global

effectivities of the estimators reflect the peak location of the local effectivity index, Table 4. Because

of the greater scattering ratios, the iterative methods take longer to converge versus the fast group;
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DGFEM-0 DGFEM-1

Estimator log10 θ Time (s) log10 θ Time (s)

Numerical Solution – 10.7 – 39.0

LeR/TE-AD 0.169 14.5 -0.140 63.6

RW -0.399 31.3 -0.210 105

DAZ 0.746 7.45 0.628 37.6

Table 4: Global Effectivity, Thermal Group

however, the computation time of DAZ is essentially unchanged from the fast group problem.

We desire to use the angular flux error estimator strategies to directly estimate the error in a

dependent quantity of interest. Because LeR/TE-AD and RW directly compute εΛh , the error in

any quantity derived from the angular flux can be directly estimated by these estimators. However,

because DAZ is computed as local norm contributions to a global bound, a heuristic must be applied.

We consider a hypothetical scenario where a reactor physicist wishes to know the contribution of the

spatial discretization error to the total error in the pin-wise fission rate densities for the purpose of

error analysis. He or she therefore seeks an estimate of the error in the average thermal fission rate

density in each pin cell (for these purposes, the fission chamber will be treated as non-multiplying).

The pin cell-wise average error in the fission rate density is calculated by,

E
(v,w)
pin =

∫
B(v,w) dA σf (x, y)ξΛ

h (x, y)∫
B(v,w) dA

, (35)

where σf is the macroscopic fission cross section11, ξΛ
h = φΛ

h−ΠΛ
hφ is the true error in the scalar flux,

and B(v,w) is the subdomain that contains all cells K(i,j) associated with a given pin cell containing

UO2 material, where v, w = 1, . . . , 17. The global average error in the fission rate density is simply,

Epin =
1

264

17∑
v=1

17∑
w=1

E
(v,w)
pin , (36)

where the 264 factor is the number of pin cells that contain fuel. The estimated error in the average

fission rate density is analogously

e
(v,w)
pin =

∫
B(v,w) dA σf (x, y)ζΛ

h (x, y)∫
B(v,w) dA

, (37)

where ζΛ
h (x, y) =

∑M
m wmεm(x, y), and Eq. 37 is only valid for LeR/TE-AD and RW. The true

11σf = 2.16004E-01 for UO2 in the thermal group.
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(a) DGFEM-0 (b) DGFEM-1

Figure 40: Thermal Group: True Error in Average Fission Rate Density

error12 in the average fission rate density is plotted in Fig. 40. Given Fig. 33(a) and the fission cross

section, the maximum solution error is in the second decimal place for the DGFEM-0 discretization

and the fourth decimal place for DGFEM-1.

(a) DGFEM-0 (b) DGFEM-1

Figure 41: Thermal Group: LeR/TE-AD log10 |e
(v,w)
pin /E

(v,w)
pin |

The log10-scale ratios of the resultant estimates for the error in the average fission rate density

computed by LeR/TE-AD are shown in Fig. 41, and while the DGFEM-0 estimate overestimates the

error in most pin cells by approximately a factor of two, the DGFEM-1 estimate grossly overestimates

the error at almost an order of magnitude.

12All average fission rate densities were computed via Richardson Extrapolation, and all extrapolations are found

to be monotonic.
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(a) DGFEM-0 (b) DGFEM-1

Figure 42: Thermal Group: LeR/TE-AD log10 |e
(v,w)
pin /E

(v,w)
pin |

The RW estimate ratios, Fig. 42, are more accurate than LeR/TE-AD, and become more accurate

with increasing Λ. However, unlike LeR/TE-AD, they do not locally bound the estimates of the

average fission rate density.

(a) DGFEM-0 (b) DGFEM-1

Figure 43: Thermal Group: LeR/TE-AD log10 |e
(v,w)
pin,DAZ/E

(v,w)
pin |

Finally, the DAZ estimate ratios are plotted in Fig. 43. The heuristic applied to estimate the

error in the average fission rate density is

e
(v,w)
pin,DAZ =

1

112

∑
(i,j),∀K(i,j)∈B(v,w)

σ
(i,j)
f

e
(i,j)
DAZ√

∆xi∆yj
, (38)

where σ
(i,j)
f is the fission cross section in cell K(i,j), the 112 factor is the number of cells per pin

cell that have fuel in them, see Fig. 25, and taking the square root of the K(i,j) cell area keeps units
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consistent on both sides of Eq. 38. One issue with Eq. 38 is that it only estimates the magnitude of

the error, not its sign, due to its norm formulation that is necessarily non-negative. The resultant

error estimate, though it provides a global bound, grossly overestimates the error by orders of

magnitude. This is most likely due to the lack of cancellation of error in the cell-wise integration.
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4.3. Dogleg Duct

The last test geometry considered is a dogleg duct shielding geometry based on [42]. The original

Figure 44: Dogleg Geometry from [42]

streaming assembly geometry, with measurements in mm, is given in Fig. 44. A 2D simplification of

the geometry is modeled in Fig. 45, where the DT source of unit strength is repositioned to the duct

inlet to alleviate primary ray effects, and a single detector is placed at location #7. As before, further

restrictions to conform to previous studies are imposed: vacuum BCs on all external edges, one-

group, steady-state, and isotropic scattering in all involved materials, and S4 LS angular quadrature.

A uniform 82× 124 mesh is overlaid on the domain with cell size of 2.5 cm×2.5 cm13. The material

cross section data given in Table 5 is approximately based on actual neutron cross sections at 14 MeV

for air, water (auxiliary shield), iron, and stainless steel (streaming assembly), taken from the ENDF

database ([43]). Here too, while these modifications distinguish the employed configuration from

the original benchmark, our goal is to make the configuration amenable to generating an accurate

reference solution against which only the spatial discretization error is judged. The reference

13In the simplified geometry, the Auxilliary Shield height is increased by 10 mm and the Iron Rack height is

decreased by 10 mm to utilize the uniform mesh.
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Figure 45: Simplified Dogleg Geometry

47



Material σt (cm−1) c

Air 1.2E-04 0.833

Auxiliary Shield 3.0E-01 0.767

Iron Rack 2.9E-01 0.828

DT Source 1.2E-04 0.833

Streaming Assembly 3.5E-01 0.943

Detector 1.2E-04 0.833

Table 5: Dogleg Materials Nuclear Data, Approximately Computed from [43]

(a) Reference (b) DGFEM-0

Figure 46: Cell-Average Scalar Flux Solution log10-Scale, Dogleg

solution14 is plotted against the DGFEM-0 scalar flux solution in Fig. 46, both on log10-scale.

1417.3% of scalar flux moments and 18.1% of angular flux moments are non-monotonic in the DGFEM-0 Richardson

Extrapolation.

48



The reference solution displays strong ray effects along SCs near the DT source, which are much

suppressed in the DGFEM-0 solution due to numerical diffusion of particles near SC trajectories

emanating from the point-like source. In both cases, the solution is noticeably of greater magnitude

at the duct outlet than in the shielded region.

DGFEM-0 DGFEM-1

Estimator log10 θ Time (s) log10 θ Time (s)

Numerical Solution – 11.3 – 44.1

LeR/TE-AD -0.392 11.9 -0.306 43.0

RW -0.606 41.3 -0.162 137

DAZ 4.88 1.85 1.51 6.70

Table 6: Global Effectivity, Dogleg Duct

The global effectivities and computation times are listed in Table 6. For this case, which requires

more iterations than either C5G7 problem, the estimators requiring iterative solutions are more

computationally expensive. DAZ has a computational time that is proportional to the number of

unknowns in the problem. In terms of effectivity index, however, DAZ grossly overestimates the

error for both Λ, consistent with a previously-identified reduction in the quality of the HOPS in

problems that require more iterations ([23]). LeR/TE-AD is superior to RW for the DGFEM-0

discretization, but they flip for the DGFEM-1 discretization15, although LeR/TE-AD’s global error

estimate is slightly improved. However, because the true solution has a linear shape in the shield

owing to the high absorption, the refinement-based estimators may disproportionately benefit from

a DGFEM-1 discretization for this problem.

Rather than examine the local effectivity index for this problem, we acknowledge that the hy-

pothetical engineer modelling a shield is not interested in the error distribution within the shield

or the duct, but only at the detector/duct outlet. Therefore, the estimated error in the DGFEM-0

scalar flux as a function of the y-coordinate at x = 205 cm is plotted in Fig. 47. In the true error,

Fig. 47(a), the duct outlet is manifested as a sharp decline in the error’s profile. The peaks and

troughs are associated with reflected ray effects along SCs. LeR/TE-AD overestimates the magni-

tude of the error by approximately a factor of 3, but accurately portrays the location of the error

dip. However, it does not capture the finer details of the error peaks and troughs, unlike RW, which

1523.1% of scalar flux moments and 23.0% of angular flux moments are non-monotonic in the DGFEM-1 Richardson

Extrapolation.
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(a) True Error (b) LeR/TE-AD Estimate

(c) RW Estimate (d) DAZ Estimate

Figure 47: Error in Shielded Scalar Flux, DGFEM-0

underestimates the true error in a relative sense. In the case of DAZ, the plotted heuristic is

e
(i,j)
Shield =

e
(i,j)
DAZ√

∆xi∆yj
, (39)

which is by nature non-negative. DAZ arguably best captures the peaks and troughs of the error, but

cannot capture the sign of the error, and overestimates the error by almost an order of magnitude.

The same quantities are plotted for the DGFEM-1 discretization in Fig. 48, and demonstrate

that the true error for a linear discretization is far more oscillatory near the SCs due to the non-

monotonicity of higher-order methods. LeR/TE-AD again cannot capture the oscillation of the true

error in the duct outlet due to the imprecision in the residual approximation in cells near the SCs,

and it overestimates the magnitude of the error by about a factor of 2. RW captures the spatial

behavior of the true error very well, but also underestimates the magnitude of the error. DAZ is
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(a) True Error
(b) LeR/TE-AD Estimate

(c) RW Estimate
(d) DAZ Estimate

Figure 48: Error in Shielded Scalar Flux, DGFEM-1

less able to capture the shape of the error for the DGFEM-1 discretization, and it overestimates the

error by over an order of magnitude.

The detector-averaged scalar flux (as a surrogate for response) error estimate is also computed16.

The true error in the detector is

ED =

∫
F dA ξΛ

h (x, y)∫
F dA

, (40)

where F is the subdomain that contains all cells K(i,j) associated with the detector, and the esti-

mated error in the detector for RW or LeR/TE-AD is,

eD =

∫
F dA ζΛ

h (x, y)∫
F dA

. (41)

16The detector-averaged scalar flux is monotonic in both Richardson Extrapolations.
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An analogous heuristic is applied to DAZ to generate the detector-averaged error estimate

eD,DAZ =
1

4

∑
(i,j),∀K(i,j)∈F

e
(i,j)
DAZ√

∆xi∆yj
. (42)

The resultant error relative to the DT source’s unit strength is shown in Table 7. For both method

DGFEM-0 DGFEM-1

Error log10 |eD/ED| Error log10 |eD/ED|

True -3.268E-04 0.000E+00 -1.709e-05 0.000E+00

LeR/TE-AD 1.914E-03 7.676E-01 1.860E-04 1.037E+00

RW -4.334E-05 -8.774E-01 -1.007E-05 -2.295E-01

DAZ 2.640E-03 9.073E-01 8.084-04 1.675E+00

Table 7: Detector Error in Average Flux, Dogleg, DGFEM-0

orders, LeR/TE-AD and DAZ overestimate the error to a great degree. However, LeR/TE-AD is

the most accurate estimate for DGFEM-0, due to the gross underestimation by RW. For DGFEM-1,

though, RW is the most accurate by far, and in both cases it is the only estimator to achieve the

correct sign of the true error.

5. Conclusions

Previously, we have developed a novel “residual source estimator”, an implicit residual-based

spatial discretization error estimator, for SN particle transport methods and assessed its performance

for a DGFEM-0 scheme, finding it to provide a precise and accurate error estimate at a lower

computational burden than a refinement-based scheme. In this work, the necessary residual and

derivative approximations were derived, and the estimator’s performance was assessed for a DGFEM-

1 scheme on a case study and with a parameter-wide metric-based approach using MMS-generated

test problems.

On the MMS suite, LeR/TE-AD typically generates an estimate of the error within an order

of magnitude of the true error in most spacial cells, but despite favorable results, it does not fare

as well as it did for DGFEM-0. Conversely, the more accurate numerical method here leads to a

greatly enhanced error estimate for two contemporary estimators, RW and DAZ; however, the re-

sultant distribution of effectivity indices for LeR/TE-AD is less precise, and often more inaccurate,

despite the higher order numerical solution. It was ultimately determined that local inaccuracies

in the numerical solution near true solution irregularities incur greater relative error in the deriva-

tive approximations (and, by extension, the residual approximation), which is numerically spread
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through the domain in the error transport problem. Additionally, all considered estimators were

evaluated on a set of realistic problem configurations, with reference solutions obtained via Richard-

son extrapolation, for DGFEM-0 and DGFEM-1 schemes. The results highlight the consequence

of using MMS, specifically homogeneous medium, as the large number of singular characteristics in

heterogeneous configurations cause all the considered error estimators to be less accurate or pre-

cise than the MMS study would imply. Furthermore, the advantages of the two-mesh and duality

argument estimators are not as pronounced, which implies that the MMS may have been biasing

refinement-based estimators due to the set of nil true derivatives.

In general, we established that the residual source estimator is a viable and attractive spatial dis-

cretization error estimator on a wide array of problems for its accuracy, particularly for DGFEM-0,

reduced computational cost versus a refinement-based method, and reduced tendency to underesti-

mate the true error. Furthermore, because it directly approximates the error in the angular flux,

the error in any quantity computed from the angular flux can be itself directly approximated, unlike

norm-based methods, which require heuristic extensions to achieve the same purpose.
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