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High Order Implicit Residual-Based Spatial Discretization
Error Estimation for Sy Neutron Transport

Nathan H Hart™!, Yousry Y Azmy?

%North Carolina State University
Department of Nuclear Engineering
2500 Stinson Drive, Raleigh, NC 27606

Abstract

This work demonstrates our novel residual source spatial discretization error estimator (LeR/TE-
AD) for a DGFEM-1 discretization and assesses it along with two contemporary estimators, Ragusa
and Wang’s h-refinement estimator (RW) and Duo, Azmy, and Zikatanov’s explicit residual-based
estimator (DAZ), on a suite of Method of Manufactured Solutions (MMS) 2D problems and three
realistic problem geometries. LeR/TE-AD is attractive because it directly estimates the local error
in the angular flux, as opposed to a mere indicator of the error’s behavior, on the same mesh and
method order as the original numerical solution, thus typically being less computationally intensive
than a refinement-based method. On the MMS suite, LeR/TE-AD consistently displayed a reduced
performance versus its DGFEM-0 results in terms of accuracy and precision metrics, though it was
not typically grossly inaccurate. This is attributed to the irregularities in the true solution across
singular characteristics limiting the local accuracy of the numerical flux solution, leading to poor
derivative approximations used in the residual approximations. The error transport problem then
spreads the error in the residual to nearby cells, causing a greater degree of imprecision that did not
afflict DAZ or RW.

In testing the estimators on realistic problem geometries, however, LeR/TE-AD fared better. In
practice, the true error is much larger in non-idealized geometries like in MMS, and a superlinear
true solution means that RW and DAZ are not beneficially biased for DGFEM-1 error estimation.
LeR/TE-AD was typically first or second in accuracy, primarily competing with RW, but the latter
usually consumed 2-4 times the computational time as LeR/TE-AD, and requires a solution with
four times as many unknowns. Furthermore, RW and LeR/TE-AD can be used to compute direct
estimates of the error in any quantity of interest that is based on the angular flux solution, such as the
fission rate density in a fuel pin, whereas DAZ requires a heuristic extension due to its norm-based

nature.

1Currently at Los Alamos National Laboratory, nhhart@lanl.gov



1. Introduction

The Sy form of the steady-state, one-speed particle transport equation typically requires a spatial
discretization scheme in order to be solved. The solution to this discretized transport equation incurs
error vis-a-vis the solution to the spatially undiscretized transport equation (the “true solution”).
Since the latter is usually an unknown quantity, an estimate of the error is required for any error-
driven scheme such as adaptive mesh refinement (AMR) ([IL 2, B]) or error analysis ([4} B]).

As the spatial discretization scheme is refined either in mesh size or method order, the discrete
solution can better approximate the true solution where it is smooth. However, in multidimensional
geometries, singular characteristics propagate from irregularities in the boundary conditions ([6]),
as well as source discontinuities and material heterogeneities, across which the true solution is not
infinitely differentiable, and they incur additional error in the solution if the order of irregularity is
not sufficiently high as to be adequately captured by the truncated scheme. For the discontinuous
Galerkin finite element method of order A ([7]), DGFEM-A, the effect of true solution irregularity

order on the convergence of the global Ly norm of the error has been determined to be
19 = Y| Lop) < CA™PAFLD, (1)

where 1 is the true angular flux solution, ’(/J}/L\ is the solution to the discretized transport equation
on an h-level mesh and with method order A, C' is a constant independent of mesh size, D is
the domain, and r is the true solution regularity order ([8, [9], [10]). This result demonstrates that,
globally, irregularity can limit the accuracy of the numerical solution, and there comes a point where
increasing A fails to improve accuracy by this metric. The true solution regularity order is represented
by the Sobolev space in which the true solution belongs; in 2D, for continuous solutions, the space
is at most ¢ € H3/?>~¥(D), and for discontinuous solutions, the space is at least 1 € HY2~(D),
where v is very small and positive ([T} 10} 12]).

The above information is vital to understanding how error estimation may change with order
refinement. A posteriori error estimation requires using the numerical solution to recover some
truncated features of the true solution and either directly approximate the error or approximate
a residual term to either solve an auxiliary partial differential equation or inform a bound on the
global error in some norm ([I3] 14 15l [16, 17, 18]). Because solution convergence rate with mesh
refinement is limited by regularity order, improved estimator performance with increasing method
order is not necessarily expected. In Wang and Ragusa, [19], difference-based and projection-based
h-refinement estimators appear to become more accurate in an absolute sense with increasing method

order, but the jump-based error indicator exhibits no such improvement. Examining error estimators



over a set of Method of Manufactured Solutions (MMS) test problems in [20], O’Brien and Azmy
demonstrate that Ragusa and Wang’s difference-based h-refinement estimator ([2I]) becomes more
accurate in a relative sense as well with increasing method order. However, O’Brien and Azmy also
demonstrate that, despite becoming more accurate in an absolute sense, a jump-based indicator
and implicit finite element residual-based error estimator actually become less accurate in a relative
sense with increasing method order ([20]). This is attributed to the failure of the basis space to
capture singularities.

We have previously developed a novel implicit discrete residual-based error estimator named the
“residual source estimator” and assessed it against Ragusa and Wang’s h-refinement estimator and
Duo, Azmy, and Zikatonov’s explicit residual-based error bound ([22]) in [23] [24], finding it to be
accurate and precise at a reduced computational cost to the h-refinement estimator for a DGFEM-0
method. However, it was found that the estimators exhibited generally worse performance, per a
parameter-wide metric-based evaluation using MMS, when examined for discontinuous solutions.
That is, the estimators were adversely affected when the limiting exponential in Eq. [1| was the
regularity order. Hence, in increasing the method order to DGFEM-1, all problem configurations
will have the regularity order setting the limiting exponential.

We are primarily interested in evaluating the residual source estimator on more state-of-the art
methods, namely a piecewise linear DGFEM-1 method, and on realistic problem geometries, to
demonstrate the advantages and disadvantages of using the method in practical applications. The
work will proceed as follows. In Sec. [2 the relevant transport and error estimation methodology and
residual source estimator will be detailed, and the required residual and derivative approximations for
DGFEM-1 will be introduced. In Sec. Bl the residual source estimator and the two aforementioned
estimators will be evaluated via an MMS case study. In Sec. a parameter-wide metric-based eval-
uation, similar to [24], will be performed to reach general conclusions about estimator behavior with
method order. In Sec. ] the estimators will be evaluated on several realistic problem geometries with
Richardson extrapolation-derived reference solutions for DGFEM-0 and DGFEM-1 discretizations
to assess the generality of the conclusions obtained from the parameter-wide evaluations. Finally,

conclusions will be given in Sec. [}



2. Methodology

2.1. Terminology

The true solution is considered the solution to the one-speed, steady-state transport equation in

2D Cartesian geometry with a non-multiplying medium characterized by isotropic scattering,

0 0
(g + g+ 02010 ) o) = St ) + a0
ox dy (2)
m=1,...,M, (z,y) €D,
where M is the total number of discrete ordinates, o; and o are the macroscopic total and scattering

cross-sections, respectively, and

M

SI,ZJm(l’, y) = Us(xa y) Zwm¢m(xa y) = 05($, y)d)(xa y)v (3)

is the isotropic scattering source. Standard notation applies otherwise ([25]). Though these simplifi-
cations incur their own error (|26, 27, 28]), standard practice is to consider the spatial discretization
error as separable from other sources of error ([I3] [I6]). The explicit boundary conditions (BCs)
are,

U (2,9) = U (2,9), ¥ 72~ Oy, <0, (z,9) € 9D, (4)

where 9D is the boundary of the rectangular domain, D = (0, X) x (0,Y). Equation [2]is rewritten

in operator form,
Ly = S +q, (5)

with angle subscripts henceforth dropped for brevity, unless otherwise noted. Because the solution
to Eqgs. |2 and 4] cannot typically be computed analytically, the Method of Manufactured Solutions
(MMS), as outlined in [29], is utilized in this work to acquire reference solutions against which the
numerical solution’s true error is computed. To keep the problems somewhat consistent across the
MMS suite, dimensions of D are fixed at X =Y = 1 cm, and 54 Level-Symmetric quadrature is
exclusively used. All parameters are constant across the domain, and solutions are manipulated by
adjusting three parameters: the optical thickness via oy, the scattering ratio ¢ = os/0¢, and the
solution regularity via the BCs.

The DGFEM-A scheme, detailed in [7, B0, B1], is used exclusively. The crux of the method is
that the solution spatial dependency is represented within a cell, K7 = (z;_1,2;) x (Yj-1,9;), as
a series of smooth Legendre polynomials up to order A, with coefficients determined by solving the

discretized transport equation, Eq. [f]

L = Spi + g, (6)



where Lﬁ is the discretized transport operator, and Hﬁ is an Ly projection operator onto the
DGFEM-A test space and h-level mesh. BCs are obtained by Ly projection of Eq. [d] onto the test
space.

The spatial discretization error is then defined as the difference between the projected true
solution and the numerical solution Eq. [7} and it exists in the same space as the numerical angular
flux solution, i.e, it is an angular quantity represented by a series of Legendre polynomials within a

cell.
en = v, — 1030 (7)
Henceforth, an estimate of this quantity will be denoted eﬁ. The error and error estimates are

condensed into cell-wise Ly norms, E(9) and e, respectively, and a local “effectivity index” is

computed,

L. M
gy = ¢ _ \/Zm Wi ficc.p) 44 (ehm)?
= Blg) M ‘
\/Zm Wm fK(m') dA (52,771)2

A global effectivity index is likewise computed from global L, norms of the error, E, and error

(8)

estimate, e,

e Ity
B o sy

This is a relative quantity, which means that even if the error converges in an absolute sense, i.e.,

0=

(9)

limy, e — F = 0, it may not be “asymptotically exact” ([16]), i.e., limj, 080 = 1.

2.2. Residual Source Estimator

We have previously derived and demonstrated the residual source estimator for DGFEM-0
method in [23] 24], but a brief overview of the estimator follows here. Residual-based estimation
can be explicit, that is, used to build a bound ([22] B2, [33]), or implicit, used to directly estimate
the error via an auxiliary procedure ([I7) 20, [34]). For the residual source estimator, the discrete
residual, Eq. is utilized, which represents the deviation in particle balance realized when the

projected true solution is inserted into the discretized transport equation,
Ry = Sy + 1T g — LTI (10)

Combining Egs. [6] and and taking advantage of the linearity of the discretized transport

operator, gives the error transport equation, Eq.

Lieh = Selt + R, (11)



where inflow error at the boundary is necessarily zero for explicit BCs, per Eq.[7} The solution to
Eq. is the true error provided the residual is computed exactly, but since the true solution is

generally not known, the residual must be approximated.

2.3. DGFEM-1 Residual Approximation

To approximate the residual in a cell K(*7) we use the Taylor expansion,

N N-ng,
Wi y) = e () = | D03 sen(p)"sgn(n)"

nz=0 ny,=0 (12)

X (x - 330)nm (y - yo)ny o= Qv
ng!n,! Oxn= Qxnv (@ortie) (i1 ’
0+Yo) (i
centered at

(xmyo)K(?ﬂj) = (xi7(1+sgn(u))/2ayj7(1+sgn(n))/2)' (13)

Then we project Eq. |12/ onto the trial space to acquire the necessary true solution moments needed
by Eq. Thus, when considering the residual in a given cell K7 the kl-moments of the true

solution in cell K (), denoted by w( ) , are approximated as

(wo) 1 (w,0) ) (irf)
ki ~m<vk,l Ui (:C,y)>7 (14)

where the two-dimensional inner product notation is used,

The cell dimensions are evaluated as Az, = (z, — zy—1) and Ay, = (Y» — Yo—1). For DGFEM-A,

the trial function v(u w) belongs to the test space,
V() = Lol (3,9) = Pu@)BG) | YE1=0,..,A}, (16)

where Py (Z,,) is the k-order Legendre polynomial associated with the z-dimension, and analogously

for P;(g,) for the y-dimension. The variables
Ty =2(x — Tepw) /Ay, (17)

where z.,, is the z-coordinate of the cell midpoint, and analogously for ¢, are transformed spatial
variables that allow for proper scaling of the Legendre polynomials’ domain. The resultant approx-
imated true solution in a cell K(*%) for use in approximating the residual in that cell K@) then

takes the form

A A
I~ >3 2k + 1)(20 + 1) Pi(@.) PG )ug) . (18)

k=0 1=0



Equation is evaluated for each cell K(**) that features in the expression of the residual in cell
K (i’j) and the approximations are inserted into Eq. Note that there are as many residual
moments as there are solution moments. The resultant residual moment approximations for a

given cell K (7) and direction of flight Qm, assuming constant material properties within a cell, for

DGFEM-1 followf’] in Egs.

Axl Ay, 02
R = i - o5 g i - opiL 2 57
Az;Ay; 03
2 iy
+sgn(n)|ul(l - C;)—; amyw
Az;Ay; 03
2 i2Y;
+sgn(p)[n|(1 = Cy) 24 920, (19)

Az? [ 07 (i.5) 3
12 (WQ_Ut Prod "aﬁaﬂ)

Ay; (& o (i) 0 0° 3
12<8y?Q %o —M(Wl/’)‘FO(A ),

1,(4,5) _ 2 i? 2
Riy™ = |ul(1+C3 ) 5 gzl OB, (20)
1,(4,5) _ 2 2 21
R} |77|(1+C)1282¢+0(A) (21)
i AI'ZA i
R = sgn(pu)sen(n) =—5="1
(1+C2) o (1+C2) o oAl (22)
% 2 8x28yw i 2 Qzdy? v+ 0%,

A is a generic cell size term that assumes uniform refinement in the z- and y-dimensions. All

derivatives are pointwise and evaluated at (z,,¥y,). The local mesh nonuniformity factors are

AL _sgn(p)
= = 2
Cy Z, , (23)
and
Ay,
C = j sgn(n)’ 24
N (24)

and Q(x,y) = SY(x,y) + q(z,y) is the combined scattering and fixed source. In order to evaluate
these expressions for a cell that shares an inflow boundary with 9D, the appropriate nonuniformity

factor(s) is set to 0. Because the Taylor expansion, Eq. assumes sufficient solution regularity,

21n this work, the cells where this is necessary are K (4:3) | K (i=sen(1),5) and K (ii—sen(m)  In the event that K (%7)

shares an inflow boundary with the domain boundary, the procedure is analogous, but with reduced dimensionality.
3More detailed discussions on the residual approximation and its derivation are found in [23} 24] for DGFEM-0

and in [35] for DGFEM-1.



the above expressions are invalid in cells intersected by SCs and their downwind first neighbors
(by virtue of one of the necessary inflow moments requiring approximation). In practice, this is
an accepted failing of the method, but the interested reader is referred to Chapter 6 in [35] for a
discussion on this issue.

Note that all necessary pointwise derivatives evaluate to nil in the finite element representation
of the solution. In fact, like in the case of DGFEM-0 ([24]), all derivatives one order higher than
those captured by the DGFEM-A representation are required to approximate the residual. This
signifies that, for sufficiently regular solutions, the DGFEM-1 residual is nil for true solutions that
have a linear dependence in the spatial variables, meaning that the numerical solution is exact. Also
like DGFEM-0 ([24]), the residual’s 00-moment proportionality with A is dependent on the local
uniformity of the mesh. Because the pointwise derivatives evaluate to nil in the finite element space,
the derivatives must be approximated to elicit an a posteriori estimator.

The approximated residuals are henceforth denoted with Rﬁ notation, and the residual source
estimator with Taylor expansion-approximated residuals and approximated derivatives will be ab-

breviated as LeR/TE-AD.

2.4. DGFEM-1 Derivative Approximation

2.4.1. Patch Recovery Method

One method we have traditionally used for derivative approximation is an adaptation of the
patch recovery method [I5]. The true solution moments in the four cells that share a vertex with
(%o, Yo), Fig. [1| (or associated boundary surfaces, if K(*9) shares an inflow boundary with 0D), are
approximated using Eq. This produces a system of equations that can be solved a couple different
ways. One uses more solution moments to build the approximation, but theoretically gives a greater
order of accuracy when the mesh is locally uniform. The other requires fewer solution moments to
build the approximation, but maintains a reduced order of accuracy, even when the mesh is locally

uniform. The approximated xz-derivative is

9 »= 12C, (i) _ L G=sen(.5)
Oz? (1+Co)(1+Cy)Az? \ 710 c,
A Ga—senm) 1 (—sen(u).j—sen(n) (25)
+C’L/ 1/}10 chy 1/)10

+(C7 = 1DO(A) + 0(A?),

or by accepting a reduced order of accuracy in the particular case of a uniform mesh and using fewer

moments,

(92 12 i.7 1 i—sgn N
@1/} = 0+ A2 ( §dj) - Cfﬂ’%o i) ﬂ) +O(A). (26)



sgn(u)=sgn(n)=1

j+1 K(i-Lj+1) K(Li+1) K(i+1j-1)

K(i+10)

K(i+1,j-1)

i-1 i i+1

Figure 1: Example Patch of Cells for Angular Quadrant 1

The approximated yy-derivative can be found via rotation of Egs. 25 and 26] The approximated

zxy-derivative is

o’ 36 () L Gsen(u).9)
oz2ay " = ) T3 0, At Ay, ( g v
L jGg=senm) _ 1 (i—sen(u).j—sen(m) (27)
+Cy7/’11 chyipu

+(C2+C2—2)0(A) + O(A?),

or by accepting a reduced order of accuracy when the mesh is uniform and using fewer moments,

* 72 (i) L (i—sen(u).g)
ey ) T sy () - i) o). (28)

The approximated xyy-derivative can also be found wvia rotation of Eqs. 27] and 28 The scalar
flux derivatives are found by integrating the above equations, and the fixed source derivatives are
considered known. The above equations are not valid on 9D, but the derivation of the applicable

expressions for that case is done in an analogous manner, hence they are not included here for

brevity, but the full set can be found in Chapter 3 of [35]. Two important points about Egs.



1) because Eq. assumes sufficient regularity of the true solution, these equations are not valid
when one of the cells in the patch is intersected by a SC. Furthermore, the order of accuracy of
these methods assumes that the true solution moments are being used to recover the derivatives.
In practice, the numerical solution may not be accurate enough to generate accurate derivative
approximations.

In fact, this is found to be true when one of the local nonuniformity factors is not unity. It was
noted in [24] that the derivative approximations on the boundary needed to be divided by a factor
of two in order to converge to the correct value for DGFEM-0, and this is the case for DGFEM-1
also. However, it has been further determined that this is true for any local mesh nonuniformity; it
was only previously apparent for the boundary cells because only uniform meshes were considered.
Ultimately, this is a consequence of a failing in the DGFEM-A method, but it does not imply
nonconvergence, as the solution still converges in an absolute sense; it is merely the derivative

approximation that fails to converge in a relative sense.

2.4.2. Weak Deriwative Recovery Method

To address the failing of the patch recovery method, we have developed an ad hoc derivative
recovery method that is consistent with the DGFEM-A method termed the “weak derivative recovery
method”. This method acknowledges that the unknown derivatives do exist in the finite element

space, albeit in their weak form. We start by applying Eq. [18|to the z-derivative of the angular flux,

o 9 (4.9) (4,9)
w5l - el 2L, 2
Ox (2.9) oz " |, or " |
o - (29)
9 1@ (3,9)
3| = y+9|— Ty.
" [amw} 01 a [axw] 11 "
Taking the z-derivative and evaluating at & = § = —1 (the transformed coordinates of (z,,¥y,)) gives
) 9 6 [o 1" 18718 19
— I3 | = = — — — : 30
ox " [81714 (wos) AT [83:1/1] 10 Az, [83:1/}] 1 (30)
Integrating by parts and applying the upwinding condition gives
-2 1“7 — 3 1/}(i»j) + w(i—sgn(u),j) _ 1b(()lod) — (()gisgn(#)wj) (31)
10z |, Ax; \ 710 10 3 ’
and o 10 (id) _ ) (isen(in).d)
3 ! — 3 (i,9) +w(i—5gn(#)7j) o wOld — Yol B (32)
10z " |, Ax; \7H H 3 ’
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Then, the resultant zz-derivative approximation for a cell not sharing an inflow boundary with 0D

" o2 a 9
2¢ ~ o A 1/’ =
ox ox (Zor10)
(w) (i—sgn(p),5)
18 [ (i) i—sgn(n),j) — Yoo
A < + i 3 (33)

+£ (Z,J) +1/)(z sgn(p),j) ((]Zl’J) _qp(()llfsg“(ﬂ)ﬂ) ‘
Az? 3

Taking the xy-derivative of Eq. [29|instead leads to the xzy-derivative for a cell not sharing an inflow

boundary with 9D,

o3 o? A 0
~ ITy, | =—
89528y¢ dxdy " {39” 10] (Zo,¥0)

108 (@) 4 g fimsen(n.a) oy
AxiAy;

1—sgn ] (34)
) _ w((n gn(u),5)
3 .

Approximations of the yy- and zyy-derivatives are found by rotation of Egs. [33]and [34] respectively.

The complete set of approximations, including those for cells that share inflow boundaries with 0D

can be found in [35], but are omitted here for brevity.
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(a) Patch Recovery Method (b) Weak Derivative Recovery Method

Figure 2: log;y-Scale Ratio of Approximated to True xz-Derivatives for Single Ordinate

Figures [2| and [3| show the resultant relative error of the zz- and zzy-derivative approximations,
respectively, on the y = 1 = 0.35002 ordinate for a nonuniform mesh for an MMS-generated problem
where the true solution is irregular in its second derivative (to prevent nil derivatives and minimize
SC-induced effects). The location of the nonuniformity-affected cells, including the boundary, is
apparent in Fig. as being the values that have the greatest error aside from the SC-intersected

cells. The weak derivative method suffers no such penalty in these cells. However, the weak derivative

11
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Figure 3: log;y-Scale Ratio of Approximated to True xxy-Derivatives for Single Ordinate

recovery method appears to suffer on the inflow boundaries, but not other cells that abut cells of
different size, for the high order cross derivative terms, Fig.

Because nonuniformities are not present in this work, the patch recovery method with correction
on the boundaries will continue to be used to keep consistent with previous work, but it is recom-
mended that if the residual source estimator is to be implemented in any problem with numerous

nonuniformities (e.g., AMR-generated meshes), the weak derivative method be used.

2.5. LeR/TE-AD Implementation

The error transport problem, Eq. that is solved using the approximated residual as a fixed
source is solved using the same code used to compute the initial numerical solution. In practice, little
to no modification needs to be made to an existing transport code to perform this computation aside
from removing likely restrictions on negative sources and solutions. For both transport computations,
the source iteration method is employed with stopping criterion set to either an iterative error less
than 107'° or a max number of iterations of 500, whichever comes first, in order to produce an
accurate scattering source.

LeR/TE-AD’s computational process is summarized by the flowchart in Fig. @ The inputs
are the problem parameters, viz., mesh parameters, solver inputs, and material properties, the
numerical angular and scalar flux moments, and fixed source and BC derivatives, which are presumed
known quantities. These quantities are used to approximate high-order derivatives required by
Eqgs. and generate the error transport problem input. After the residual’s approximated
spatial distribution is computed, it is fed to the error transport problem routines with zero boundary

conditions on 9D. After solving the error transport problem, the error is condensed into the local

12
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Figure 4: LeR/TE-AD Flow Chart

and global Ly norms, which provide the sought error estimate.

3. MMS Evaluation

LeR/TE-AD is evaluated against two estimators, Ragusa and Wang’s difference-based h-refinement
estimator ([2I]) with projected h-mesh solution preconditioning of the h/2-mesh solution (RW), and
Duo, Azmy, and Zikatanov’s explicit residual-based error bound ([22]) applied as a local indicator
(DAZ). We implement the DAZ estimator by approximating the element residual and jump terms
with a single-sweep of order DGFEM-A + 1, preconditioned with the numerical DGFEM-A solution.

13



By focusing on MMS-generated solutions, we are able to observe the behavior of the estimators in

idealized test conditions and attribute the effects of SCs to various features.

3.1. Case Study

Before examining LeR/TE-AD over the parameter space of the MMS suite, a case study is
conducted to gain insight on estimator performance that will be generalized with metrics in the
parametric evaluation. The MMS parameters for the case study follow: true solution irregular in
the first derivative across SCs, total cross section o; = 1.0 cm ™!, and scattering ratio ¢ = O.qﬂ This
problem is chosen because its angular flux solution is nonflat, and the magnitude of the irregularity
is attenuated moderately by the transport processes in the host materials. The true scalar flux

solution is plotted for a coarse (32 x 32) and fine (512 x 512) meshes in Fig. 8| below. The ratios

MMS Scalar Flux

1 1
0.5
0.8 0.8
0.45
0.6 04 0.6
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0.25
0 0

Cell-Average MMS Scalar Flux

y (cm)
y (cm)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x (cm) x (cm)
(a) Coarse Mesh (b) Fine Mesh

Figure 5: Case Study: Cell-Averaged MMS Scalar Flux

of the resultant TE-AD residual moments approximations (derivatives approximated with corrected
patch recovery) to the true residual moments are plotted over the domain in Fig. |§| on the coarse
mesh for the ordinate p = 0.35002, n = 0.86889. Note that white space denotes that the denominator
is zero due to the log,-scale applied to the ratio. Due to the MMS employed ([29]), all y-derivatives
and cross derivatives are nil above the SC, and similarly all z-derivatives and cross derivatives are nil
below the SC. Hence, per Eqgs. the true residual evaluates to zero in the corresponding regions.
We notice that for the 00-moment, the residual in cells intersected by the SC associated with the
ordinate are large outliers and tend to underapproximate the true residual. This is attributed to

the noted failure of the Taylor expansion in the TE-AD residual approximation in the presence of

4This case is identical to that outlined in Section 5.1 in [24].

14



1
2
2.5

0.8 13 0.8 2
1
0s 1.5

’ 0.6 ]
0
} 0.5
0.5 0.4
-1 0
-15 0.2 -0.5
-2 8
-2.5 0 15

0 0.2 0.4 0.6 0.8 1

0.6

y {cm)
y (cm)

0.4

fu

0 0.2 0.4 0.6 0.8 1
X (cm) x (cm)
(a) logio IR0/ Raol (b) log1g |R51 /Rl
1
2
2.5
0.8 1
2
0
_ 1.5 _0s6
£ £
k=2 = -1
> 1 >
0.4
-2
0.5
0.2 3
0
0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x (cm) x (cm)
(c) logyq |Rio/R%0| (d) logyg |R11/R%1|

Figure 6: Case Study: Absolute Value of the Approximate/True Residual Moment Ratios, Coarse Mesh

irregularities. An additional “plume” of cells around the SCs also are large outliers, and they tend
to overapproximate the true residual. In effect, the error in the streaming term resulting from the
irregularity is numerically spread to nearby cells ([36]), making the numerical solution insufficiently
accurate to acquire accurate derivative, and by extension residual, approximations. Some of the SCs
belonging to other ordinates also appear due to the error in the scattering source incurred by the
same effect. Apart from these localized effects, the residual generally is well approximated by the
method. In examining the relative error of the 00-moment of the TE-AD residual on the fine mesh,
Fig.[7] it is noted that as the measure of the set of cells traversed by the SCs decreases, the measure
of the set of cells with high residual approximation error decreases, but the largest residual error
magnitude increases greatly.

The resultant error estimates, plotted in Fig. [8] show that the estimator is quite consistent with

the residual approximation. In cells surrounding SCs the error estimator is poor and oscillates
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Figure 8: Case Study: Local log,y-Effectivity Index

about the true value, though the oscillation is due to oscillation in the true error near high gradient
regions, per Godunov ([37]). Away from the SCs, however, the estimate appears to be accurate.
The data plotted in Fig. is recast as a histogram in Fig. |§|7 and shows that the estimator is
accurate; i.e., there is a large peak centered near perfect agreement with the true error. However, the
inaccuracies from the SCs manifest as long tails that extend in either direction. Furthermore, there
is a small subpeak centered at slight overestimation of the true error. This is unlike the estimator
for DGFEM-0 ([24]), and it is caused by accumulation of the error in the estimate from the residual
approximation, spread by the error transport problem, in the center of the problem domain. Though
the estimator suffers from the same effects for DGFEM-0, these are more influential for DGFEM-1

because the relative error in the residual approximation in the plume is greater. This is because
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Figure 9: Case Study: LeR/TE-AD log,y Local Effectivity Index Histogram, Fine Mesh

the local convergence of the numerical solution is limited by true solution regularity in and near
SC-intersected cells, the latter due to the numerical spread of error. Hence, the numerical solution
locally maintains the same accuracy, but the residual goes to zero at a faster rate (than DGFEM-
0), causing the residual approximation, which is constructed with the numerical solution, to have
greater relative error vis-a-vis the DGFEM-0 residual approximation in the plume.

Finally, the color-coding of the histograms is related to the absolute error in the error estimate,
scaled by the Ly norm of the maximum scalar flux. In theory, if the absolute error is small and
the relative error is large, this would signify that the true error is very nearly zero, and though
the estimate cannot perfectly approximate its value, it is possibly “close enough” to zero to be
considered a good estimate. This reduces the adverse implications of the subpeak in Fig. 0] since it
is associated with a region with low absolute error in the error estimate.

The RW and DAZ estimator histograms for the same problem, Figs. and demonstrate
that these estimators are highly precise; specifically, they exhibit tall and narrow peak heights.
Additionally, RW is quite accurate. In both cases, the estimators’ performance are superior to their
performance for DGFEM-0 (]24]), unlike LeR/TE-AD. This is because LeR/TE-AD is unique in
that it utilizes the error transport problem, which spreads locally-incurred inaccuracies near the SCs
throughout the rest of the domain.

The absolute and relative convergence trends of the global error estimators are plotted in Fig. [I2]
The true residual is treated as an error indicator, i.e., Eq. [§is computed with 62 = RQ, and analo-

gously for the TE-AD residual as an error indicator using R%. The two estimators requiring auxiliary
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Figure 11: Case Study: DAZ log,, Local Effectivity Index Histogram, Fine Mesh

solutions, LeR/TE-AD and RW, are most accurate for this problem, though both underestimate the
global error. Previously in [24], ad hoc analysis showed that h-refinement-based estimators will
exhibit a propensity to underestimate the error and to not be asymptotically exact, and this is
demonstrated in Fig. for the RW h-refinement estimator, as its effectivity index does not
approach 1 (0 in log;,-scale) as h~! — oo. However, LeR/TE-AD, which was not asymptotically
exact for DGFEM-0, appears to be asymptotically exact for DGFEM-1 given this problem and set
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Figure 12: Case Study: Error Estimator Convergence with Mesh Refinement

of meshes, since its effectivity index is trending towards 1 for the last five meshes.

DAZ shows two different convergence rates, and these are attributed to the dominance of method
truncation order, h* at coarser meshes, by way of the element residual, and to the dominance of
solution irregularity order, h", at finer meshes, by way of the jump terms. Finally, for DGFEM-A, it
is not feasible to use the discrete residual alone as an error bound, as its Ly norm does not converge

at the same rate as the true error ([23]), as demonstrated for both the TE-AD and true residuals.

3.2. Metric-Based Evaluation

We have defined four metrics that are indicative of estimator performance: 1) the fraction of cells
that have () > 0, an indicator of local boundedness, and useful for error analysis so long as the
esitmate is not grossly inaccurate; 2) the fraction of cells that have |9(i’j ) — 1] < B, where § indicates
a relative error in the error estimate and can be expressed as a percentage, an indicator of accuracy;
3) the standard deviation of logy 6(43) | an indicator of precision, useful for AMR applications; and
4) the additional computational cost incurred in computing the error estimate.

Along with the global effectivity index, these metrics are plotted over a range in MMS parameter

space. Optical thickness, controlled by the total cross section, is examined over the range o; =

19



[0.01,0.1,1.0,10.0,100.0]. The scattering ratio range is ¢

discontinuous or irregular in the first derivative across SCs.
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Figure 13: Global Effectivity Index vs. oy, Irregular Solution

The global effectivities of the estimators over the parameter range are plotted in Fig. [I3] for
irregular solutions and Fig. for discontinuous solutions. For irregular solutions, LeR/TE-AD is
the most accurate global error estimator, with RW being a very close second. For discontinuous
solutions, RW is marginally superior to LeR/TE-AD on coarse meshes, but the trend is reversed for
fine meshes. DAZ and the TE-AD residual both provide global bounds in all cases except the most
optically thick o; = 100.0 cm~! case. When the problem is very optically thick, the MMS solution
is essentially flat aside from a thin boundary layer around the problem’s periphery ([29, 22]), thus
well approximated by a DGFEM-1 method. In effect, the assumption that other sources of error,

viz. iterative error and computer roundoff error, are negligible is no longer true, and the resultant
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Figure 14: Global Effectivity Index vs. o, Discontinuous Solution

spatial discretization error estimate is poor.

The local boundedness metric of the estimators over the parameter range are plotted in Fig. [T5]
for irregular solutions and Fig. for discontinuous solutions. Aside from the special case of large
optical thickness, the estimators that globally bound the error, DAZ and the TE-AD residual as an
indicator, nearly universally locally bound the error for the problem set considered. Conversely, RW
is predisposed to underestimate the local error, as it does the global error. However, LeR/TE-AD’s
local boundedness metric appears to be dependent on mesh refinement and optical thickness. The
former can be explained by the fact that the truncated terms in Egs. may be large if not
dominant at coarser meshes, indicating the solution is not yet asymptotically converging, leading to
an underapproximated residual and, as a result, an underestimated error. The latter appears to be
related to the SC-induced plume. In optically thin problems, the attenuation of the irregularities

along the path of the SCs is weak, and the residual error within the plume is of greater magnitude.
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Figure 15: Local Boundedness vs. o¢, Irregular Solution

This effect is re-enforced by the increase in the metric for the o = 10.0 case for discontinuous
solutions versus irregular solutions.

The accuracy metric of the estimators over the parameter range with values of 8 = [10%, 25%, 50%]
are plotted in Fig. for irregular solutions and Fig. for discontinuous solutions. In instances
where DAZ has no cells with estimates in the metric range, it is omitted. Neither DAZ nor the TE-
AD residual as an indicator are appreciably accurate for this set of problem configurations, but as
they are intended as global error bounds, this is unsurprising. In contrast to the DGFEM-0 results
(24]), RW is superior to LeR/TE-AD in most instances, with the exception of the most restrictive
(8 = 10%) relative error bound for optically thick problems. As seen in the case study, LeR/TE-AD
is double penalized by the error transport problem numerically spreading errors incurred by the
residual approximation.

Furthermore, a second special case, oy = 0.1 and ¢ = 0.1, is exposed. For discontinuous solutions
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with low scattering ratio, as the optical thickness decreases, the solution’s spatial profile becomes
more linear on either side of the SC. At very low optical thickness, i.e., oy = 0.01, there is very
little attenuation of the discontinuity by the host materials, thus there is a large source of spatial
discretization error. However, at the optical thickness o; = 0.1, the increased attenuation of the
discontinuities and linear behavior of the solution combine to produce near-zero errors at many points
within the domain, thus breaking the assumptions of spatial discretization error estimation, viz., that

the iterative and floating point errors are negligible when compared to the spatial discretization error.

solutions and Fig. for discontinuous solutions, demonstrate an overall decrease in precision for
LeR/TE-AD, whereas RW and DAZ generally improve aside from the degenerate cases. Once again,
this is due to the double penalization of LeR/TE-AD caused by the error transport problem and
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The precision metric of the estimators over the parameter range, plotted in Fig. [I9] for irregular
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Figure 17: Accuracy vs. o¢, Irregular Solutions
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Figure 19: Precision vs. o¢, Irregular Solutions

the large relative error in the residual approximation in the plume caused by irregularities limiting
local accuracy of the numerical solution.

Finally, the computational cost of each estimator is plotted in Fig. for irregular solutions
and Fig. for discontinuous solutions. RW is typically the most computationally expensive esti-
mator, as it requires an additional auxiliary solution with four times as many unknowns, in this
2D configuration, as the original numerical solution. However, this cost is mitigated somewhat by
the preconditioning. Thus, LeR/TE-AD, whose auxiliary solution requires the same number of un-
knowns as the numerical solution, is usually 1.5-3 times less computationally expensive than RW,
and in some instances it actually takes longer to run than RW. However, the special case ¢ = 0.9
and o, = 0.1 with discontinuous solution causes the computational cost of LeR/TE-AD to jump
appreciably. This is caused by LeR/TE-AD failing to reach the iterative error convergence criterion,

and instead hitting the maximum number of iterations. On closer inspection, the cell with maximum
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Figure 20: Precision vs. o¢, Discontinuous Solutions

iterative error oscillates about the value 2.4 x 108, and it has near-zero estimated and true error
in the angular flux, so it would be considered sufficiently converged in an absolute sense, but fails
the set stopping criterion. Thus, this case illustrates the potential pitfall of an iterative auxiliary
solutiorﬂ DAZ is more computationally expensive than LeR/TE-AD for cases that require few
iterations by the latter to reach the iterative stopping criterion, but as this number increases, DAZ

maintains its computational cost supremacy, since it does not require an iterative auxiliary solution.

5Preliminary testing has shown that reasonably reducing the iterative error stopping criterion for the auxiliary
transport problems has little negative effect on the error estimate so long as the iterative error is small vis-a-vis the
spatial discretization error, and can serve to both reduce computational cost of the estimators and prevent “runaway”

iterations.
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Figure 21: Computational Cost vs. o, Irregular Solutions

3.3. MMS FEwaluation Conclusions

While LeR/TE-AD is still useful for estimating global and local solution accuracy and tends to
overestimate the error locally, it significantly suffers in increasing method order from A =0to A =1
from the capped local accuracy of the numerical solution due to solution regularity characteristic of
practical configurations. RW, in contrast, improves in accuracy and precision, and DAZ improves in
precision. LeR/TE-AD is uniquely affected by this phenomenon because local errors in the residual
approximation are spread globally by the auxiliary error transport problem, whereas other estimators
deposit their errors merely locally.

However, RW and DAZ are both refinement-based estimators. RW directly approximates the
numerical solution with h-refinement, and DAZ uses a pseudo A-refinement to generate the residual

and jump terms that build the local contributions to the error bound. Thus, for this MMS set of
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Figure 22: Computational Cost vs. o4, Discontinuous Solutions

problems, in which many derivative terms are nil, a refinement of a DGFEM-1 solution will be of
particularly high quality, and it is likely that these two estimators are at least somewhat biased
to exhibit superior performance than they would attain in a more realistic configuration. This

conjecture is borne by the numerical tests reported in Sec. 4
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4. Realistic Problem Geometry Evaluation

To examine a less ideal sequence of problems and avoid potential biasing of estimators’ per-
formance due to nil solution moments as mentioned in Sec. the estimators are evaluated for
non-MMS realistic problem geometries. A Richardson Extrapolation procedure ([38]) is utilized to
generate reference solutions, and the refinement sequence is chosen to ensure that it does not inter-
sect the space of the numerical solutions in order to prevent potential biasing. That is, if for each
case we obtain DGFEM-0 and DGFEM-1 solutions on a N, x N, mesh, the refinement sequence
is performed on DGFEM-2 solutions with N x N; = [4N, x 4N,,8N, x 8N,, 16N, x 16N,]. The
choice of A = 2 and omission of N, x N; = 2N, x 2N, in the sequence are intended to further
prevent biasing of the refinement-based estimators.

Because multigroup spatial discretization error estimation is a nascent field of investigation ([39])
and to conform with our previous evaluations, the realistic problems are uncoupled in energy and
examined as one-speed problems. Three benchmark configurations are employed: the C5G7 bench-
mark unreflected UO2 assembly fast and thermal groups, and a dogleg duct shielding problem. In

each case, the true solution is irregular in the first derivative across SCs.

4.1. Fast C5G7 UOy Assembly

The 2D C5G7 benchmark is a reactor mini-geometry established for the verification of neutron
transport codes ([40, 41]). The original benchmark is a multigroup problem, with seven energy
groups, and it has seven material compositions. The modified version utilized in this work isolates
a single UO5 assembly, depicted as part of a quarter-geometry in Fig. [23] as a fixed source problem
with explicit BCs. Each square in Fig. corresponds to a pin cell geometry detailed in Fig.
where the diameter of the fuel-clad mix is 1.08 cm, and the length of each side of the square pin cell is
1.26 cm (note that we only consider the 2D benchmark, so height details are omitted, but additional
geometry details can be found in [41I]). The material that makes up the “fuel-clad mix” regime in
Fig. [24]is denoted by the legend at the bottom of Fig. Each assembly contains 17x17 pin cells,
giving single assembly dimensions of 21.42 cm x 21.42 cm. A 14x14 square mesh is overlaid on each
pin cell, with no further homogenization, corresponding to Fig. where red cells are metal (fuel
or other material) and white cells are moderator (note that the total area of the red cells does not
conserve the area of the undiscretized fuel pin). This corresponds to a 238 x238 mesh over the entire
single assembly used in our reduced model. Note that the material composition per cell remains
invariant over mesh refinement levels.

For the fast group, the material properties of ¢ = 1 from [4I] are used, also shown in Table

and scattering ratios are computed with the in-group scattering cross-sections. To keep consistent
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Figure 23: C5G7 Assembly Geometry (Without the Reflector Layer) [41]

Material o (em™1) c
UO4 Fuel 2.12450E-01 | 0.600315
Fission Chamber | 1.90730E-01 | 0.346909
Guide Tube 1.90730E-01 | 0.346909
Moderator 2.30070E-01 | 0.193322

Table 1: Fast Group Material Properties ([41])

with previous work, which only utilized non-multiplying materials, the materials are treated as non-
fissioning. However, to mimic the neutron source in the fast group, the fixed source in fuel cells is
set to unity. BCs are set to zero. Because the total cross section of the materials is in the optically
thin region, per the parameters of the MMS evaluation, we would expect the irregularities across

SCs to remain largely non-smooth, and therefore produce worse error estimates.
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Figure 24: C5G7 Fuel Pin Geometry [41]

Figure 25: Square Mesh Discretization of Fuel Pin for 238 x 238 Mesh

The diamond fractal-like pattern of the reference scalar flux solutiorﬁ for S; LS quadratureﬂ

6The Richardson Extrapolation that led to the DGFEM-0 reference solution had 7.0% of scalar flux moments
non-monotonic and 24.5% of angular flux moments non-monotonic. This difference is expected, since the scalar flux

is an integrated quantity; thus, non-dominant and non-monotonic behavior is more likely to be suppressed in the
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Figure 26: Cell-Average Scalar Flux Solution, Fast Group

on a 238x238 mesh, depicted in Fig. [26(a), demonstrates the preponderance of SCs in a realistic
problem, and the corresponding DGFEM-0 solution, Fig. 26(b)| cannot capture the spatial behavior

of the reference solution.
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Figure 27: Fast Group: LeR/TE-AD log, Local Effectivity Index Histogram, DGFEM-0

The three selected estimator histograms for DGFEM-0, Figs. 2729, demonstrate that for non-

summed quantity.
"Note that while this pattern indicates a poor angular discretization, this is irrelevant when evaluating the spatial

discretization error, per the definition in Eq. Iﬂ
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Figure 28: Fast Group: RW log;, Local Effectivity Index Histogram, DGFEM-0
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Figure 29: Fast Group: DAZ log,, Local Effectivity Index Histogram, DGFEM-0

MMS problems, the estimators exhibit far worse precision and accuracy than before. All three
estimators exhibit roughly the same overall range of effectivities and comparable peak widths. DAZ
is marginally more accurate than LeR/TE-AD in terms of peak distance from log,, #(»7) = 0, which
is, in turn, marginally more accurate than RW. In an absolute sense, the error in the error estimate

is generally in the fourth decimal point of the maximum scalar flux’s magnitude.
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Figure 30: Fast Group: LeR/TE-AD log;, Local Effectivity Index Histogram, DGFEM-1
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Figure 31: Fast Group: RW log,, Local Effectivity Index Histogram, DGFEM-1

In increasing the numerical method’s order from A = 0to A = lﬂ LeR/TE-AD suffers a reduction
in relative and absolute accuracy, Fig. The former was anticipated from the MMS study in

8 Associated Richardson Extrapolation for DGFEM-1 reference solution had 9.2% of scalar flux moments non-

monotonic and 22.0% of angular flux moments non-monotonic.
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Figure 32: Fast Group: DAZ log,, Local Effectivity Index Histogram, DGFEM-1

Sec. [3 in which LeR/TE-AD saw worse accuracy metrics across the parameter range for a DGFEM-
1 discretization versus DGFEM-0 (|24]). The latter is reflective of the complex geometry; the true
and estimated errors are not as small as they are in the MMS problems. RW, on the other hand,
Fig. [31] exhibits better accuracy and precision for DGFEM-1, but the effectivity distribution is
noticeably worse than that for the MMS case study, Fig. with reduced peak height, precision,
and accuracy. DAZ, Fig. improves in precision for A = 1.

DGFEM-0 DGFEM-1
Estimator logqo 6 | Time (s) | log;u6 | Time (s)
Numerical Solution - 5.34 - 17.1
LeR/TE-AD -0.417 8.74 -0.560 29.1
RW -0.583 20.4 -0.301 66.2
DAZ 0.424 7.84 0.380 36.6

Table 2: Global Effectivity, Fast Group

The global effectivities of the estimators more or less align with the peak location of the local
effectivity index, Table DAZ maintains its advantage as a bound on global error from above
in non-degenerative problems. LeR/TE-AD consumes almost two times the execution time of the

numerical solution, suggestive of a configuration and residual approximation that produce an error
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transport problem requiring more iterations. RW is slightly less than four times the cost of the
numerical solution, which is reflective of the h/2-mesh solution computational cost, plus pre- and

post-processing, minus the reduction in cost from preconditioning the refined solution.

37



4.2. Thermal C5G7 UOy Assembly

The total cross sections and scattering ratios for the thermal group associated with each material

in the UO; assembly described in the previous section are given in Table [3] Compared to the fast

Material o (em™1) c
UOg Fuel 5.70610E-01 | 0.478576
Fission Chamber | 1.43450E+400 | 0.766190
Guide Tube 1.43450E+00 | 0.766204
Moderator 3.30570E4-00 | 0.750431

Table 3: Thermal Group Cross-Sections ([41])

group data, Table [I] here the total cross sections and scattering ratios are larger. Because of the
former, the irregularities across the SCs will be attenuated to a greater degree, thereby smoothing
the true solution. Furthermore, the moderator cells have fixed source set to unity, and the BCs are
set to unity, in order to mimic downscatter of fission neutrons into the thermal group within the

assembly and their reflection or in-leakage from teh assembly’s surroundings.

Reference Scalar Flux DGFEM-0 Scalar Flux
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(a) Reference (b) DGFEM-0

Figure 33: Cell-Average Scalar Flux Solution, Thermal Group

The reference solutiorﬂ Fig. indeed is smoother than its fast-group counterpart. As a
result, the DGFEM-0 numerical solution, Fig. 33(b)| visually matches the reference.
From the LeR/TE-AD histogram for DGFEM-0, Fig. we observe that the estimate is more

precise, both in terms of peak width and overall range of effectivities, than the fast group problem,

94.4% of scalar flux moments and 14.8% of angular flux moments are non-monotic in the Richardson Extrapolation.
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Figure 34: Thermal Group: LeR/TE-AD log;, Local Effectivity Index Histogram, DGFEM-0
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Figure 35: Thermal Group: RW log;, Local Effectivity Index Histogram, DGFEM-0

and the estimate is accurate in both a relative and absolute sense. RW, Fig. incurs a large
increase in precision, with all values being contained in a narrow range, but the location of the mean
value underestimates the reference error by over a factor of 2. DAZ appears to be less precise for
this problem due to the presence of many subpeaks, Fig. [36] and it also overestimates the error to

a greater degree than the fast group, thus reducing its accuracy.
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Figure 36: Thermal Group: DAZ log,, Local Effectivity Index Histogram, DGFEM-0
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Figure 37: Thermal Group: LeR/TE-AD log;y Local Effectivity Index Histogram, DGFEM-1

The LeR/TE-AD estimate, Fig. for the DGFEM-1 solutiorﬂ demonstrates less precision,

due to the prominent subpeak separated from the main peak. However, the two peaks are accurate,

particularly the smaller subpeak. The other noticeable difference between this and the DGFEM-0

1012.7% of scalar flux moments and 11.4% of angular flux moments are non-monotonic in the Richardson Extrap-

olation.
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Figure 38: Thermal Group: RW log;, Local Effectivity Index Histogram, DGFEM-1
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Figure 39: Thermal Group: DAZ log,, Local Effectivity Index Histogram, DGFEM-1

estimate is that the DGFEM-1 estimate largely underestimates the error. RW is more precise in
its range of values for DGFEM-1, and the mean value is closer to agreement with the true error.
DAZ is even less precise, but still provides total local boundedness from above. Again, the global
effectivities of the estimators reflect the peak location of the local effectivity index, Table[dl Because

of the greater scattering ratios, the iterative methods take longer to converge versus the fast group;
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DGFEM-0 DGFEM-1
Estimator logyy6 | Time (s) | logyy @ | Time (s)
Numerical Solution - 10.7 - 39.0
LeR/TE-AD 0.169 14.5 -0.140 63.6
RW -0.399 31.3 -0.210 105
DAZ 0.746 7.45 0.628 37.6

Table 4: Global Effectivity, Thermal Group

however, the computation time of DAZ is essentially unchanged from the fast group problem.

We desire to use the angular flux error estimator strategies to directly estimate the error in a
dependent quantity of interest. Because LeR/TE-AD and RW directly compute eﬁ, the error in
any quantity derived from the angular flux can be directly estimated by these estimators. However,
because DAZ is computed as local norm contributions to a global bound, a heuristic must be applied.
We consider a hypothetical scenario where a reactor physicist wishes to know the contribution of the
spatial discretization error to the total error in the pin-wise fission rate densities for the purpose of
error analysis. He or she therefore seeks an estimate of the error in the average thermal fission rate
density in each pin cell (for these purposes, the fission chamber will be treated as non-multiplying).
The pin cell-wise average error in the fission rate density is calculated by,

E(v,w) _ fB(v,w) dA Uf(xa y)f}/,\(x7 y)

b fB(%w) dA

where o is the macroscopic fission cross sectiorﬂ 5,’} = qbﬁ — H*;L\QS is the true error in the scalar flux,

and B is the subdomain that contains all cells K (/) associated with a given pin cell containing

UO2 material, where v,w = 1,...,17. The global average error in the fission rate density is simply,
LA (o)

Epin = — E 36

P 264 1; u}gl pin ( )

where the 264 factor is the number of pin cells that contain fuel. The estimated error in the average

fission rate density is analogously

() _ S dA o1 (2,9)G (2, y)

n ) (37)
b fB(v»W) dA

e

where (M(z,y) = vanj Wmem (z,y), and Eq. [37] is only valid for LeR/TE-AD and RW. The true

Hg, = 2.16004E-01 for UO2 in the thermal group.
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Figure 40: Thermal Group: True Error in Average Fission Rate Density

errorlEl in the average fission rate density is plotted in Fig. Given Fig. and the fission cross
section, the maximum solution error is in the second decimal place for the DGFEM-0 discretization

and the fourth decimal place for DGFEM-1.
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Figure 41: Thermal Group: LeR/TE-AD log; [e\o") /ES™)|
The log,-scale ratios of the resultant estimates for the error in the average fission rate density
computed by LeR/TE-AD are shown in Fig. and while the DGFEM-0 estimate overestimates the

error in most pin cells by approximately a factor of two, the DGFEM-1 estimate grossly overestimates

the error at almost an order of magnitude.

12 All average fission rate densities were computed via Richardson Extrapolation, and all extrapolations are found

to be monotonic.
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Figure 42: Thermal Group: LeR/TE-AD log |e$;’1w)/Ez(7§T’Lw)|
The RW estimate ratios, Fig. are more accurate than LeR/TE-AD, and become more accurate
with increasing A. However, unlike LeR/TE-AD, they do not locally bound the estimates of the

average fission rate density.

Pin-Averaged Error Ratio: DAZ Estimate Pin-Averaged Error Ratio: DAZ Estimate
Global Error Ratio=1.329 Global Error Ratio=1.9532
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Figure 43: Thermal Group: LeR/TE-AD log;, \eg;:%Az/Eg;lw”

Finally, the DAZ estimate ratios are plotted in Fig. The heuristic applied to estimate the

error in the average fission rate density is

(v,w) 1 (i) ey
Cpin,DAZ = 112 Z O e — (38)

f ——
2 (4,5),VK (i:3) e B(v;w) \/m

where a}i’j ) is the fission cross section in cell K (4:3) the 112 factor is the number of cells per pin

cell that have fuel in them, see Fig. 25} and taking the square root of the K () cell area keeps units
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consistent on both sides of Eq. One issue with Eq. [38]is that it only estimates the magnitude of
the error, not its sign, due to its norm formulation that is necessarily non-negative. The resultant
error estimate, though it provides a global bound, grossly overestimates the error by orders of

magnitude. This is most likely due to the lack of cancellation of error in the cell-wise integration.
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4.3. Dogleg Duct

The last test geometry considered is a dogleg duct shielding geometry based on [42]. The original

| Streaming Assembly RS #10

#11
DuctInlet (AR SISESATRNERERTNITRY i o0
DT Source ‘ l #9
z
<— 1700
#8
Duct
Opening
o 47 (300x300)
150
765 Iron Plate

1
g
v

Figure 44: Dogleg Geometry from [42]

streaming assembly geometry, with measurements in mm, is given in Fig.[#4] A 2D simplification of
the geometry is modeled in Fig. where the DT source of unit strength is repositioned to the duct
inlet to alleviate primary ray effects, and a single detector is placed at location #7. As before, further
restrictions to conform to previous studies are imposed: vacuum BCs on all external edges, one-
group, steady-state, and isotropic scattering in all involved materials, and S; LS angular quadrature.
A uniform 82 x 124 mesh is overlaid on the domain with cell size of 2.5 cmx2.5 crd™] The material
cross section data given in Table[5]is approximately based on actual neutron cross sections at 14 MeV
for air, water (auxiliary shield), iron, and stainless steel (streaming assembly), taken from the ENDF
database ([43]). Here too, while these modifications distinguish the employed configuration from
the original benchmark, our goal is to make the configuration amenable to generating an accurate

reference solution against which only the spatial discretization error is judged. The reference

13In the simplified geometry, the Auxilliary Shield height is increased by 10 mm and the Iron Rack height is

decreased by 10 mm to utilize the uniform mesh.
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Figure 45: Simplified Dogleg Geometry

47



Material o (em™1) c
Air 1.2E-04 | 0.833
Auxiliary Shield 3.0E-01 0.767
Tron Rack 2.9E-01 | 0.828
DT Source 1.2E-04 | 0.833
Streaming Assembly | 3.5E-01 | 0.943
Detector 1.2E-04 | 0.833

Table 5: Dogleg Materials Nuclear Data, Approximately Computed from [43]

Reference Scalar Flux

DGFEM-0 Scalar Flux
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Figure 46: Cell-Average Scalar Flux Solution log;,-Scale, Dogleg

solutiorﬂ is plotted against the DGFEM-0 scalar flux solution in Fig. @I, both on log;,-scale.

1417.3% of scalar flux moments and 18.1% of angular flux moments are non-monotonic in the DGFEM-0 Richardson

Extrapolation.
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The reference solution displays strong ray effects along SCs near the DT source, which are much
suppressed in the DGFEM-0 solution due to numerical diffusion of particles near SC trajectories
emanating from the point-like source. In both cases, the solution is noticeably of greater magnitude

at the duct outlet than in the shielded region.

DGFEM-0 DGFEM-1
Estimator log,00 | Time (s) | logyy @ | Time (s)
Numerical Solution - 11.3 - 44.1
LeR/TE-AD -0.392 11.9 -0.306 43.0
RW -0.606 41.3 -0.162 137
DAZ 4.88 1.85 1.51 6.70

Table 6: Global Effectivity, Dogleg Duct

The global effectivities and computation times are listed in Table[6] For this case, which requires
more iterations than either C5G7 problem, the estimators requiring iterative solutions are more
computationally expensive. DAZ has a computational time that is proportional to the number of
unknowns in the problem. In terms of effectivity index, however, DAZ grossly overestimates the
error for both A, consistent with a previously-identified reduction in the quality of the HOPS in
problems that require more iterations ([23]). LeR/TE-AD is superior to RW for the DGFEM-0
discretization, but they flip for the DGFEM-1 discretizatiorﬂ although LeR/TE-AD’s global error
estimate is slightly improved. However, because the true solution has a linear shape in the shield
owing to the high absorption, the refinement-based estimators may disproportionately benefit from
a DGFEM-1 discretization for this problem.

Rather than examine the local effectivity index for this problem, we acknowledge that the hy-
pothetical engineer modelling a shield is not interested in the error distribution within the shield
or the duct, but only at the detector/duct outlet. Therefore, the estimated error in the DGFEM-0
scalar flux as a function of the y-coordinate at z = 205 cm is plotted in Fig. [47] In the true error,
Fig. the duct outlet is manifested as a sharp decline in the error’s profile. The peaks and
troughs are associated with reflected ray effects along SCs. LeR/TE-AD overestimates the magni-
tude of the error by approximately a factor of 3, but accurately portrays the location of the error

dip. However, it does not capture the finer details of the error peaks and troughs, unlike RW, which

1523.1% of scalar flux moments and 23.0% of angular flux moments are non-monotonic in the DGFEM-1 Richardson

Extrapolation.
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Figure 47: Error in Shielded Scalar Flux, DGFEM-0

underestimates the true error in a relative sense. In the case of DAZ, the plotted heuristic is
(4,9)
e(za]) — ®pAz (39)
Shield \/ATij,
which is by nature non-negative. DAZ arguably best captures the peaks and troughs of the error, but
cannot capture the sign of the error, and overestimates the error by almost an order of magnitude.
The same quantities are plotted for the DGFEM-1 discretization in Fig. and demonstrate
that the true error for a linear discretization is far more oscillatory near the SCs due to the non-
monotonicity of higher-order methods. LeR/TE-AD again cannot capture the oscillation of the true
error in the duct outlet due to the imprecision in the residual approximation in cells near the SCs,

and it overestimates the magnitude of the error by about a factor of 2. RW captures the spatial

behavior of the true error very well, but also underestimates the magnitude of the error. DAZ is
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Figure 48: Error in Shielded Scalar Flux, DGFEM-1

less able to capture the shape of the error for the DGFEM-1 discretization, and it overestimates the
error by over an order of magnitude.
The detector-averaged scalar flux (as a surrogate for response) error estimate is also computecﬂ

The true error in the detector is
_ f]-‘ dA f{f(m,y)

FE
O R

(40)

where F is the subdomain that contains all cells K (7)) associated with the detector, and the esti-

mated error in the detector for RW or LeR/TE-AD is,

_ f]—'dA Cl?(xvy)
T aa

€p (41)

16The detector-averaged scalar flux is monotonic in both Richardson Extrapolations.
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An analogous heuristic is applied to DAZ to generate the detector-averaged error estimate

1 e(if‘)
€D, DAZ = — Z —=D4Z (42)

! (i,§) VK- eF Az Ay;

The resultant error relative to the DT source’s unit strength is shown in Table[7] For both method

DGFEM-0 DGFEM-1
Error logyo lep/Ep| Error logyglen/Ep|
True -3.268E-04 | 0.000E4-00 -1.709e-05 0.000E4-00
LeR/TE-AD | 1.914E-03 7.676E-01 1.860E-04 1.037E+00
RW -4.334E-05 | -8.774E-01 -1.007E-05 | -2.295E-01
DAZ 2.640E-03 9.073E-01 8.084-04 1.675E+00

Table 7: Detector Error in Average Flux, Dogleg, DGFEM-0

orders, LeR/TE-AD and DAZ overestimate the error to a great degree. However, LeR/TE-AD is
the most accurate estimate for DGFEM-0, due to the gross underestimation by RW. For DGFEM-1,
though, RW is the most accurate by far, and in both cases it is the only estimator to achieve the

correct sign of the true error.

5. Conclusions

Previously, we have developed a novel “residual source estimator”, an implicit residual-based
spatial discretization error estimator, for S particle transport methods and assessed its performance
for a DGFEM-0 scheme, finding it to provide a precise and accurate error estimate at a lower
computational burden than a refinement-based scheme. In this work, the necessary residual and
derivative approximations were derived, and the estimator’s performance was assessed for a DGFEM-
1 scheme on a case study and with a parameter-wide metric-based approach using MMS-generated
test problems.

On the MMS suite, LeR/TE-AD typically generates an estimate of the error within an order
of magnitude of the true error in most spacial cells, but despite favorable results, it does not fare
as well as it did for DGFEM-0. Conversely, the more accurate numerical method here leads to a
greatly enhanced error estimate for two contemporary estimators, RW and DAZ; however, the re-
sultant distribution of effectivity indices for LeR/TE-AD is less precise, and often more inaccurate,
despite the higher order numerical solution. It was ultimately determined that local inaccuracies
in the numerical solution near true solution irregularities incur greater relative error in the deriva-

tive approximations (and, by extension, the residual approximation), which is numerically spread
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through the domain in the error transport problem. Additionally, all considered estimators were
evaluated on a set of realistic problem configurations, with reference solutions obtained via Richard-
son extrapolation, for DGFEM-0 and DGFEM-1 schemes. The results highlight the consequence
of using MMS, specifically homogeneous medium, as the large number of singular characteristics in
heterogeneous configurations cause all the considered error estimators to be less accurate or pre-
cise than the MMS study would imply. Furthermore, the advantages of the two-mesh and duality
argument estimators are not as pronounced, which implies that the MMS may have been biasing
refinement-based estimators due to the set of nil true derivatives.

In general, we established that the residual source estimator is a viable and attractive spatial dis-
cretization error estimator on a wide array of problems for its accuracy, particularly for DGFEM-0,
reduced computational cost versus a refinement-based method, and reduced tendency to underesti-
mate the true error. Furthermore, because it directly approximates the error in the angular flux,
the error in any quantity computed from the angular flux can be itself directly approximated, unlike

norm-based methods, which require heuristic extensions to achieve the same purpose.
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