
Crypto/Math Paper

AES Key Recovery from Round Keys

W.R. Cordwell

Sandia National Laboratories

SANDxxxxxx

03 November 2008

Sandia National Laboratories is a rnultirnission laboratory managed and operated by Nationai Technology

& Engineering Solutions of Sandia. LLC, a wholly owned subsidiary of Honeywell lraernalional Irx., for the

U.S.Departrnent of EnerWs National Nuclear Security Administration under contract DE•MO403525.

SAND No, 2fi1IX4000',

Sandia
National
Laboratories

SAND2020-7987R



AES Key Recovery - 03 November 2008

Summary

For AES-256, the entire key schedule, including the original secret key, can be recovered

easily from a 32 consecutive byte portion of the key schedule.

Introduction

AES is a 128-bit block cipher that may use three possible lengths of the secret key: 128,

192, and 256 bits. For each size of key, there is a corresponding number of rounds, the 128-bit

key requiring 10 rounds, the 192-bit key requiring 12 rounds, and the 256-bit key requiring

14 rounds. In each round, secret key material is mixed in, in 16-byte (128-bit) quantities.

Additionally, there is an extra, initial XORing in of 16 bytes of key material. For 128-bit

AES, this gives 11 x 128 = 1408 bits of key material, and for 256-bit AES, 15 x 128 = 1920

bits of key material. This "round key" material is generated by a key expansion of the orig-

inal secret key.

128-bit and 256-bit AES are, by far, the most commonly used. Here, we shall focus

on 256-bit AES. The results apply to the other cases, with some minor tweaks.

Description of Key Expansion

Using 32-bit words, 256-bit AES starts with eight words of secret key. The first round

key is the first four words of the initial secret key; the second round key is the last four

words of the initial secret key. Thereafter, each subsequent word, wi, of the round keys is

generated as follows:

1



Take the immediately previous word of the key expansion, Wi_1.

• If i is divisible by eight (numbering starts at zero, so this will happen for the first word

after all of the initial secret key is used), cyclically shift the bytes of wi, use the S-box lookup

to substitute for all of the bytes, and XOR in a round constant. After this is done, XOR in

the word of the key schedule that occurs eight words previously, viz., wi_8.

• If i is not divisible by eight, but is divisible by four, take wi_1 and apply the S-box

substitution for each byte, then XOR with wi-8.

• If i is not divisible by four, just XOR wi_i with wi_8.

The important point is that, for each word of round key, wi = f(wi_1) e w2_8, where,

most of the time, f does nothing, and the rest of the time it is easily computed.

Recovery of the Entire Key Expansion from Eight Con-

secutive Words

From knowing just eight consecutive words of the key expansion, one can recover the

entire key expansion (including the original key). Recovering the later words of key is

straightforward-just apply the key expansion algorithm and build the following words of the

expansion. For the previous words of the key expansion, we simply peel back the process,

illustrated by the following example.

Suppose that we know words 20 through 27 of the key expansion, w-20, • • • , w27. Word

w27 was built from W26 and w19 by simply XORing, w27 = W26 ED W19, so we recover

w19 = w27 ED w26. Similarly, W18 = W26 ED w25 , and we keep backing up. When we hit one

of the words (with an index divisible by four) that required using the function f, we simply

compute f of that word, and then back up, such as w17 = w25 ED f (w24)•

2



Comments

The key expansion process in AES was designed to help diffuse the bits of the secret key,

and it uses a fairly simple process to do so. There was no attempt to use an irreversible

process, such as a hash function, and the process is clearly reversible.

Note that, if one is performing decryption, which uses the key expansion in reverse, and

one recovers the eight words of the key expansion used in the first part of the decryption,

one can then recover the original key.

3



REFERENCES

References

[1] Federal Information Processing Standard (FIPS) 197, Advanced Encryption Standard

(AES), NIST, 2001

4


