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2 I Prior art: Image-to-mesh for lithium-ion battery mesostructures
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Pioneered large-scale image-to-mesh capabilities for lithium-ion battery mesostructures; 7 journal articles
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3 Credible Automated Meshing of Images (CAMI) LDRD concept

Recent state-of-the-art processes are:
• Manual, SME-dependent

o Time-consuming

o Unknown credibility

• Don't capture all geometric features
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Objective: We seek to develop a methodology for
automatically, efficiently, and reproducibly creating
conformal finite element meshes from 3D tomography
with quantified uncertainty.

Research thrusts — primary science questions:

o Deep machine learning algorithms (ML)

o Automatic conformal tetrahedral mesh creation (ATM)

o Uncertainty quantification and propagation (UQ)

o Application exemplar: Thermal protection system materials (TPS)

o Purdue AA: Battery mesostructures
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Deep learning algorithms

• Image segmentation

• Part identification

Automatic tetrahedral meshing

• Conformal interfaces

• Feature-governed mesh resolution

Physics solve

• Finite element method predictions

• Exemplar: TPS material mesostructures

Automated, credible image-to-mesh capabilities would revolutionize engineering analysis workflows!
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4 Deep learning produces accurate segmentations with per-voxel UQ

Slice from CT image of graphite
electrode

Human label (orange) overlaid on
CT scan of battery

Deep learning label (orange)
overlaid on CT scan of battery

LIB: Incrementally trained DL model segments to high accuracy,
higher than human labels in some cases

Laser welds: 99.2% accuracy to manual
labels with uncertainty maps on

ambiguous features. Beginning to
propagate into simulations using Sculpt

DL inferences takes minutes on
GPU vs. hours to days manually!

Slice from CT scan of TPS

LDRD

Deep learning segmentation with
uncertainty map
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TPS: Accurate segmentations on held-
out sub-volumes, with per-voxel UQ

CT scan of laser welded material

Accurate deep learning segmentation

• 11,

We have proven DL models capable of flexible and accurate image segmentation with rigorous per-voxel UQ estimates
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5 Interpretable uncertainty using Bayesian CNNs

(Top) Original image

(Mid) BCNN
segmentation

(Bottom) BCNN UQ
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Bayesian segmentation Dropout segmentation

Bayesian uncertainty Dropout uncertainty

Novel Bayesian Convolutional Neural Network (BCNN) framework provides more
statistically grounded, interpretable, and smoother uncertainty quantification (UQ)
than traditional Monte Carlo dropout approach. Preparing paper for CVPR.

Bayesian CNNs show promise for interpretable and usable per-voxel uncertainty estimates  J
11/26/2019



6 I Improving segmentation through uncertainty refinement

C\ Ns trained to segment images

If human labels are poor, trained CNN will be poor

Uncertainty quantification on poorly trained CNN used to
refine binary predictions

Improved model used through domain shift to segment
images of different contrast and resolutions
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Figure 1. Binary segmentation results on held-out test examples
from training domain. (a) Slice of CT scan of woven composite
material. (b) Human binary labels for slice. (c) 3D CNN predicted
binaiy labels for slice with uncertainty overlaid.
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Figure 3. Binary segmentation results on domain-shifted CT scan
from CNN without refinement. (a) Slice of CT scan from shifted
domain. (b) 3D CNN predicted binary labels for slice. (c) Uncer-
tainty maps for each voxel with brighter pixels representing mote
uncertainty.

Computer science advances impactful in computer vision field
11/26/2019



7 1 Novel applications of uncertainty maps drive new research directions WRD

CT slice from shifted domain

Predict
segmentation using
model trained on
original domain

Unusable segmentation

Apply advanced
uncertainty based
refinement
method

Uncertainty enables DL to overcome domain shift, improve
segmentation quality

o Technical Advance SD15006: Segmentation Certainty Through Uncertainty

o Top computer vision conference (CVPR) workshop paper (peer reviewed)

UQ enables anomaly detection

Potential impact: eticulous labels not required for usable segmentations

Refined segmentation

CT scan of laser welded material

4011111111
Anomalous features highlighted by uncertainty quantification

I UQ techniques being incorporated into production-level segmentation efforts for Sandia's Digital Twin ro'e
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8 Automated tetrahedral meshing overview

Meshing challenges
o Many materials

o Sharp features

o Mesh quality

o Mesh count
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Many approaches under development, likely different algorithms needed for different problems
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9 Mesh improvement strategies

Developed "morph" to improve element quality in
CDFE -generated meshes
o Maintains surface description while (re)moving internal
nodes and edges to improve quality

o Works on any exodus/STK mesh

• Available as "improve_mesh" in Sierra 4.52
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Pathway towards generating mesh quality suitable for solid mechanics analyses
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10 1 Newly developed tools for credible microstructure meshing
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Developed Emend for CDFEM mesh improvement Extend Morph for
microstructure modeling

Ongoing work: Automatic sharp feature capture from microstructure data

CDFEM:
Sharp
Feature with
Exceedingly
Low Quality

2.6e0

70..6

Morph:
Guaranteed
Quality But
No Sharp
Feature
Capture Due
to STL Input

Desired:
Guaranteed
Quality While
Retaining Sharp
Microstructural
Features

'clo-
6113RD

MP—Advancing state-of-the art in high-quality, automatic tetrahedral mesh generation on complex assemblies
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11 Anisotropic segmentation and meshing of TPS coupons
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Emend improves minimum element quality
4 orders of magnitude, maintaining topology

CDFEM
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Use tow texture to calculate
orientation and separate weave

First high-quality meshed TPS coupon from image to simulation using fully automatic workflow
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12 Coordinating programs

Previous

o Battery degradation LDRD (2014-2016)

o Battery mesoscale modeling DOE/EERE/VTO (2016-2019)

Ongoing

C-SWARM PSAAP Center at Notre Dame (Matous)

o Detonators W78 (Erikson)

o Machine learning for mesh generation (Shead/Owen)

o Sandia Injury Biomechanics Laboratory (Hovey)

o Foam / GMB encapsulation (Long, Kramer)

o Shaped charges (Korbin)

o Laser welds (Karlson)

•

11/26/2019



13 Upcoming activities and challenges

Machine learning

o Instance segmentation (labeling) and learning of anisotropic directionality

o Surface meshing using graph neural networks (GNNs)

O Surface, edge, and vertex detection

Meshing

O Algorithmically automate surface meshing

o Meshing of sharp features from STL files in morph

o Additional control of topology change and element quality in emend

Uncertainty quantification and propagation

Propagate image uncertainty through to mesh and physics simulation

O Identify uncertainty from surface and volume meshing and propagate

11/26/2019



14 I Relevant Publications
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Contact Us

Scott A. Roberts, Ph.D.
Thermal/Fluid Component Sciences Department
Sandia National Laboratories, Albuquerque, NM
http://www.sandia.gov/—sarober/ 
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