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Pioneered large-scale image-to-mesh capabilities for lithium-ion battery mesostructures; 7 journal articles



3 I Credible Automated Meshing of Images (CAMI) LDRD concept
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Recent state-of-the-art processes are:
° Manual, SME-dependent

° Time-consuming
> Unknown credibility

> Don’t capture all geometric features

Uncertainty quantification and propagation

Objective: We seek to develop a methodology for

automatically, efficiently, and reproducibly creating Deep learning algorithms

conformal finite element meshes from 3D tomography « Image segmentation

with quantified uncertainty. * Part identification

Research thrusts — primary science questions: Automatic tetrahedral meshing
> Deep machine learning algorithms (ML) * Conformal interfaces

e Feature-governed mesh resolution
° Automatic conformal tetrahedral mesh creation (ATM)

> Uncertainty quantification and propagation (UQ) Physics solve

* Finite element method predictions
e Exemplar: TPS material mesostructures

(e]

Application exemplar: Thermal protection system materials (ITPS)

o

Purdue AA: Battery mesostructures

Automated, credible image-to-mesh capabilities would revolutionize engineering analysis workflows!
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4 | Deep learning produces accurate segmentations with per-voxel UQ &?JRD —
Slice from CT image of graphite Human label (orange) overlaid on Deep learning label (orange) ) Deep learning segmentation with
electrode CT scan of battery overlaid on CT scan of battery Slice from CT scan of TPS uncertainty map

TPS: Accurate segmentations on held-

higher than human labels in some cases out sub-volumes, with per-voxel UQ

Laser welds: 99.2% accuracy to manual
labels with uncertainty maps on
ambiguous features. Beginning to
propagate into simulations using Sculpt

DL inferences takes minutes on
GPU vs. hours to days manually!

We have proven DL models capable of flexible and accurate image segmentation with rigorous per-voxel UQ) estimates
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CT scan of laser welded material

Accurate deep learning segmentation
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5 | Interpretable uncertainty using Bayesian CNNs fDRD
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Novel Bayesian Convolutional Neural Network (BCNN) framework provides more
statistically grounded, interpretable, and smoother uncertainty quantification (UQ)
than traditional Monte Carlo dropout approach. Preparing paper for CVPR.

Bayesian CNNs show promise for interpretable and usable per-voxel uncertainty estimates
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Improving segmentation through uncertainty refinement EBRD
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CNN s trained to segment images » o
If human labels are poor, trained CNN will be poor .
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Figure 1. Binary segmentation results on held-out test examples

Uncertainty quantification on poorly trained CNN used to

refine biﬂary prediCtiOﬂS from training domain. (a) Slice of CT scan of woven composite
material. (b) Human binary labels for slice. (¢) 3D CNN predicted

Improved model used through domain shift to segment binary labels for slice with uncertainty overlaid.

images of different contrast and resolutions i

Wiy
Figure 3. Binary segmentation results on domain-shifted CT scan
from CNN without refinement. (a) Slice of CT scan from shifted
domain. (b) 3D CNN predicted binary labels for slice. (c) Uncer-
tainty maps for each voxel with brighter pixels representing more
uncertainty.
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Computer science advances impactful in computer vision field
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Novel applications of uncertainty maps drive new research directions QRD

CT slice from shifted domain Unusable segmentation

uncertainty based ‘

Predict i Apply advanced
segmentation using EEe

model trained on [N refinement
original domain method

Refined segmentation

Uncertainty enables DL to overcome domain shift, improve
segmentation quality

° Technical Advance SD15006: Segmentation Certainty Through Uncertainty

° Top computer vision conference (CVPR) workshop paper (peer reviewed)

Anomalous features highlighted by uncertainty quantification

UQ enables anomaly detection

° Potential impact: Meticulous labels not required for usable segmentations
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UQ techniques being incorporated into production-level segmentation efforts for Sandia’s Digital Twin project
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g8 I Automated tetrahedral meshing overview

Meshing challenges

> Many materials
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° Sharp features
> Mesh quality

o Mesh count
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Segmentation / Possible Sculpt

» Cleanup from to Mesh
Machine Geometry to
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Imaging
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Segmentation / Poor Quality Mesh

» Cleanup from Mesh from . Improvement via

Machi.ne CDFEM Omega_h
Learning

Imaging
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Many approaches under development, likely different algorithms needed for different problems
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9 I Mesh improvement strategies EB& - i
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° Maintains surface description while (re)moving internal e
nodes and edges to improve quality e
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> Works on any exodus/STK mesh

° Available as “improve_mesh” in Sierra 4.52
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Pathway towards generating mesh quality suitable for solid mechanics analyses
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10 I Newly developed tools for credible microstructure meshing

Developed Emen
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microstructure modeling

\WAVAY
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Ongoing work: Automatic sharp feature capture from microstructure data

CDFEM: Guaranteed Desired:
) Guaranteed

Sharp Quality But Quality While
Feature with No Sharp 'ty
. dinel Feature Retaining Sharp

Roeedingty Microstructural
Low Quality Capture Due Features

to STL Input

Morph:
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Advancing state-of-the art in high-quality, automatic tetrahedral mesh generation on complex assemblies




11 I Anisotropic segmentation and meshing of TPS coupons

Use tow texture to calculate

orientation and separate weave
Emend improves minimum element quality
4 orders of magnitude, maintaining topology

Element | Average | Min Effective

Count Scaled Scaled Cond.
Jacobian | Jacobian

CDFEM 4959942 0.4644  1.456e-9 4.706
Emend 478940 0.5464 1.235e-5 4.837
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12 I Coordinating programs

Previous
° Battery degradation LDRD (2014-2010)

° Battery mesoscale modeling DOE/EERE/VTO (2016-2019)

Ongoing
o C-SWARM PSAAP Center at Notre Dame (Matous)
> Detonators W78 (Erikson)

° Machine learning for mesh generation (Shead/Owen)

o

Sandia Injury Biomechanics Laboratory (Hovey)

o

Foam / GMB encapsulation (Long, Kramer)
Shaped charges (Korbin)
Laser welds (Karlson)

o

o
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Upcoming activities and challenges EBRD

Machine learning

> Instance segmentation (labeling) and learning of anisotropic directionality
° Surface meshing using graph neural networks (GNNs)

° Surface, edge, and vertex detection

Meshing
> Algorithmically automate surface meshing
> Meshing of sharp features from STL files in morph

> Additional control of topology change and element quality in emend

Uncertainty quantification and propagation
> Propagate image uncertainty through to mesh and physics simulation

° Identify uncertainty from surface and volume meshing and propagate
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