
11
Sandia
National
Laboratories

mdspan in C++: A Case Study in the
Integration of Performance Portable
Features into International Language
Standards

NeS4 alba&

Sandia National Laboratories is a rnultirnission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidary of Honemell
International Inc., for the U. S. Departrnent of Energy's National Nuclear Security Administration
under contract DE-NA0003525. This document is SAND #2019-XXXX C.

D. S. Hollman, Bryce Adelstein Lelbach, H. Carter Edwards, Mark
Hoemmen, Daniel Sunderland, and Christian R. Trott

SAND2019-14348PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



2 I Follow along!

dsh.fyi/TODO



3 1 Disclaimer

This presentation contains some C++ source code.



1 Outline



1 Outline

• Introduction



4 1 Outline

• Introduction

• Design Overview



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization

• Benchmarks



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization

• Benchmarks

• Overview



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization

• Benchmarks

• Overview

• Matrix Vector Multiply



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization

• Benchmarks

• Overview

• Matrix Vector Multiply

• Subspan Abstraction Overhead



4 1 Outline

• Introduction

• Design Overview

• Shape and Indexing

• subspan

• Layout Customization

• Accessor Customization

• Benchmarks

• Overview

• Matrix Vector Multiply

• Subspan Abstraction Overhead

• Concluding Remarks



I Introduction



5 I Introduction

• mdspan is a non-owning multidimentional array view for C++23.



I Introduction

• mdspan is a non-owning multidimentional array view for C++23.

• Proposal: P0009R9, http://wg2l.link/P0009R9



I Introduction

• mdspan is a non-owning multidimentional array view for C++23.

• Proposal: P0009R9, http://wg2l.link/P0009R9

• First submitted to Autumn 2015 meeting



I Introduction

• mdspan is a non-owning multidimentional array view for C++23.

• Proposal: P0009R9, http://wg2l.link/P0009R9

• First submitted to Autumn 2015 meeting

• Design approved for C++23



5 I Introduction

• mdspan is a non-owning multidimentional array view for C++23.

• Proposal: P0009R9, http://wg2l.link/P0009R9

• First submitted to Autumn 2015 meeting

• Design approved for C++23

• Currently under wording review



I Introduction

• mdspan is a non-owning multidimentional array view for C++23.

• Proposal: P0009R9, http://wg2l.link/P0009R9

• First submitted to Autumn 2015 meeting

• Design approved for C++23

• Currently under wording review

• Support for arbitrary (rectangular) shapes, mixing of static and runtime

extents, layout customization, and memory access customization



1

Design Overview



7 1 Basic Usage

void some_function(double* data, float* data2) {

// std::dynamic_extent means it's a dimensior given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

// runtime and compile-time dimensions can be mixed
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

my_matrix(17, 34) = 3.14;
other_matrix(0, 12) = my_matrix(171 34);

}



7 1 Basic Usage

4d some_function(double* dni-n flna++ da+a-)1

// std::dynamic_extent means it's a dimensior given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

other_matrix(u, lz) =

View data as a 20x40 matrix of doubles (runtime extents)



7 1 Basic Usage

// runtime and compile-time dimensions can be mixed
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

Mixed compile-time and runtime dimensions



7 1 Basic Usage

my_matrix(171 34) = 3.14;

other_matrix(01 12) = my_matrix(17, 34);

Access to values uses the parenthesis operator



7 1 Basic Usage

void some_function(double* data, float* data2) {

// std::dynamic_extent means it's a dimension given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

// runtime and compile-time dimensions can be mixea
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

my_matrix(171 34) = 3.14;
other_matrix(01 12) = my_matrix(17, 34);

}



8 1 mdspan is short for basi c mdspan

template <typename T, ptrdiff_t... Exts>
using mdspan = basic_mdspan<T, extents<Exts...>>;



8 1 mdspan is short for basi c mdspan

template <typename T, ptrdiff_t... Exts>
using mdspan = basic_mdspan<T, extents<Exts...>>;

• mdspan is just an alias for basic_mdspan (just like string is an

alias for basi c_stri ng)



8 1 mdspan is short for basi c mdspan

template <typename T, ptrdiff_t... Exts>
using mdspan = basic_mdspan<T, extents<Exts...>>;

• mdspan is just an alias for basic_mdspan (just like string is an

alias for basi c_st ri ng)

• std: : extents is a class template that expresses the shape of the

mdspan.



9 1 subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;
auto s2 = subspan(s, 1, pair{1, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));



9 I subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;
auto s2 = subspan(s, 1, pair{1, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

• Supports three different types of slices:



9 I subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;
auto s2 = subspan(s, 1, pair{1, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

• Supports three different types of slices:

• A single index



9 I subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;
auto s2 = subspan(s, 1, pair{1, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

• Supports three different types of slices:

• A single index

• A pair of begin and end



9 I subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;
auto s2 = subspan(s, 1, pair{1, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

• Supports three different types of slices:

• A single index

• A pair of begin and end

• The all slice



10 I Layout Customization



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)

• The customization point is flexible enough to support things like



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)

• The customization point is flexible enough to support things like

• tiled layouts



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)

• The customization point is flexible enough to support things like

• tiled layouts

• various forms of symmetric layouts



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)

• The customization point is flexible enough to support things like

• tiled layouts

• various forms of symmetric layouts

• sparse layouts



10 I Layout Customization
• The optional third template parameter to basi c_mdspan is a

LayoutPoli cy

• LayoutPoli cy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

• The proposal provides three layout policies:

• layout_left (FORTRAN ordering)

• layout_ri ght (C ordering)

• layout_stri de (regularly strided dimensions)

• The customization point is flexible enough to support things like

• tiled layouts

• various forms of symmetric layouts

• sparse layouts

• compressed layouts (with the help of an AccessorPoli cy)



ii I Accessor Customization



Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor



Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor

• The Accessor customization point provides:



Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()



Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs



ii I Accessor Customization

• The optional fourth template parameter to basic_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference



ii I Accessor Customization

• The optional fourth template parameter to basic_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference

• With these tools, you can write accessors that do things like:



ii I Accessor Customization

• The optional fourth template parameter to basic_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference

• With these tools, you can write accessors that do things like:

• Expose non-aliasing semantics (i.e., like restrict in C)



ii I Accessor Customization

• The optional fourth template parameter to basic_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference

• With these tools, you can write accessors that do things like:

• Expose non-aliasing semantics (i.e., like restrict in C)

• Access remote memory



ii I Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference

• With these tools, you can write accessors that do things like:

• Expose non-aliasing semantics (i.e., like restrict in C)

• Access remote memory

• Access data stored in a compressed format of some sort



ii I Accessor Customization

• The optional fourth template parameter to basi c_mdspan is an

Accessor

• The Accessor customization point provides:

• The reference type to be returned by

basic_mdspan::operator()

• The pointer type through which access occurs

• A function for converting a pointer and an offset into a reference

• With these tools, you can write accessors that do things like:

• Expose non-aliasing semantics (i.e., like restrict in C)

• Access remote memory

• Access data stored in a compressed format of some sort

• Access data atomically (using P0019, atomic_ref)



12 I

Benchmarks



13 Sum3D

for(ptrdiff_t i = 0; i < s.extent(0); ++i) {
for (ptrdiff_t j = 0; j < s.extent(1); ++j) {
for (ptrdiff_t k = 0; k < s.extent(2); ++k) {

sum += s(i, j, k);

}
}

}



13 I Sum3D

for(ptrdiff_t i = 0; i < s.extent(0); ++i) {
for (ptrdiff_t j = 0; j < s.extent(1); ++j) {
for (ptrdiff_t k = 0; k < s.extent(2); ++k) {

sum += s(i, j, k);

}
}

}

for(ptrdiff_t i = 0; i < x; ++i) {
for (ptrdiff_t j = 0; j < y; ++j) {
for (ptrdiff_t k = 0; k < z; ++k) {

sum += s_ptr[k + j*z + i*y*z];
}

}



Time (normalized)

Cr)

Stencil3D
400x400x400 -

C ud a

Stencil3D
400x400x400
Serial (GCC)

Stericil3D
80x80x80
Cuda

Stancil3D
80x80x80

Serial (GCC)

Sum3D
200x200x200

Serial

Surn3D
20x20x20 -

Serial

TinyMatrixSum
1Mx3x3
OpanMP

TinyMatrixSurn
1Mx3x3

Serial (GCC)

TinyMatrixSurn
1Mx3x3 (Static) -

OpenMr'

TinyMatrixSurn
1Mx3x3 (Static) -
Serial (GCC)

u-



15 Effect of Layout on MatVec

B
a
n
d
w
i
d
t
h
 (
G
B
/
s
)
 

MatVec Benchmark Comparison
(100K x 5K Matrix)

1200

1000 -

800 -

600 -

400 -

200 -

0

1
1
1

Layout
mdspan, left

- raw pointer, left

- mdspan, right

- raw pointer, right

011 II 111 11. 
ARM ThunderX2 IBM Power9 Intel Skylake NVIDIA TitanV

(OpenMP, (OpenMP, (OpenMP, (Cuda 10.1)
GCC 8.2.0) GCC 7.3.0) ICC 19.0.3.199)



16 1 Subspan3D: Abstraction Overhead Stress Test

for(ptrdiff_t i = 0; i < s.extent(0); ++i) {
auto sub_i = subspan(s, i, all, all);
for (ptrdiff_t j = 0; j < s.extent(1); ++j) {

auto sub_i_j = subspan(subj, j, all);
for (ptrdiff_t k = 0; k < s.extent(2); ++k) {

sum += sub_i_j(k);

}
}

}



17 I

P
e
r
c
e
n
t
 O
v
e
r
h
e
a
d
 

Subspan3D Overhead
Subspan3D Benchmark Overhead Cornpiler

- Clang 9 (develop)

- GCC 8.2.0

1.0 -

0.5 -

0.0 -

—0.5 -

—1.0 -

—1.5 -

—2.0 -

i

M

I

200x200x200 200x200x200
Static Extents

20x20x20
T

20x20x20
Static Extents



18 I

Concluding Remarks



19 I Concluding Remarks



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases

• Benchmarks demonstrate that the abstraction comes with zero

overhead in most scenarios and with most compilers



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases

• Benchmarks demonstrate that the abstraction comes with zero

overhead in most scenarios and with most compilers

• Implementation is available at github.com/kokkos/mdspan.



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases

• Benchmarks demonstrate that the abstraction comes with zero

overhead in most scenarios and with most compilers

• Implementation is available at github.com/kokkos/mdspan.

• Our implementation is backported all the way to c++11 (though it

will use C++14 or C++17 to improve compilation times if available)



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases

• Benchmarks demonstrate that the abstraction comes with zero

overhead in most scenarios and with most compilers

• Implementation is available at github.com/kokkos/mdspan.

• Our implementation is backported all the way to c++11 (though it

will use C++14 or C++17 to improve compilation times if available)

• We plan to submit this implementation as pull requests to the three

major standard library implementations upon final acceptance of

mdspan into C++23



19 I Concluding Remarks
• mdspan provides standard C++ multidimensional array support

(finally)

• The LayoutPoli cy and Accessor customization points allow

adaptation to a diverse set of use cases

• Benchmarks demonstrate that the abstraction comes with zero

overhead in most scenarios and with most compilers

• Implementation is available at github.com/kokkos/mdspan.

• Our implementation is backported all the way to c++11 (though it

will use C++14 or C++17 to improve compilation times if available)

• We plan to submit this implementation as pull requests to the three

major standard library implementations upon final acceptance of

mdspan into C++23

• Feedback is appreciated!



20

Questions?


