l Sandia

SAND2019- 14348PE
INAuvI Ial -
Laboratories

mdspan in C++: A Case Study in the
Integration of Performance Portable
Features into International Language
Standards

|| |

NIYSE @©EcENEreyY D. S. Hollman, Bryce Adelstein Lelbach, H. Carter Edwards, Mark
L Hoemmen, Daniel Sunderland, and Christian R. Trott

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidary of Honeywell
International Inc., for the U. S. Department of Energy's National Nuclear Security Administration

urderioontsact: DE-NAGOS o2 RrTS: o cUTISHIT)S DN Dy SO Sl Ry Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Follow along!

dsh.fyi /TODO

Disclaimer

Outline

Outline

e |ntroduction

Outline

e |ntroduction |
e Design Overview

Outline

e |ntroduction ‘
e Design Overview
e Shape and Indexing i

Outline

e |ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan

Outline

e |ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .

Outline

e |ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .
e Accessor Customization

Outline

e [ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .
e Accessor Customization
e Benchmarks

Outline

e [ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .
e Accessor Customization
e Benchmarks
e Overview |

Outline

e |ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .
e Accessor Customization
e Benchmarks
e Overview I
e Matrix Vector Multiply

Outline

e [ntroduction ‘
e Design Overview
e Shape and Indexing
e subspan
e Layout Customization .
e Accessor Customization
e Benchmarks
e Overview I
e Matrix Vector Multiply
e Subspan Abstraction Overhead

Outline

Introduction ‘
Design Overview

e Shape and Indexing
e subspan

e Layout Customization .
e Accessor Customization

Benchmarks

e Overview I
e Matrix Vector Multiply

e Subspan Abstraction Overhead
Concluding Remarks |

Introduction

Introduction

e mdspan is a non-owning multidimentional array view for C++23.

Introduction

e mdspan is a non-owning multidimentional array view for C++23.
e Proposal: POOO9R9, http://wg21.link/POO0O9R9

Introduction

e mdspan is a nhon-owning multidimentional array view for C++23.

e Proposal: POOO9R9, http://wg21.link/POO0O9R9
e First submitted to Autumn 2015 meeting :

Introduction

e mdspan is a non-owning multidimentional array view for C++23.
e Proposal: POOO9R9, http://wg21.link/POO0O9R9
e First submitted to Autumn 2015 meeting :
e Design approved for C++23

Introduction

e mdspan is a non-owning multidimentional array view for C++23.
e Proposal: POOO9R9, http://wg21.link/POO0O9R9
e First submitted to Autumn 2015 meeting :
e Design approved for C++23
e Currently under wording review

Introduction

e mdspan is a nhon-owning multidimentional array view for C++23.
e Proposal: POOO9R9, http://wg21.link/POO0O9R9

e First submitted to Autumn 2015 meeting ‘
e Design approved for C++23
e Currently under wording review

e Support for arbitrary (rectangular) shapes, mixing of static and runtime [
extents, layout customization, and memory access customization

Design Overview

Basic Usage

void some_function(double* data, floatx data2) {

// std::dynamic_extent means it's a dimension given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

// runtime and compile-time dimensions can be mixed
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

[* .. X/

my_matrix (17, 34)

= 3.14;
other_matrix(0, 12) =

my_matrix (17, 34);

Basic Usage

// std::dynamic_extent means it's a dimension given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

View data as a 20x40 matrix of doubles (runtime extents)

Basic Usage

// runtime and compile-time dimensions can be mixed
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

Mixed compile-time and runtime dimensions

Basic Usage

my_matrix (17, 34)

= 3.14;
other_matrix (0, 12) =

my_matrix (17, 34);

Access to values uses the parenthesis operator

Basic Usage

void some_function(double*x data, floatx data2) {

// std::dynamic_extent means 1it's a dimension given at runtime
auto my_matrix = mdspan<double, dynamic_extent, dynamic_extent>(data, 20, 40);

// runtime and compile-time dimensions can be mixed
auto other_matrix = mdspan<float, 20, dynamic_extent>(data2, 40);

[* oo %)

my_matrix (17, 34

) = 3.14;
other_matrix (0, 12) =

)
my_matrix (17, 34);

mdspan is short for basic_mdspan

template <typename T, ptrdiff_t... Exts>
using mdspan = basic_mdspan<T, extents<Exts...>>;

mdspan is short for basic_mdspan

template <typename T, ptrdiff_t... Exts> I
using mdspan = basic_mdspan<T, extents<Exts...>>;

e mdspan is just an alias for basic_mdspan (just like string is an
alias for basic_string)

mdspan is short for basic_mdspan

template <typename T, ptrdiff_t... Exts> I
using mdspan = basic_mdspan<T, extents<Exts...>>;

e mdspan is just an alias for basic_mdspan (just like string is an
alias for basic_string)

e std: :extents is a class template that expresses the shape of the I
mdspan.

subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;

auto s2 = subspan(s, 1, pair{l, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;

auto s2 = subspan(s, 1, pair{l, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

e Supports three different types of slices:

subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;

auto s2 = subspan(s, 1, pair{l, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

e Supports three different types of slices:
e A single index

subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;

auto s2 = subspan(s, 1, pair{l, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

e Supports three different types of slices:

e A single index
e A pair of begin and end

subspan

auto s = mdspan<double, 3, 4, 5>(data);
s(1, 2, 3) = 2.78;

auto s2 = subspan(s, 1, pair{l, 3}, all);
assert(s2(1, 3) == s(1, 2, 3));

e Supports three different types of slices:

e A single index
e A pair of begin and end
e The all slice

10

Layout Customization

" Layout Customization

e The optional third template parameter to basic_mdspan is a
LayoutPolicy ‘

" Layout Customization

e The optional third template parameter to basic_mdspan is a
LayoutPolicy ‘
e LayoutPolicy is a customization point that lets the user control
how multi-indices are translated into memory offsets.

" Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
e LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

" Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
e LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

e Layout_left (FORTRAN ordering) :

" Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
e LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

e Layout_left (FORTRAN ordering) :

e lLlayout_right (C ordering)

" Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
e LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

e Layout_left (FORTRAN ordering) :

e lLlayout_right (C ordering)

e Llayout_stride (regularly strided dimensions) l

10

Layout Customization

The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.
The proposal provides three layout policies:

e Layout_left (FORTRAN ordering) :
e lLlayout_right (C ordering)

e Llayout_stride (regularly strided dimensions) I

The customization point is flexible enough to support things like

Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
LayoutPolicy is a customization point that lets the user control
how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

10

e Layout_left (FORTRAN ordering) :
e lLlayout_right (C ordering)
e Llayout_stride (regularly strided dimensions)

e The customization point is flexible enough to support things like I
e tiled layouts

Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
LayoutPolicy is a customization point that lets the user control
how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

10

e Layout_left (FORTRAN ordering) :
e lLlayout_right (C ordering)
e Llayout_stride (regularly strided dimensions)

e The customization point is flexible enough to support things like I
e tiled layouts

e various forms of symmetric layouts .

Layout Customization

e The optional third template parameter to basic_mdspan is a

LayoutPolicy ‘
LayoutPolicy is a customization point that lets the user control
how multi-indices are translated into memory offsets.
e The proposal provides three layout policies:

10

e Layout_left (FORTRAN ordering) :
e lLlayout_right (C ordering)
e Llayout_stride (regularly strided dimensions)

e The customization point is flexible enough to support things like I
e tiled layouts

e various forms of symmetric layouts .
e sparse layouts |

10

Layout Customization

The optional third template parameter to basic_mdspan is a
LayoutPolicy ‘
LayoutPolicy is a customization point that lets the user control

how multi-indices are translated into memory offsets.

The proposal provides three layout policies:

e Layout_left (FORTRAN ordering) :
e lLlayout_right (C ordering)

e Llayout_stride (regularly strided dimensions) :
The customization point is flexible enough to support things like \
e tiled layouts

e various forms of symmetric layouts .
e sparse layouts |

compressed layouts (with the help of an AccessorPolicy) ‘

11

Accessor Customization

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an
Accessor ‘

" Accessor Customization

Accessor

e The optional fourth template parameter to basic_mdspan is an ‘
e The Accessor customization point provides:

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like: [

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:
e Expose non-aliasing semantics (i.e., like restrict in C) I

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:
e Expose non-aliasing semantics (i.e., like restrict in C) I
e Access remote memory

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()
e The pointer type through which access occurs
e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like:
e Expose non-aliasing semantics (i.e., like restrict in C) I
e Access remote memory
e Access data stored in a compressed format of some sort :

" Accessor Customization

e The optional fourth template parameter to basic_mdspan is an

Accessor ‘
e The Accessor customization point provides:

e The reference type to be returned by [

basic_mdspan: :operator ()

e The pointer type through which access occurs

e A function for converting a pointer and an offset into a reference
e With these tools, you can write accessors that do things like: k

e Expose non-aliasing semantics (i.e., like restrict in C) \

e Access remote memory

e Access data stored in a compressed format of some sort :

e Access data atomically (using PO019, atomic_ref)

Benchmarks

13

Sum3D

for(ptrdiff_t i = 0; 1 < s.extent(0); ++i) {
for (ptrdiff_t j = 05 j < s.extent(l); ++j) {
for (ptrdiff_t k = 0; k < s.extent(2); ++k) {
sum += s(i, j, k);
+
+
+

13

Sum3D

for(ptrdiff_t i = 0; i < s.extent(0); ++i) {
for (ptrdiff_tj = 0; j < S.extent(l); ++j) {

}

}

for (ptrdiff_t k = 0; k < s.extent(2); ++k) {
sum += s(i, j, k);

}

for(ptrdiff_t 1 = 0
for (ptrdiff_t j

}

}

< x; ++9) {

3 3 <y ++3) A

for (ptrdiff_t k 0; k < z; ++k) {
sum += s_ptr[k + j*z + dxy*z];

}

| e

N © =

1’4’

Time (normalized)
o = = = = —
5 o = @& > o
L 1 L 1 1

Stencil3D
A00x400x400
Cuda

Stencil3D
400x400x400
Serial (GCC)

Stencil3D
80x80x80
Cuda

Stencil3D
80x80x80
Serial (GCC)

Sum3D
200%200x200
Serial

Sum3D
20x20x20
Serial

TinyMatrixSum
I1Mx3x3
OpenMP

SyIewyouay pPalodeles Jo Arewrwung

TinyMatrixSum
1Mx3x3
Serial (GCC)

TinyMatrixSum
1Mx3x3 (Static)
OpenMP

191ulod mey 0] uosliedwo)

TinyMatrixSum
1Mx3x3 (Static)
Serial (GCC)

uedspw .

Iojutod mel

. Effect of Layout on MatVec

Bandwidth (GB/s)

MatVec Benchmark Comparison Layout
(100K x 5K Matrix) MmN mdspan, left
e raw pointer, left
o B mdspan, right

1200 EEE raw pointer, right
1000 A

800 A

600 -

400

200 A

ARM ThunderX2 IBM Power9 Intel Skylake NVIDIA TitanV
(OpenMP, (OpenMP, (OpenMP, (Cuda 10.1)
GCC 8.2.0) GCC 7.3.0) ICC 19.0.3.199)

Subspan3D: Abstraction Overhead Stress Test

for(ptrdiff_t i = 0; i < s.extent(0); ++i) {
auto sub_1i = bspan(s, i, all, all);
J

| i

su
for (ptrdiff_t = 0; j < s.extent(1l); ++j) {
auto sub_1i_j subspan(sub_i, j, all);
for (ptrdiff_t k = 0; k < s.extent(2); ++k) {
sum += sub_i_j(k);

}
}
}

17

Percent Overhead

Subspan3D Overhead

Subspan3D Benchmark Overhead Compiler
BN Clang 9 (develop)
B GCC 8.2.0

1.0 A

0.5 1

0.0 1

—2.0 4

200x200x200 200x200x200 20x20x20 20x20x20
Static Extents Static Extents

Concluding Remarks

Concluding Remarks

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support

(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases
e Benchmarks demonstrate that the abstraction comes with zero
overhead in most scenarios and with most compilers "

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases
e Benchmarks demonstrate that the abstraction comes with zero
overhead in most scenarios and with most compilers "
e Implementation is available at github.com/kokkos/mdspan.

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases
e Benchmarks demonstrate that the abstraction comes with zero
overhead in most scenarios and with most compilers "
e Implementation is available at github.com/kokkos/mdspan.
e Our implementation is backported all the way to C++11 (though it I

will use C++14 or C++17 to improve compilation times if available)

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases
e Benchmarks demonstrate that the abstraction comes with zero
overhead in most scenarios and with most compilers "
e Implementation is available at github.com/kokkos/mdspan.
e Our implementation is backported all the way to C++11 (though it
will use C++14 or C++17 to improve compilation times if available) \
e We plan to submit this implementation as pull requests to the three
major standard library implementations upon final acceptance of
mdspan into C++23 |

" Concluding Remarks

e mdspan provides standard C++ multidimensional array support
(finally) ‘
e The LayoutPolicy and Accessor customization points allow
adaptation to a diverse set of use cases
e Benchmarks demonstrate that the abstraction comes with zero
overhead in most scenarios and with most compilers "
e Implementation is available at github.com/kokkos/mdspan.
e Our implementation is backported all the way to C++11 (though it
will use C++14 or C++17 to improve compilation times if available) \
e We plan to submit this implementation as pull requests to the three
major standard library implementations upon final acceptance of
mdspan into C++23 |
e Feedback is appreciated! ‘

Questions?

