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Magnetoencephalography (MEG) i)

i}
[ g ¥ Primary current

Dendrites Synapses

B. Maess, MPI for Human Cognitive and Brain Sciences Lauri Parkkonen (Aalto University)

= Postsynaptic currents flowing in the dendrites of the pyramidal
neurons constitute the primary current (J,,).

= Both the primary and return currents contribute to the magnetic field
sensed outside the subject’s skull.




Traditional MEG System requires cryogenic
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temperature: Superconducting Quantum Interference

Device (SQUID)

Elekta Neuromag® TRIUX CTF cMEG Tristan
MAGViewTM

[1] Rainer Korber et al, “SQUIDs in biomagnetism: A roadmap towards improved healthcare,” in Superconductor
Science and Technology 29(11):113001, DOI: 10.1088/0953-2048/29/11/113001




Optically Pumped Magnetometer (OPM) (& ool
enables on-scalp MEG measurement

Insulation = SQUID require dewar and a rigid helmet
A due to liquid He (~ 4 °k).
- i & or = SQUID’s helmet manufactured to fit 95%

adult male subject’s head size.

= Large sensor-source distance diminishes
the magnetic field and high frequency spatial
components are affected more severely.

= Optically Pumped Magnetometers (OPMs)
enable on-scalp Magnetoencephalography
enhancing spatial resolution of
magnetoencephalography.

= Applications:

~10 mm = Brain Computer Interface (BCl)

= Clinical, e.g. epilepsy
T~300K

[1] Rainer Korber et al, “SQUIDs in biomagnetism: A roadmap towards improved healthcare,” in Superconductor Science and Technology 29(11):113001, DOI:
10.1088/0953-2048/29/11/113001

[2] Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS, et al. Moving magnetoencephalography towards real-world applications with a wearable system.
Nature. 2018;555(7698):657.




OPIVIs for IVIEG Early work

QusSpin Inc. Magnetometer
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OPMs Developed for MEG*

<P

*Demonstrated MEG Measurement. Likely incomplete.

Map from https://geology.com/world/world-map.shtmi
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Two-color pump/probe scheme UL

Two optical resonances in Rubidium (fine structure)
» Use D1 for optical pumping and D2 for probing

Based on: V. Shah and M. V. Romalis, PRA 80, 013416 (2009)

8’Rb Fine Structure
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Four-Channel Sensor Design

Mirrored surface 12 mm

Signal out | 4-CH balanced PD Collimating
é Q — PBS lens g g
L ) 7\./2 w
N 18 mm S7Rb S
\ “" - J I Vapor % Q
PM fiber for i &
795 nm & k Lens Interference €1
780 hm i/i: ;g(s) am \ filter: Pass 780 nm Heater)§ % B
' nm
lasers jar
Polarizer Diffractive optical element Polyimide insulation Channels

» Four separated beams, 18 mm baseline, 2.5 mm
FWHM beam diameter

= Vapor cell: 4 mm long, 600 Torr N,
=  Sensing Volume: 4 mm % 1t (1.25 mm)? = 20 mm?3

= Minimize distance from the head to the vapor cell:
9 mm — 12 mm with extra insulation




Sensor Implementation ) S,

N,

‘Receiving COHrnaUng
ens

v{ﬁ/f’/ Oven

containing
vapor cell

Input optics

A. P. Colombo et al., "Four-channel optically pumped atomic magnetometer for
magnetoencephalography," Optics Express, vol. 24, no. 14, pp. 15403-15416, 2016. 11




Signals to Detect ) .

Spin Polarization Bloch Equation Transverse Pump

dsS S Probe I

— =YSXB+R(5,Z2—S) — = B@  Leam

dt TZ - :
Steady State Solution R

o =By +BxBs ) 1+ 2 B . e
TN TR gz pE) ¢ 1+ BB D) 7
B=vB/(R+T; ) Atomic Polarization, S,

Atomic Polarization, S,

T gy
Pump Transmission, or Angle of Light Polarization

Detect the Pump or Angle of Light Polarization

or a Collinear Probe

B,+B,sin(wt)
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Coils and Field Modulation )=,

= (On-Sensor Coils

= Quter coil 18 mm x 36 mm,
Current = +1

= Current: ¥6 mA

= Fjield modulation
= 140 nT amplitude
= w=211kHz

= Magnetometer response
at w

S, (t) « P yﬁz sin wt J, (yBl) A (yBl)

1+y w w




Magnetometer Signals UL

Calculated Atomic Polarization
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Measured Field Components

SQUIDs measure fields
perpendicular to scalp
(coils are parallel to scalp)

OPMs measure fields parallel to scalp
(optical axis perpendicular to scalp)

Li Optical axis i SQUID
|

C > OPM

Head




Tangential vs. Normal Fields =,

livanainen, J., Stenroos, M., & Parkkonen, L. (2017). Label | Aray Numberof Average Normalized
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Prototype Sensor in a Small Magnetic

Shield

Upper input range ~ 1 nT
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MEG System: Block Diagram =

N - =f—1
\

Laser Air Vapor Cell PD ADC o Coil SEF/AEF

System | | Cooling | | Temp. CNTRL| | TIA DAC

Ref. Stim.

i )

Stim. Comp.

= 24-ch, 6 sensor, OPM array

» Human-sized magnetic shield

= Custom laser source

= Custom electronics

= Custom LabView-based data acquisition and control software
» Custom Matlab-based MEG data analysis pipeline

19




MEG System: The 24-Channel Array =

Partially covers the
left hemisphere

6-sensor, 24-channel array




Magnetic Shield

= Design focused mainly  Figi
: on longitudinal shielding = <
(transverse shielding
| " much better)

= Asymmetric shield
design with tubes leads
to larger area of uniform
field

Z(m)

» Longitudinal shielding
factor: 17,000

= Measured: 1,300
a = Cost: $62,000

Insert
_ | | Person
0 0.5 1 1.5

- Here




=,

MEG System: Inside the Magnetic Shield




MEG System: Array Characterization (1)

Time—domain ICA Components 10
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MEG System: Signal Processing Pipeline (i) &=,

e ——— | MEG Signal
| Processing

Time Locked

Recorded MEG Signal

MEG data (V) _ OUTPUT
Read the - ECD [3] Sour.ce
Recorded LCMV [4] Location

HPI Data (V) ECD [3] Volume -
: Conduction
Magnetic Model
Resonance [
Image

A Combination of custom Matlab code and Fieldtrip toolbox [1]

[1] R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, "FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive
Electrophysiological Data," Computational Intelligence and Neuroscience, vol. 2011, p. 9, 2011.

[2] G. Nolte, "The magnetic lead field theorem in the quasistatic approximation and its use for magnetoencephalography forward calculation in realistic volume
conductors," Physics in Medicine and Biology, Article vol. 48, no. 22, pp. 3637-3652, Nov 2003.

[3] Lutkenhoner B. "Dipole source localization by means of maximum likelihood estimation I. Theory and simulations,” Electroencephalography and Clinical
Neurophysiology, Volume 106, Issue 4, April 1998, Pages 314-321.

[4] B. D. Van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linearly constrained minimum variance spatial
filtering,* IEEE Transactions on Biomedical Engineering, Article vol. 44, no. 9, pp. 867-880, Sep 1997.
24



20-Channels: 40 Measurements ==

— 80
| 60 » Sequentially measure
two components
| = (Calibrate each sensor
— 40 . o
to know its sensitive
= direction
20 © Nei :
— = Neighboring sensors
s interfere to change
0 sensitive direction
— =20
— -40

300 250 200
Y (cm) 25




MRI Co-registration and Forward Model @&z

| B ‘
r
Head Localization Coils « |

» Four head localization coils close to
the array

» Polhemus Fastrak system to digitize

» Relative sensor positions from CAD
model 58




OPM Array Calibration: Simulation Results () =,

i‘ 80 mm "i
m-mm ; KI1|_:|'3I Fit Position errar magnitude vs. Sensaor number
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4l ]
I I..._ Calibration I |
Coils (9) 2+ i
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) 5l ~ 1mm of position error 1
Top view Al in simulation results |
= 5L
Side view Senser number
3D-printed magnetic dipole phantom Simulated calibration: location error for
used in array sensor position calibration 40 OPM sensors using 9 coil phantom

[1] Pfeiffer C, Andersen LM, Lundqvist D, Himildinen M, Schneiderman JF, Oostenveld R (2018) Localizing on-scalp MEG sensors using an array of magnetic
27

dipole coils. PLoS ONE 13(5):e0191111. https://doi.org/10.1371/journal.pone.0191111




OPM Array Calibration: Experimental Results ()&=
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Fit position error (distance from given sensor
location) for sensors 1-24 (y-mod) using the
time domain dipole fit at 0.02 sec (sensors 25-
48 (x-mod) have similar results)

3D-printed magnetic dipole phantom
used in array sensor position calibration

[1] Pfeiffer C, Andersen LM, Lundqvist D, Himildinen M, Schneiderman JF, Oostenveld R (2018) Localizing on-scalp MEG sensors using an array of magnetic
28

dipole coils. PLoS ONE 13(5):e0191111. https://doi.org/10.1371/journal.pone.0191111
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Somatosensory/Auditory Evoked Magnetic ()i,
Fields: Spatial Topographies




Somatosensory Evoked Magnetic Fields:

X-axis, OPM Ch15, SQUID MEG0422, CORR = 85%

OPM vs. SQUID

i

Y-axis, OPM Ch15, SQUID MEG0433, CORR = 75%
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= More than 75% correlation for both x and y component
» Beta suppression is observed with both SQUID and OPM array 31




Auditory Evoked Magnetic Fields: ) it
OPM vs. SQUID

Y-axis, OPM ChS5, SQUID MEG0213, CORR =81.01%

X-axis, OPM Ch8, SQUID MEG0232, CORR =83.87%
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= More than 80% correlation for both x and y component
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OPM SEF/AEF Spatial Topography
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Source Localization: SEF

M87172872, SEF M87172872, SEF




OPM vs. SQUID Localization
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OPM vs. SQUID Localization =

Table 1. Comparison of the OPM- and SQUID-based MEG system performance

. Experiment Error OPM SQUID gof OPM/SQUID
— Sos” | O
0.0249 14.6/17.5
0.0381 26.6/15 4

M87172872

75 00144 24.9/74

AEF : 79.2 26.7/16.6
: : 87.9 16.1/13.3

M87103395
: : 86.3 35.5/15.6

Ground truth is the source location provided by the commercial Elekta-Neuromag SQUID-based MEG system; the distance
between the locations of the equivalent current dipole calculated by the OPM-based MEG system and that of the commercial
SQUID-based MEG system is shown in the Error column. OPM rv refers to the residual variance between the measured data
and the reconstructed data from the localized sources; goodness of fit for the SQUID data 1s shown in the column labeled SQUID
gof (%); last column compares the signal to noise ratio of both systems.

M87122617




Mag. Flux Density (fT)

Preliminary: Studying Auditory
Frequency Response
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Source Localization ) Natona

500 Hz 1000 Hz 4000 Hz

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
250 250
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50 50 o0
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200 200 200
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50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
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Future Directions: Scaling Up ) g

A 108-channel OPM MEG
system

= Redesign the OPM and
build 27 sensors

= |mprove performance

= Simpler manufacture
= Higher reliability
= |nstall inside a
magnetically shielded

1

1

Laser Air Vapor Cell PD ADC |_ Coil SEF/AEF
roo m System Cooling Temp. CNTRL TIA Ref.] DAC Stim.

T
= |mplement magnetic field ; Host Comp. g Stim. Comp.

control a al Nottingham

41




Vacuum Packaging the Vapor Cell

= Reduce power consumption
= 6-10W->2-3W

= Move closer to the head
= 12mm->6o0r7mm

=  Minimize sensor footprint on the head
= 40mm X 40 mm - 36 mm X 36 mm

Pin(3)=0.75 W

Surface: Temperature (K)

10

207 C ]

Inside the Cell

% 200 C
| | ?
"‘t~-.l_,(’
= | 1 -10
l;‘ @ﬂ
-— 190 C
..  Outside the Oven +.. |
T * .29C

1] AT



Adding More Channels ) B,

4 Channels 5 Channels 9 Channels

= Spacing is arbitrary

43
-



. Sandia
Conclusion i) Natorat_

MEG System

Constructed a fully functional Magnetoencephalography system using
Optically Pumped Magnetometers (OPMs).

Demonstrated source localization results for both AEF and SEF with sub-
centimeter accuracy.
OPM Sensor
Compact, 4-channel sensor design
12 mm standoff

18 mm channel separation
13 fT/rt-Hz mag. sensitivity and 5 fT/rt-Hz/cm grad. sensitivity
80-90 Hz bandwidth
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