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What does meshfree mean?

• Physics compatible FEM spaces defined via differential k-forms:

• For a polygonal mesh in 3D

Zer for o u

JE u dl
fFu dA

lcudV

A meshfree method uses only zero-forms as degrees of freedom

• Easy to push points around if you don't care about preserving a mesh

• Exchange nice mathematical setting to get more descriptive models

No Stokes theorems (no conservation), no natural bilinear forms
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Why meshfree? Large deformation problems
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Trask, N., Maxey, M., Hu, X.
A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows
Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X.,Pan,W.
A spatially adaptive high-order meshless
method for fluid—structure interactions.
Computer Methods in Applied Mechanics
and Engineering (2019)

Trivial treatment of large deformation problems — no remeshing + remap
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Why meshfree? Large deformation problems

Electric Held Magnitude
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—vV2u + V p = — pe(0)V 0

V • u = 0

u = w

u = VI + (x — XI) x Q,

_icv40 ± v20 = pe(0) 

E

{0 = fac2, Tr • dA

0 = fac_2, x ()( — Xi) • dA

= —co (E E E21)+—pl+L (Vu VuT)
2

Compatible meshfree discretization: A framework for physics compatible
discretization of multiphysics problems that mimics robustness of mimetic methods
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Why meshfree? Automatic geometry discretization

3D Image Data
(X-ray CT)

Segmentation

Labeling Exodus mesh

FEM
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Mond
laboratories

• For engineering problems meshing constitutes 60-70% of time to solution
(SAND-2005-4647), which cannot be improved by moving to larger computers
• Automating geometry discretization is fundamental to developing large
throughput workflows based on either experimental data or UQ/optimization 5



Why meshfree? Automatic geometry discretization
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National
Laboratories

• Meshfree methods operate directly on the degrees of freedom available
in experiment

• Placing a particle at each voxel of the CT scan is sufficient to obtain a high-
fidelity simulation without human-in-the-loop meshing process 6
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Why meshfree? Differential geometry on evolving manifolds
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To solve surface PDE, one may learn mapping between local charts and tangent
space to access metric tensor, curvature, surface differential operators, etc.

V.01W4g_0141011Mtipplisap
11.7,001S OIN 11 110i 11.11WW

(—(5dv 2Kvil — 'Tv'? — dp = —131'
—6\d = 0.

Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs."Computational Particle
Mechanics(2019): 1-7.
Gross, B. J., Trask, N., Kuberry, P.,&Atzberger, P. J. (2019).Meshfree Methods on Manifolds for Hydrodynamic Flows on
Curved Surfaces:A Generalized Moving Least-Squares (GMLS)Approach.arXiv preprint arXiv:1905.10469. 8



Outline

■ Generalized moving least squares (GMLS)

■ An approximation theory framework for generating meshfree
methods with rigorous accuracy guarantees

■ Conservative meshless discretization
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■ How can we construct conservative schemes if we don't have access
to discrete Stokes theorems?

■ Meshfree discretizations of nonlocal mechanics

■ Can we construct a meshfree discretization framework for integral

operators for fracture mechanics?

■ Meshfree machine learning

■ For scientific machine learning applications, can we use scattered data
approximation theory to build learning frameworks appropriate for

unstructured scientific data?
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Generalized moving least squares (GMLS)
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Given u E V, a fr ework for estimating operators T E V* by finding o mal
reco struction over a subspace P C V which best matches unstructur s p es

A -{k(u)li

rgmin
pEP

Example:

Approximate point evaluation of derivatives:

arget functio Ti = D 6x. E V*

Reconstruction space P

(u)

A- )

S pling ftmctional

Weig ting ction W

)W47, a,)

1 0



Generalized moving least squares (GMLS)

Primal problem:
Unconstrained QP

Dual problem:
Equality constrained QP

r n (E A -0)) (u))
pEP

rh(u)

h (u)

such hat

a (u)

( )

-(P) \fp E P
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Preliminaries: Quasi-uniform point clouds

•

•

•
•

•

Definition 0.1. Fill+separation dist
define dist ces

Definition 0.2.
if

, -u

*

•
or

• •

Given point clou

hx = sup x - 112
35.E ft jEX

ni l xi —
2 jfi

112

el

ty A point cloud X is quasi-un o

qx < hx < cquqx

Proposition 0.1. Suppose bounded Q and quasi-unifo
exist c c2 > 0 such that

ciNA hx c2N-4

= 7 XN
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c Q

with respect to cqu

X w.r.t. cqu > O. Then there
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How do error estimates typically work in GMLS?

Consider first approximation of function from point
samples using a polynomial reconstruction
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Classical MLS: quasi-interpolants
[Wendlanc104]

Definition 1
mation su(x) =
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National
Laboratories

1 polynom p uction: A process defining Vxi E X an approxz-
-u(x -) is a local polynomial repTvdueti®n if there t Ci,C2 > O.

1. E3 ajpj = p(x) kip c P

2. E la -1 < C \Ix e Q

3. a -(x) 0 if -I > C2hx and x

Theorem 1. For bounded Q, define fr = U B (x, C2h x)xEci
reprodueti©n of order m and u E C  1(Q*) then

lu(x) — sn(x)I < Ch7+1

is a local polynomial

Theorern 2. Consider the GMLS process with T (5,z, Aj(u) = u(x j), and P —
compact and satisfies a cone condition, and X is quasi-unifo , then there
C > 0 such that supp(W )= C h where the GMLS problem is solvable and fo
polynomial reproduction.

If Q zs
a constant

a local
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Polynomial reproduction error estimate

Proof. Let p E II

— sf 1 p(x) p X

I - PliL ,C2hx))

C ) -pl

Pj

B(x,c2hx))
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Classical MLS: derivative approximation

[Mirzaeil2]

Defim ion 0.1. Local polynomial reproduction: A process defining vxi E
approxim tion Nu(s)   E. a-u(s. is a local polyno al reproduction if there exist
cl, C2 > 0.

1. E jpj D p(x) Vp E V

2. E.1a-1 < C hx-I I Vs E

3. a - (x) = 0 if l lx 112 > Ghx an x E
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Theorem 1 For bounded t2, define U B C2hx D;-: a local polynomial
x

reproduction ©f order m and u E Cm-14(W) then

Theo
V 1 f Q is rnpact and satisfies a cone condition, and X is quasi-unifo

ts a constant C > 0 such that supp(W )= C h where the GMLS proble
and fo s a local polynomial reproduction.

ID u(x) Nu(s)l < Chxm+1

0.2. Consider the GMLS process th r(u) = D u(s), Ai(u) = u(si), and
then there
is solvable
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An abstract error analysis framework

Basic technique:

ITx(11) (101 ITIc(n) — 0:01 + 1Tx(P) T.! (u) 1, (VP E P)

lrx(u) Tx(A1+11V1:1- t.1)1
Pip

< I lrx E (.4 - Ir. -1- MILS. de-al:A.60ni=1

iTx(u P)1 + max Ai(ti P)1 T,iE

reconstmetion property

E Cw111-xlIpidIA;1 11

Ho1ds for any target functional and approximation space:
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ITx(u) - TITOI P) + llA;1 11 .1iLAcc 19)11 P
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Broadly applicable toolbox for meshfree approximation

• All examples from beginning of talk fall into this framework
• Ex: Data transfer applications

• Ex: Solving different PDES

T (21) = di (u)
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Ann) := d y
• L :

f B(x) K (x , Ou(y) u(x)dy (T) = f (u) dA

• Ex: Handling divergence/curl constraints in saddle point problems

Vh

Vh

v E (lim)d
{v c (nnocil

V - v

V x v
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Solving PDEs with or without a mesh

To gen

Target functional

Essonsimmiargoe•••••4•••(postodira•••01,isvompamisoombstallowasoirvalmbieraiw••ogio•••v• Itimbrwsi••.•%• Oloaoaki.464•••=1omodwaiwie•vi"..•■•••2001►ohoissiommedApplown••••gomwistaatisttion

0 01

0 0001

le-06

1e-08
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Vefio f:

— Collocation P2
— Collocation - P4
— Collocation - P6
13-0 FV - P1

FV - P3
FV - P5

m

0.1
h

1
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Why is conservation hard in meshfree?

Gener zed Stokes theore

Gauss divergence theorem

fc u dx u•dA
IFEac

•

a

a

Ingredients to cook up a conservative discretization:
• A chain complex — a good boundary operator
• A consistent coboundary operator — good function approximation
• A measure on each mesh entity

Sande
Mond
laboratories
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Quadrature with GMLS

Assume a basis, Vf...) V, CP and rewrite GMLS problem as

= a rg min 7
cG ::Grefn ky 2

A1(P))2 A1).

er(P')

Ex: Selecting T = fc u dx, ard defining the vector

= Pdx

we can see that a quadrature functionais rnay be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

ic[u] = -vIc*

We seek to similarly define meshfree quadr3ture hinctionols with
summation by parts properties.
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Mesh surrogate: E-ball graph

Construct a discrete divergence
theorem of form:

•F ica
JEN:

[F] [F

F • dA

•
•
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•

•

Antisymmetry in fluxes lead to cancelation of telescoping sum, providing a
global conservation statement:

[V F

jE

1 F•dA

fa F dA

22



Virtual divergence theorem construction

Let F E

where

• an
d face

e assu e the follow n  ansa z for our 'rtual divergence th

(div F)
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a e e es be de e ined corresponding to u vol es

• cii(F) is a vector of coe
(n)d at virtual f f-

s associated

e Seek to enforce local ol o  repro u
applied to F E P

h e S re    etieu of F over

ion property, so that o is ex when

23



How to get the areas?
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14 National
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Assume virtu eas may be expressed in ter of a virtua a poten a
multiplied by point evaluation of basis func n at virtual face

(0 740 (X )

hen we obtai the fo © ng eighted graph Laplacia prob e or each
basis function

Fol o ng Fre

* > 0

(oa
3

siP'") ( —) pidiv

olm alternative, this h solution if

O(N) solution using black-box AMG
24



How to get the volumes?

Ass ed we have a process for generating vo

E /Li — 14°)

• >

Solve the fol o n e uality constrained QP

— argmin

such that

urnes sa is

(Q.)

For any weight cv- 0, this provides the defini

Theorem. Assume a quasi-un
exist 611 612 > 0 satisfying

k k

g

SandiaNationalLaboratories

pointset X and compactly supported { Then there

C hd < C2 hd
25



How to get area scaling?

• A work in progress...

sketch:
Graph- apl a ional description

a(u, b(v)

Given a Poincare-like inequ  Jay (Fiedler eige rll

Then we can cont the ene

Mug C N

value problem)

u)2

norm with standard

N ll < a(u < 114

4 '-Mi estirn  ates

whic  le s us control the virtual area by t e forcing in the graph Lap ac
problem s

lu Va( < N b112

Sandia
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Results: singularly perturbed advection-diffusion

Consider conse a on la for conserved v able q

Otq IN7F

Where we   e s eady sta e and

• Darcy:

he follo ng fluxes:

ict

Singularly per urbed advection diffusion:

11  "NO ack

Lin elasticity:

All prob e s

F  (V u) 1 r u + V uT)

Sandia
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be sho or disco tinuous material properLies to highligh
continuity f approach.

27



First order truncation error for discrete divergence

H unweighted weighted

1/16 0.081 0.058

1/32 0.049 0.032

1/64 0.024 0.015

1/128 0.011

(c

0.0072

n

Sandia
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28



Darcy: jumps in material properties

Flux continuity across interface:
••••••••••••,

1***************60

70

50

30

10

10

- R = 1
- R = 2

R = 4
R = 8
R = 16

- R=32
R =

-4-
0.2 0.4 0.5 0.8



Darcy: jumps in material properties

Flux continuity across interface:

W11*************1110

01

1

15

g 10

Santla
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1 l4

— Exact
dx = 1/16

- dx = 1/32
- - dx = 1/64
— dx = 1/128

t„.

0.2 0.4 0.6 0.8 1
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Singularly perturbed advection diffusion

n - VO

a
at

TA ÷ V , F = 0

F = ail) — €V4i

Single tinnestep
Co E {1, 10, 100, 1000} ccp}
demonstrating L-stability

Santla
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Linearly elastic composite materials

E>

-

\Z

•
11

< I

Hydrostatic loading of a stiff inclusion
- Normal stress continuity across interface

Sandia
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Unification with Combinatorial Hodge theory

C bi~natorla.l chain complex

Co CIL 491 C2

Combinatorial c ch o plex

ple: co binator adient

C

Note that:

(5o does not lc nverge

lõk õk 0

An exa ple 3-clique (A,B,
belonging to C2

Jiang, Xiaoye, et al. "Statistical ranking and combinatorial Hodge theory."

Mathematical Programming 127.1 (2011): 203-244.
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Current work: a meshfree de Rham sequence

Previous scheme e  n be e itte combin to al Hodge notation:

We may s. arly de
co binat rial de

Choosing

µ,clivh(u)c

e a
CO plex

It [ 

f[V au]

in] = (600 f)T D fc

Acctiv o lh(u),

g Df cf (u)]

Sandia
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etic curl operator by oving to the right o he

6 ic .11),)T Dec (u)1

(V x u) we obt

g (5 [0 Vie) T Dece(u)]

A direct extension to define virtual curl satisfying
div*curl = 0

34



What is scientific machine learning?

Traditional scientific computing:
Known model, known theory leading to
good discretization with FEM, data

primarily for V+V only

SciML:
Known model form, unknown constitutive
relationships or closures, small amount of

high fidelity data

Traditional machine learning:
No physics, unknown input/output

relationship, learn on huge amounts of
data + universal approximation

1—
Small Data

DATA

PHYSICS

L -
Cots of Physics

Some D ata.

Sandia
National
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Salm Ph ysics
Big Data

DATA

 .
No Physics

• Sparse data:
• Data is either expensive, experimentally intractable, or legally unobtainable

• Unstructured data:
• Data comes from Lagrangian probes, unstructured FEM meshes — unlike

traditional ML on images

Physics Informed ML: Exploit domain expertise to augment sparse data 35



Operator regression
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Given a collection of functions ui E V, a rx c V* d a domain
c we infer Tx om servations of the for

Exarnple:
15

0.5
0.0

—0.5

0

—10

0:0

fu (x),Tx[uil

0:4 Ofi o:a LO

= arg Tz[uil — 4

Ou 
ax

We present le ng fr o esponding to choice of par ization:

• GMLS-Nets: Use meslifree approx ation th to regress operators
characterized by scattered s ples of data

• Fourier regression: Characterize operators via pa a ion of o
symbol

• Nonlocal operator regr ion: Characterize no ocal operators via
par eterization of nonlocal kernel

X

36



What applications may be characterized in this way?

data driven odel discovery

• numerical homogenization

• su ogate odel development

SDE dX = dWt

O.

Example:

Assu ed physics: at u (u)

Observed high fidelity dyn cs:

 ►

•

PDE atu = v21/

Th-F1)-14tn)

At

Sande
Mond
laboratories
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GMLS-Nets: SciML architecture for unstructured data
w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

• Assume a basis 4) so that p E P > p= al-4)

• GMLS thus provides optimal encoding of
data in ter s of the coe cie t a, roviding a low-
dimensional encoding that may e.g. exploit physics

• Tr • ionally, GMLS at r(u) = aTT(4),
surning one has knowl ge of h w the t get func-
tion Instead we seek operator qc a
use gradient descent to t t e to 'match data

nctionally identical to convolutional networks - we
get a stencil ti at repr du the operator, but o
restriction on e.g. C ta, llar region, etc.

1 Ir

scattered data 'IF'
processing

GMLS-Layer

Mapping MLP

-h.

Scattered Data Inputs

co effi cien ts
ao al a2 a3 aa aN

input channel

co
ef
fi
ci
en
t 
c
h
a
 ri

ne
l 

GMLS-Nets
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-III
IIIII
In

Classification

...._ -- 
m
—/  

jimi_pl[ so     lHttr g. I SD 

Regress ion
(SD 

Recently accepted at neurolPS ( htps://arxiv.orq/pdf/1909.05371.pdf)
Open-source software: code and training sets publically available for:
• Tensorflow (https://github.com/rgp62/gmls-nets)
• PyTorch (https://github.com/atzberg/gmls-nets)

stack layers

SD I SD 1-1,MLPJ:l[u]]

stack layers

38



GMLS-Nets: results

MNIST
Classes

12
M

Input
Image

4,1
GMLS-Layer

a[0]

a[10]

GMLS Features

a[1] a[2] a[3]

a[6] a[7] a[8]

a[11] a[12] a[13]

a[4]

a[9]

Case Conv-2L Hybrid-2L GMLS-2L

MNIST 98.52% 98.41% 96.87%

100 10000

Sandia
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• Provides similar performance to convNets on
MNIST due to similar feature extraction
capability

• Generalizes convNets to unstructured scientific
data:
• Prediction of drag from cell center

velocity field taken from FV data
• No pressure/viscosity information: drag

characterizated entirely by flow

1e+06
Reynolds number

• Training data
• GMLS-Net test data

1c1-08

39



Physics informed neural networks (PINNs)

Idea: regularize loss with terms encoding
physics knowledge

11

L L

dat 
ArAni21112

Examplco

a ~~ph SZCS

f IL[udata

atu  I axu =

, 0) Tent funct

u(0, t) =

Joint work with Karniadakis, Philms

4,

Iteration: 0
1.0

0.8 -

0.6 -

0.4 -

0.2 -

0.0

0.0 0.2 0.4 0.6 0.8 1.0

x

1.0
Iteration: 0

0.8 -

0.6 -

I , A /

; I ,

4,4" ,
• - -

0.4 -

0.2 -

0.0

0.0 0.2 0.4 0.6 0.8 1 0

x
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1.0

0.8

0.6

0.4

1 0.2

0.0

1.0

0.8

0.6

z

0.4

1 0.2

0.0

team to improve performance of PINNs 40



1 I PIRAMID: Target problem

Speed

Digital/
Mixed-Signal

I 1 • 1

Analog (ODE)
Simulation

Fidelity

01100101
1,13,Nralator

VHDL

Targeted level of speed
+ fidelity

• For system scale simulation, want a process for extracting scalable low-cost
network/circuit models from high-fidelity but slow device-scale models

• Often data-sparse (high-fidelity sim are expensive/experiments are costly)
• Current approach developing models "by hand" may take one decade and multiple

domain experts to develop predictive network model!

Device-Scale (PDE)
Physics Simulation

LDRD goal: develop a novel Machine Learning approach to automate and reduce
physics 4 analog model incorporation effort from decades/years to months/weeks.



I2 Device simulation: TCAD

Technology Aided Computer Design (TCAD) simulates semiconductor device
geometry and underlying 2D/3D physics at high resolution and fidelity.

TCAD BJT device model

I

c
 

")
 

Is
ol
at
io
n 

,_
 

,
 

Emitter
Base

\ x --c

.2
 

iti

__..,

Ext. BE-Junclicin Main
Transistor

.

Parasitic Epitaxy
Transistor

Buried Layer

Substrate

VanRoosbroeck Equations
Poisson equation +

Drift-Diffusion carrier transport

V • EVO = —(p — n + 1\1,6' — NA)

an 1

at q
— —V • ( iinnE Dn 17n) Rn (n, p)

ap 1
= — V • GinpE — Dp Vp) — Rp (n, p)

./ Considers device 2D/3D geometry and localized physics,
and can incorporate changes due to environmental physics.

X Rigorous calibration and validation are time consuming.
X Simulation of more than a couple devices is impractical.



I3 Device simulation: circuit compact models

Compact models (CM) are computationally simpler analog models capturing
the functional behavior of the device, e.g., can produce I-V characteristics.

Modified Nodal Analysis
(Kerchoff's Current Law +

Branch Constitutive Equations)

1

R1

1

R1
0 1 0

va 0
1 1 1 1 1
- + + - - 0 0 Vb 0

R1 R1 R, R3 R,
V 0

1 1
c

0

1

R,

0

0
R,

0 0

1

0

ivl

iv2

V1

V2

0 0 1 0 0

Circuit compact model

./ Captures functional device behavior via electrical pathways (runs much
faster than TCAD) and can be augmented to include new physics.

X Manual mapping of local physics due to operating environments to circuit
components is tedious, severely limiting rapid incorporation of
environmental effects into new designs. New physics = More iterations!

X E.g., QASPR HBT neutron damage model took 7 years to develop.



4 I Objective

"Can we rapidly and reliably transfer new physics knowledge to new
and existing compact models?"

TCAD BJT device model

E B C

i
o

Emitter
Base

___,

c
2
,'t-'
T:i

Ext. BE-Junclion

__...,

Man
Transistor

Parasitic
Transistor

Epitaxy

Buried Layer

Substrate

Circuit compact model

PIRAMID aims to introduce a novel ML
approach to

automate the entire process in one pass!

• How can we automatically extract a network/circuit topology
from PDE model?

• How do we parameterize extracted network?



I5 PIRAMID process flowchart

Physics Priming (PP)
Perfunctory TCAD

1111111111111M1111111111111

'"

01

Region Recognition (RR)
ML + TDA

r Topology
Tailoring (TT)

Simulate high fidelity physics.

Identify significant regions (ML+ Topological Data Analysis)

Identify interactions between significant regions.

Prescribe electronics components to physical interactions.

Generate positive feedback in the machine learning process (supervised training).

Interaction
Identification (II)

(seeded w/ established CMs)

Train and Adapt
(using available

experimental data)



46 Physics informed compact modeling

Given a graph extracted from PDE model, use operator regression to
"dress" the graph with circuit components

terminal
R R I

nude
R 2

LK irchhof f Ldata,

2

Proof of concept:
Given voltages,
Find resistors that balance
currents while providing a target
current

da

nodes

terminal

10 -

266 460 660 sOo 10b0

iterations



Conclusions
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■ Generalized moving least squares provides an approximation
theoretic framework for estimating functionals from general
scattered data

■ We have used this technique in a wide range of applications
■ Here we presented recent work using GMLS to develop conservative

schemes

■ Looking for collaborators to analyze these schemes and apply to
subsurface fracture problems

■ For scientific machine learning applications GMLS provides an
effective architecture for operator regression

■ Incorporation of graphical models with operator regression a
promising area to incorporate topological structure into data-
driven model development

47


