

Compatible meshfree discretization

Nat Trask
Center for Computing Research
Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

What does meshfree mean?

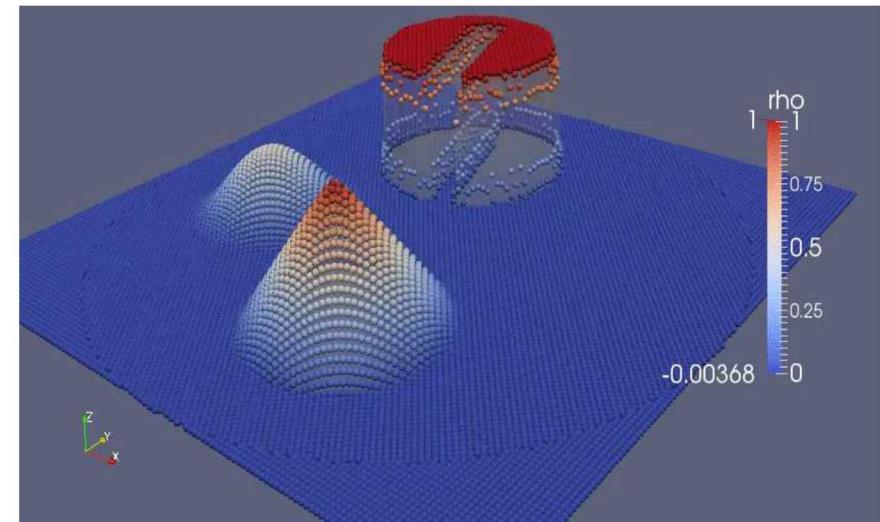
- Physics compatible FEM spaces defined via differential k-forms:
 - For a polygonal mesh in 3D

Zero-form: $\delta_{x_i} \circ \mathbf{u}$

One-form: $\int_E \mathbf{u} \cdot d\mathbf{l}$

Two-form: $\int_F \mathbf{u} \cdot d\mathbf{A}$

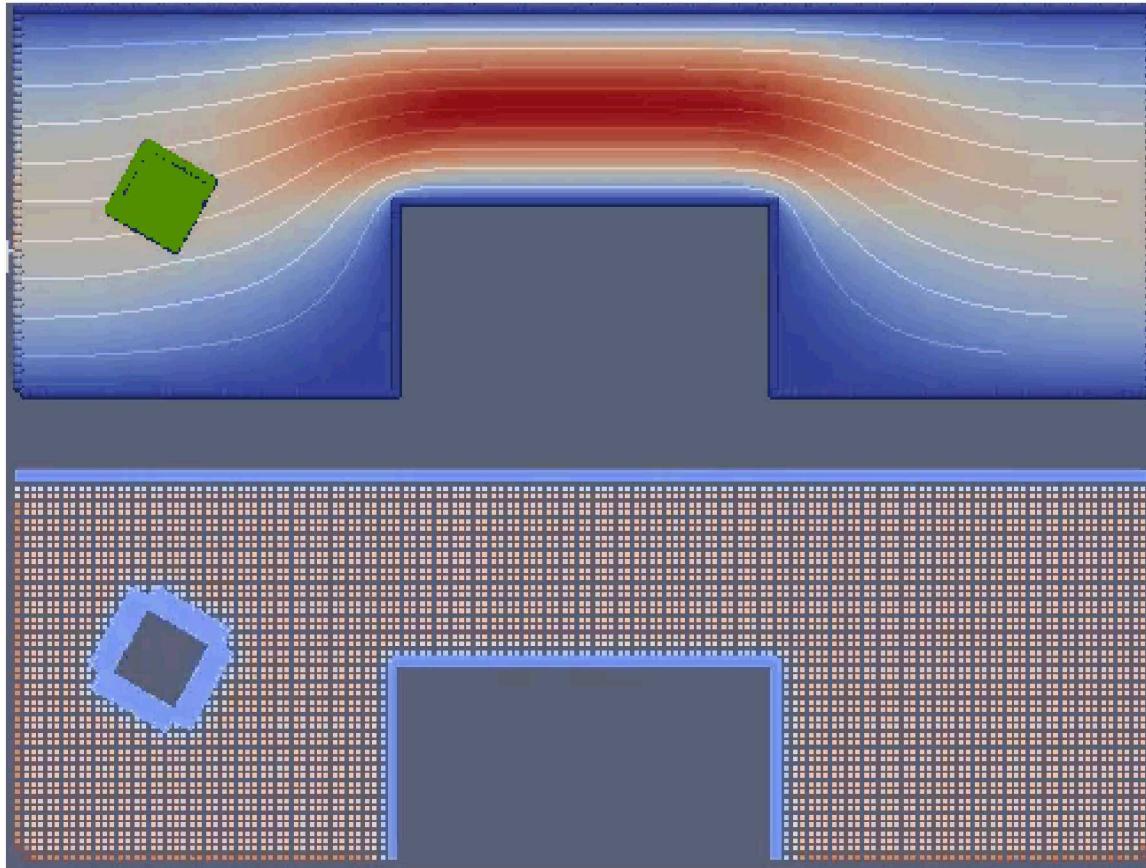
Three-form: $\int_C \mathbf{u} dV$



A meshfree method uses only zero-forms as degrees of freedom

- Easy to push points around if you don't care about preserving a mesh
- Exchange nice mathematical setting to get more descriptive models
 - No Stokes theorems (no conservation), no natural bilinear forms

Why meshfree? Large deformation problems



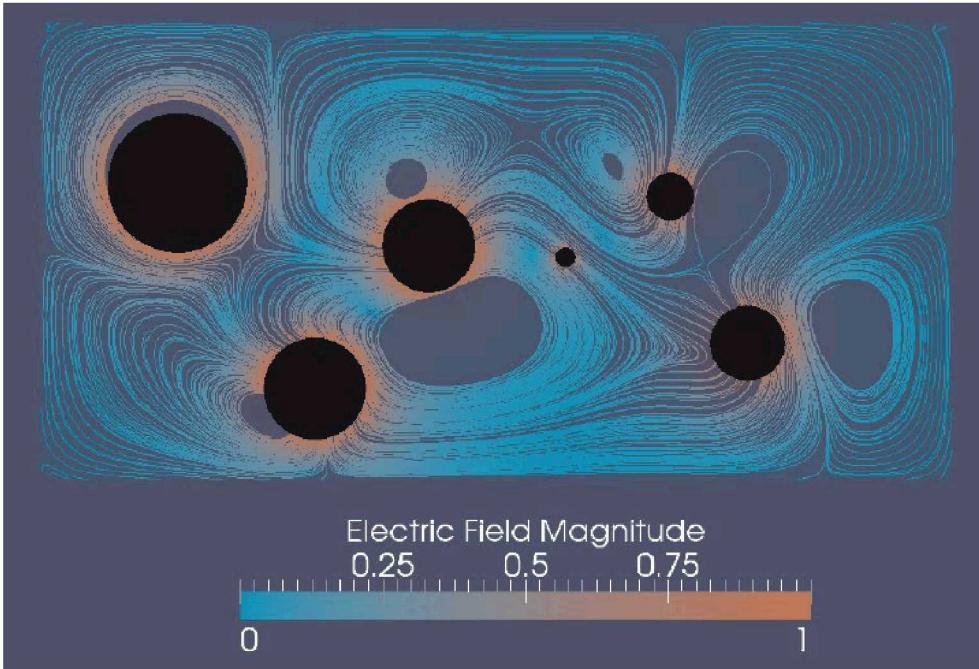
$$\left\{ \begin{array}{l} -\nabla^2 \mathbf{u} + \nabla p = \mathbf{f} \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u}|_{\partial\omega} = \mathbf{U} + (\mathbf{x} - \mathbf{X}) \times \boldsymbol{\Omega} \\ \int_{\partial\omega} \boldsymbol{\sigma} \cdot d\mathbf{A} = 0 \end{array} \right.$$

Trask, N., Maxey, M., Hu, X.
A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows
Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X., Pan, W.
A spatially adaptive high-order meshless
method for fluid–structure interactions.
Computer Methods in Applied Mechanics and Engineering (2019)

Trivial treatment of large deformation problems – no remeshing + remap

Why meshfree? Large deformation problems



$$\begin{cases} -\nu \nabla^2 \mathbf{u} + \nabla p = -\rho_e(\phi) \nabla \phi \\ \nabla \cdot \mathbf{u} = 0 \\ \mathbf{u} = \mathbf{w} \\ \mathbf{u} = \mathbf{V}_i + (x - \mathbf{X}_i) \times \boldsymbol{\Omega}_i \end{cases}$$

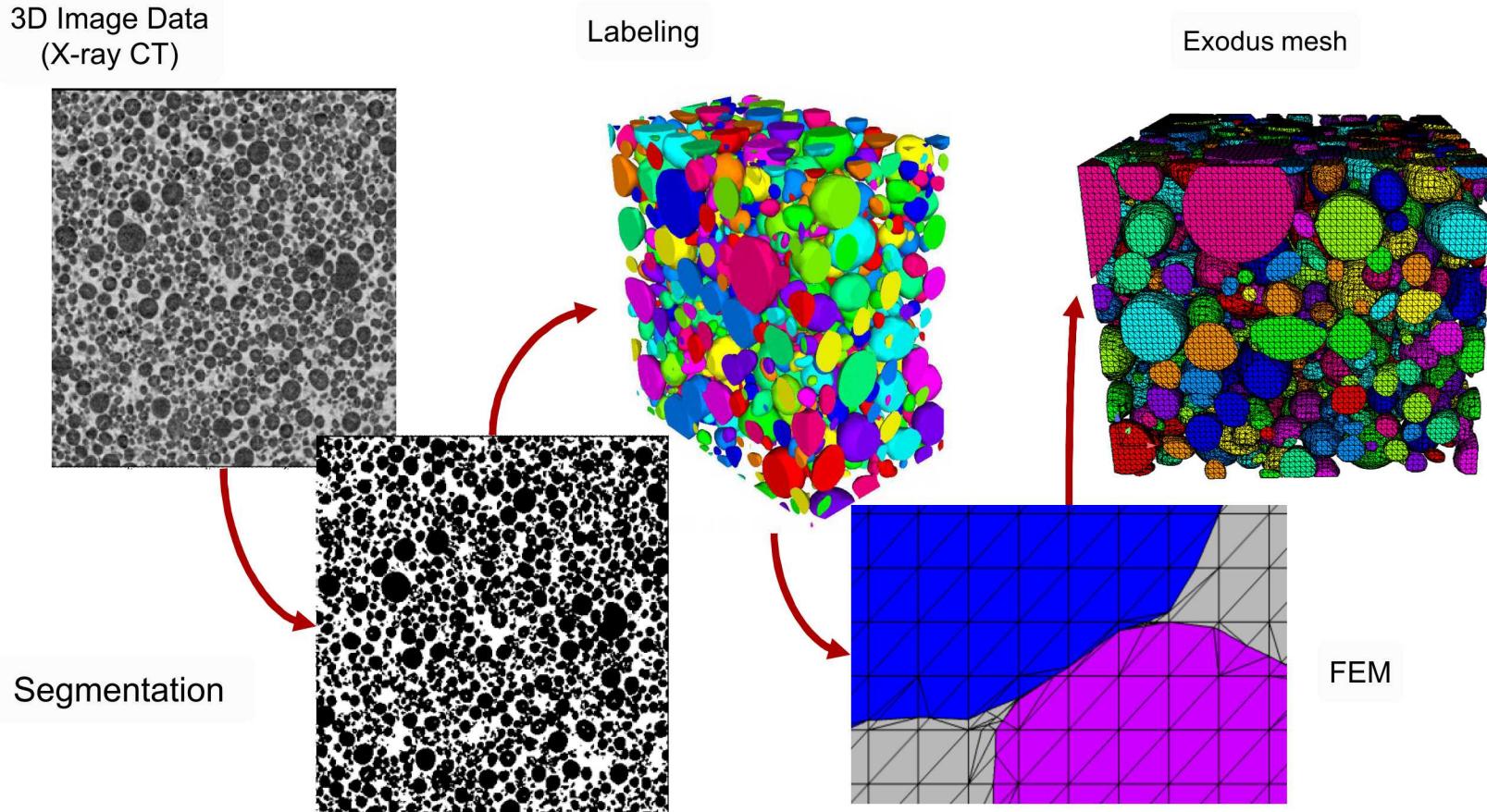
$$-l_c^2 \nabla^4 \phi + \nabla^2 \phi = -\frac{\rho_e(\phi)}{\epsilon}$$

$$\begin{cases} 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \cdot d\mathbf{A} \\ 0 = \int_{\partial \Omega_i} \bar{\bar{\sigma}} \times (x - \mathbf{X}_i) \cdot d\mathbf{A} \end{cases}$$

$$\bar{\bar{\sigma}} = -\epsilon_0 \left(\mathbf{E} \otimes \mathbf{E} + E^2 \mathbf{I} \right) + -\rho \mathbf{I} + \frac{\nu}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

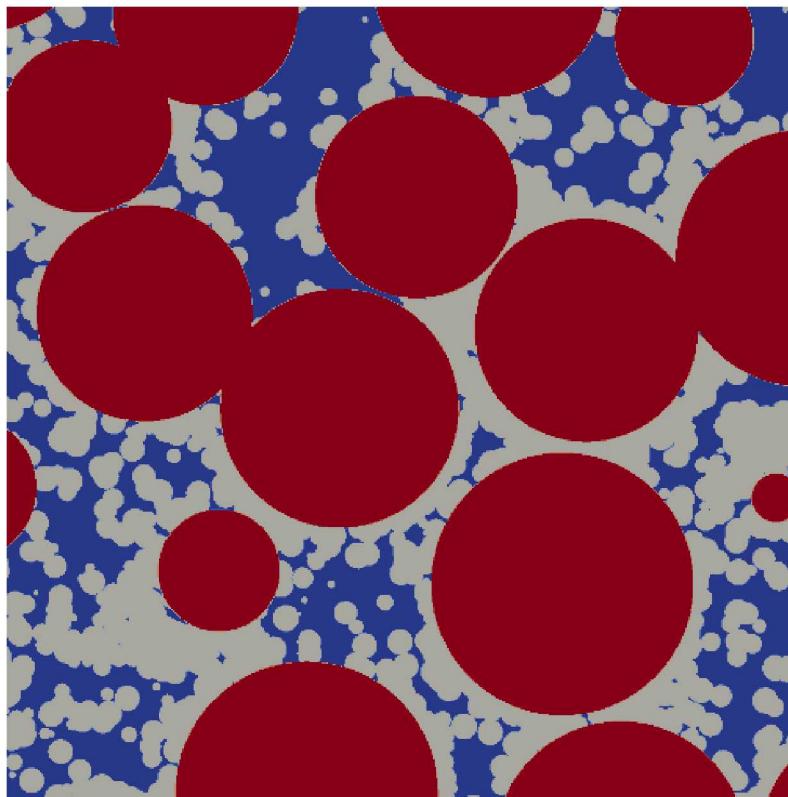
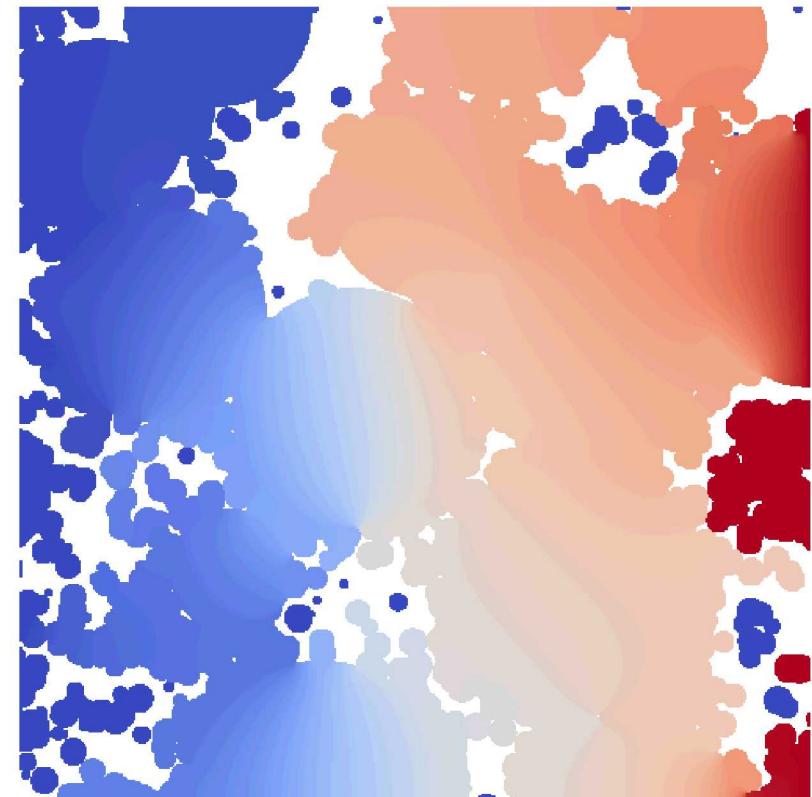
Compatible meshfree discretization: A framework for physics compatible discretization of multiphysics problems that mimics robustness of mimetic methods

Why meshfree? Automatic geometry discretization



- For engineering problems **meshing constitutes 60-70% of time to solution** (SAND-2005-4647), which cannot be improved by moving to larger computers
 - Automating geometry discretization is fundamental to developing large throughput workflows based on either experimental data or UQ/optimization

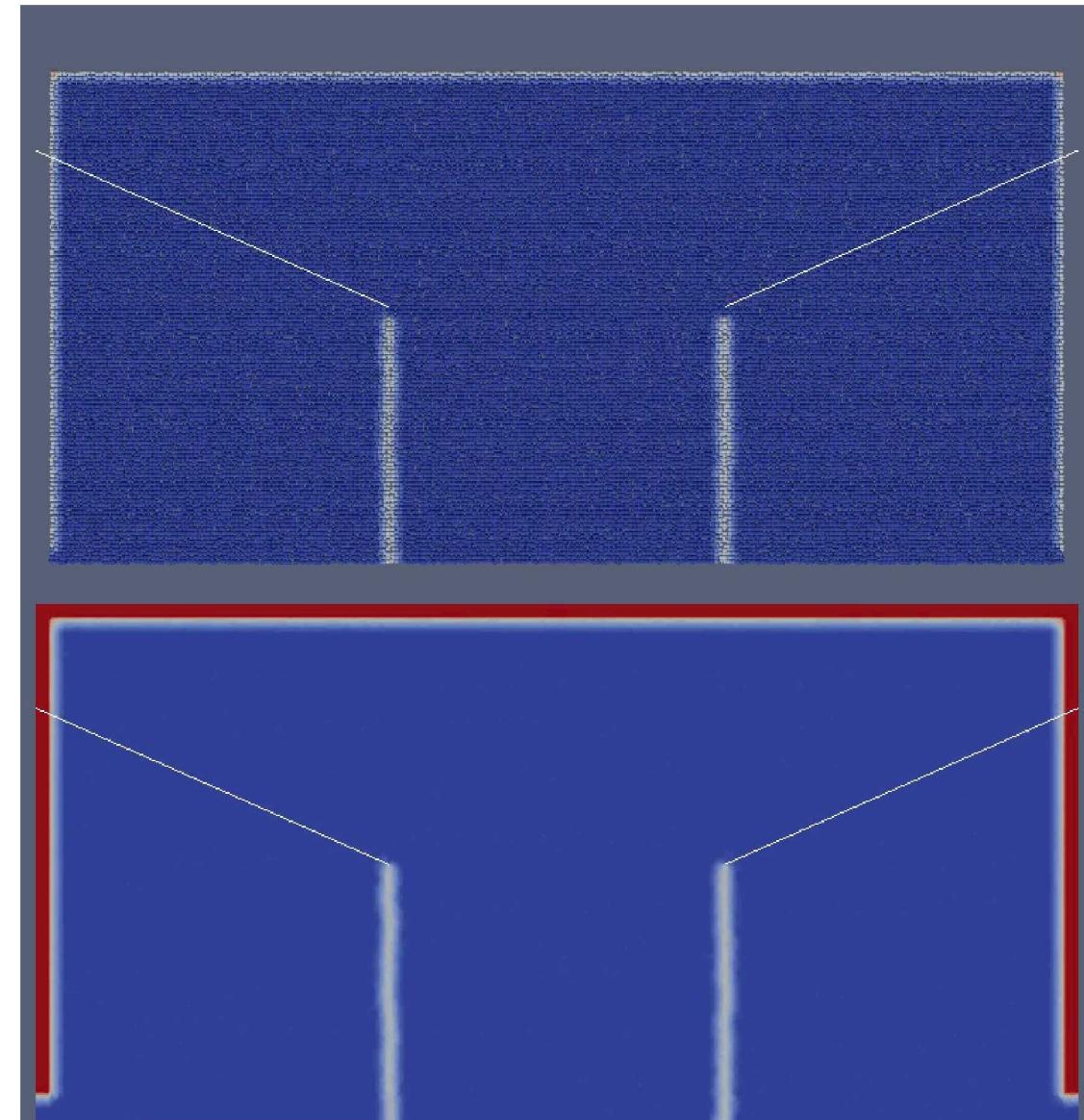
Why meshfree? Automatic geometry discretization



- Meshfree methods operate **directly on the degrees of freedom available in experiment**
- Placing a particle at each voxel of the CT scan is sufficient to obtain a high-fidelity simulation without human-in-the-loop meshing process

Automatic treatment of
topology changes:
No need to reconnect
elements, manage mesh
quality, etc. as topology
evolves as a function of
solution

Why meshfree? Fracture mechanics



Trask, N., et al.
"An asymptotically compatible meshfree
quadrature rule for nonlocal problems with
applications to peridynamics." *Computer Methods in Applied Mechanics and Engineering* 343 (2019): 151-165.

Why meshfree? Differential geometry on evolving manifolds

To solve surface PDE, one may learn mapping between local charts and tangent space to access metric tensor, curvature, surface differential operators, etc.

$$\begin{cases} \mu_m (-\delta \mathbf{d}v^b + 2Kv^b) - \gamma v^b - \mathbf{d}p &= -\mathbf{b}^b \\ -\delta v^b &= 0. \end{cases}$$

Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs." *Computational Particle Mechanics* (2019): 1-7.

Gross, B. J., Trask, N., Kuberry, P., & Atzberger, P. J. (2019). Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach. *arXiv preprint arXiv:1905.10469*.

Outline

- Generalized moving least squares (GMLS)
 - An approximation theory framework for generating meshfree methods with rigorous accuracy guarantees
- Conservative meshless discretization
 - How can we construct conservative schemes if we don't have access to discrete Stokes theorems?
- Meshfree discretizations of nonlocal mechanics
 - Can we construct a meshfree discretization framework for integral operators for fracture mechanics?
- Meshfree machine learning
 - For scientific machine learning applications, can we use scattered data approximation theory to build learning frameworks appropriate for unstructured scientific data?

Generalized moving least squares (GMLS)

Given $u \in V$, a framework for estimating operators $\tau \in V^*$ by finding an optimal reconstruction over a subspace $P \subset V$ which best matches unstructured samples

$$\Lambda := \{\lambda_i(u)\}_i$$

$$\tau(u) \approx \tau^h(u)$$

$$p^* = \operatorname{argmin}_{p \in P} \left(\sum_j \lambda_j(p) - \lambda_j(u) \right)^2 W(\tau, \lambda_j)$$

$$\tau^h(u) := \tau(p^*)$$

Example:

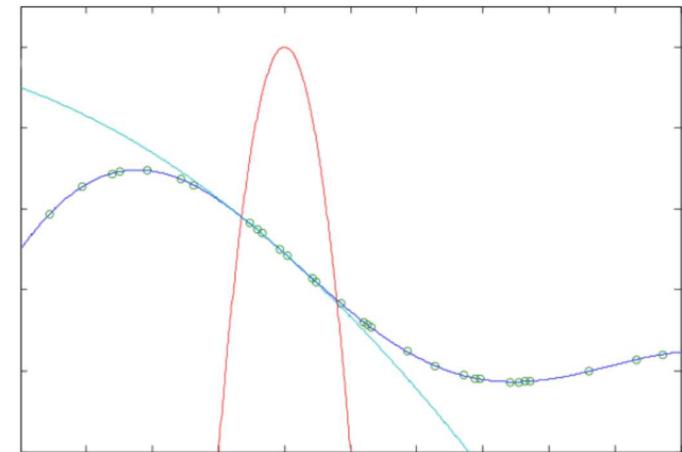
Approximate point evaluation of derivatives:

Target functional $\tau_i = D^\alpha \circ \delta_{x_i} \in V^*$

Reconstruction space $P = \pi_m$

Sampling functional $\lambda_j = \delta_{x_j} \in V^*$

Weighting function $W = W(\|x_i - x_j\|)$



Generalized moving least squares (GMLS)

Primal problem:

Unconstrained QP

$$p^* = \operatorname{argmin}_{p \in P} \left(\sum_j \lambda_j(p) - \lambda_j(u) \right)^2 W(\tau, \lambda_j)$$

$$\tau^h(u) := \tau(p^*)$$

Dual problem:

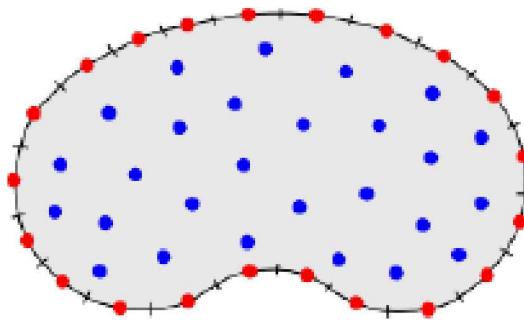
Equality constrained QP

$$\tau^h(u) = \sum_j \alpha_j \lambda_j(u)$$

$$\operatorname{argmin}_{\alpha} \sum_j \alpha_j^2 \frac{1}{W(\tau, \lambda_j)}$$

$$\text{such that } \tau^h(p) = \sum_j \alpha_j \lambda_j(p) \quad \forall p \in P$$

Preliminaries: Quasi-uniform point clouds



Definition 0.1. Fill+separation distances Given point cloud $X = \{x_1, \dots, x_N\} \subset \Omega$, define distances

$$h_X = \sup_{x \in \Omega} \min_{j \in X} \|x - x_j\|^2$$

$$q_X = \frac{1}{2} \min_{j \neq i} \|x_i - x_j\|^2$$

Definition 0.2. Quasi-uniformity A point cloud X is *quasi-uniform with respect to c_{qu}* if

$$q_X \leq h_X \leq c_{qu} q_X$$

Proposition 0.1. *Suppose bounded Ω and quasi-uniform X w.r.t. $c_{qu} > 0$. Then there exist $c_1, c_2 > 0$ such that*

$$c_1 N^{-\frac{1}{d}} \leq h_X \leq c_2 N^{-\frac{1}{d}}$$

How do error estimates typically work in GMLS?

Consider first approximation of function from point samples using a polynomial reconstruction

Classical MLS: quasi-interpolants

[Wendland04]

Definition 1. *Local polynomial reproduction:* A process defining $\forall x_i \in X$ an approximation $s_u(x) = \sum_j \alpha_j u(x_j)$ is a local polynomial reproduction if there exist $C_1, C_2 > 0$.

1. $\sum_j \alpha_j p_j = p(x) \quad \forall p \in P$
2. $\sum_j |\alpha_j| \leq C_1 \quad \forall x \in \Omega$
3. $\alpha_j(x) = 0$ if $\|x - x_j\|_2 > C_2 h_X$ and $x \in \Omega$

Theorem 1. For bounded Ω , define $\Omega^* = \bigcup_{x \in \Omega} B(x, C_2 h_X)$. If s_u is a local polynomial reproduction of order m and $u \in C^{m+1}(\Omega^*)$ then

$$|u(x) - s_u(x)| \leq C h_X^{m+1} |u|_{C^{m+1}(\Omega^*)}$$

Theorem 2. Consider the GMLS process with $\tau = \delta_x$, $\lambda_j(u) = u(x_j)$, and $P = \Pi_m$. If Ω is compact and satisfies a cone condition, and X is quasi-uniform, then there exists a constant $C > 0$ such that $\text{supp}(W) = C h_X$ where the GMLS problem is solvable and forms a local polynomial reproduction.

Polynomial reproduction error estimate

Proof. Let $p \in \Pi_m$

$$\begin{aligned}
 |f(x) - s_f(x)| &\leq |f(x) - p(x)| + \left| p(x) - \sum_j \alpha_j f_j \right| \\
 &\leq |f(x) - p(x)| + \sum_j |\alpha_j| |p_j - f_j| \\
 &\leq \|f - p\|_{L_\infty(B(x, C_2 h_X))} \left(1 + \sum_j |\alpha_j| \right) \\
 &\leq (1 + C_1) \|f - p\|_{L_\infty(B(x, C_2 h_X))}
 \end{aligned}$$

□

Classical MLS: derivative approximation

[Mirzaei12]

Definition 0.1. Local polynomial reproduction: A process defining $\forall x_i \in X$ an approximation $D_h^\alpha u(x) = \sum_j \alpha_j u(x_j)$ is a local polynomial reproduction if there exist $C_1, C_2 > 0$.

1. $\sum_j \alpha_j p_j = D^\alpha p(x) \quad \forall p \in V$
2. $\sum_j |\alpha_j| \leq C_1 h_X^{-|\alpha|} \quad \forall x \in \Omega$
3. $\alpha_j(x) = 0$ if $\|x - x_j\|_2 > C_2 h_X$ and $x \in \Omega$

Theorem 0.1. For bounded Ω , define $\Omega^* = \bigcup_{x \in \Omega} B(x, C_2 h_X)$. If D_h^α is a local polynomial reproduction of order m and $u \in C^{m+1}(\Omega^*)$ then

$$|D^\alpha u(x) - D_h^\alpha u(x)| \leq C h_X^{m+1-|\alpha|} |u|_{C^{m+1}(\Omega^*)}$$

Theorem 0.2. Consider the GMLS process with $\tau(u) = D^\alpha u(x)$, $\lambda_j(u) = u(x_j)$, and $V = \Pi_m$. If Ω is compact and satisfies a cone condition, and X is quasi-uniform, then there exists a constant $C > 0$ such that $\text{supp}(W) = C h_X$ where the GMLS problem is solvable and forms a local polynomial reproduction.

An abstract error analysis framework

Basic technique:

$$\begin{aligned} |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}^h(u)| &\leq |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}(p)| + |\tau_{\mathbf{x}}(p) - \tau_{\mathbf{x}}^h(u)|, \quad (\forall p \in P) \\ &\leq |\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}(p)| + |\tau_{\mathbf{x}}^h(p - u)|, \quad \leftarrow \text{reconstruction property} \\ &\leq |\tau_{\mathbf{x}}(u - p)| + \left| \sum_{i=1}^{N_p} \lambda_i(u - p) a_{\tau_{\mathbf{x}}}^i \right| \quad \leftarrow \text{GMLS definition} \\ &\leq |\tau_{\mathbf{x}}(u - p)| + \max_{i \in I_{\mathbf{x}}} |\lambda_i(u - p)| \sum_{i \in I_{\mathbf{x}}} |a_{\tau_{\mathbf{x}}}^i|. \end{aligned}$$

$\sum_{i \in I_{\mathbf{x}}} |a_{\tau_{\mathbf{x}}}^i| \leq C_W \|\tau_{\mathbf{x}}\|_{P^*} \|\Lambda_{\mathbf{x}}^{-1}\|$

Holds for any target functional and approximation space:

$$|\tau_{\mathbf{x}}(u) - \tau_{\mathbf{x}}^h(u)| \leq |\tau_{\mathbf{x}}(u - p)| + C_W \|\tau_{\mathbf{x}}\|_{P^*} \|\Lambda_{\mathbf{x}}^{-1}\| \max_{i \in I_{\mathbf{x}}} |\lambda_i(u - p)|, \quad p \in P$$

- All examples from beginning of talk fall into this framework
 - Ex: Data transfer applications

$$\lambda_i^e(\mathbf{u}) := \frac{1}{|e_i|} \int_{e_i} \mathbf{u} \cdot \mathbf{t}_i \quad \lambda_i^f(\mathbf{u}) = \frac{1}{|f_i|} \int_{f_i} \mathbf{u} \cdot \mathbf{n}_i \quad \lambda_i^v(u) := \frac{1}{|V_i|} \int_{V_i} u(\mathbf{y}) d\mathbf{y}$$

- Ex: Solving different PDES

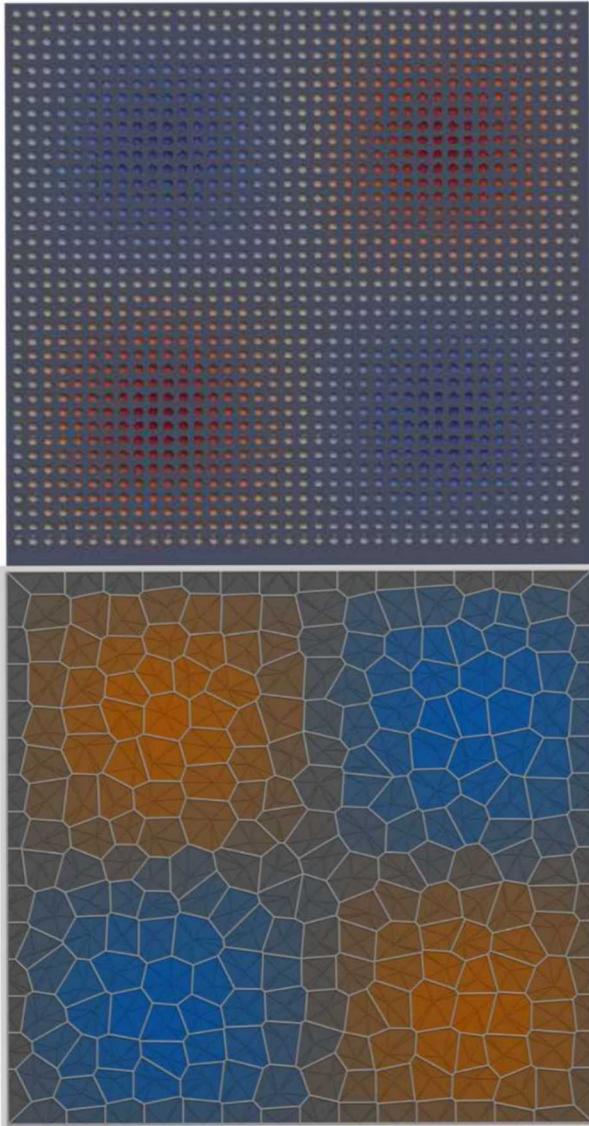
$$\tau(u) = \operatorname{div}(u) \quad \tau(u) = \int_{B(x)} K(x, y)u(y) - u(x)dy \quad \tau(u) = \int_{\partial\Omega} \sigma(u) \cdot d\mathbf{A}$$

- Ex: Handling divergence/curl constraints in saddle point problems

$$V_h = \{\mathbf{v} \in (\Pi_m)^d \mid \nabla \cdot \mathbf{v} = 0\}$$

$$V_h = \{\mathbf{v} \in (\Pi_m)^d \mid \nabla \times \mathbf{v} = 0\}$$

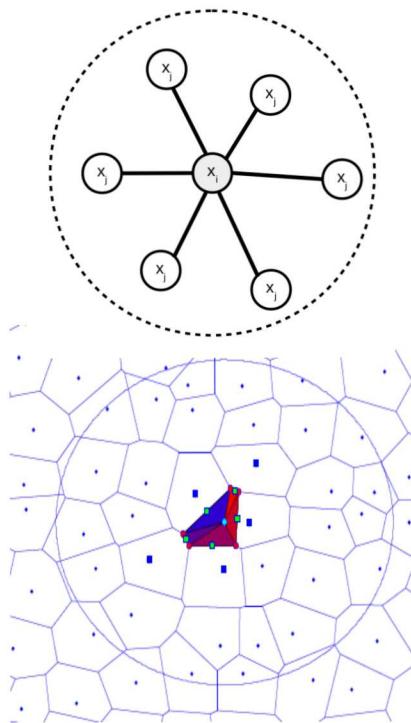
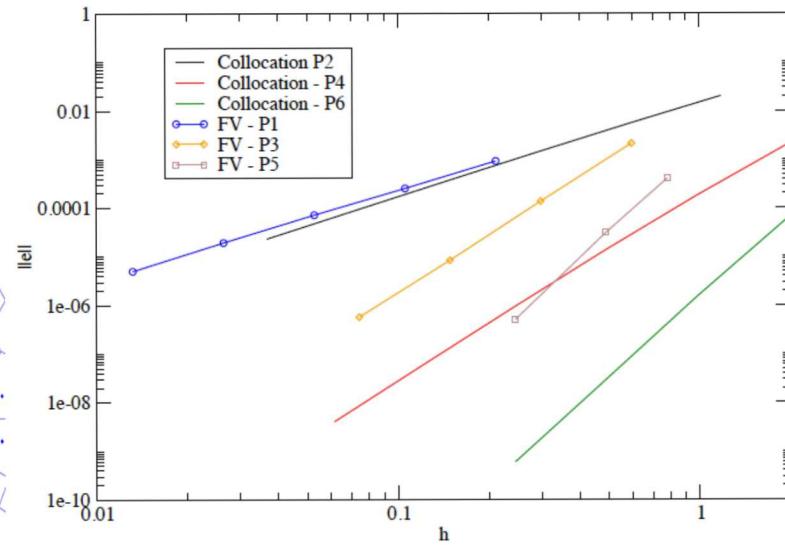
Solving PDEs with or without a mesh



To generate mesh free schemes for $\nabla^2\phi = f$:

Target functional
Reconstruction space
Sampling functional
Weighting function

	Finite difference	Finite volume
τ_i	$\nabla^2\phi(\mathbf{x}_i)$	$\int_{face} \nabla\phi \cdot d\mathbf{A}$
\mathbf{V}	P_m	P_m
λ_j	$\phi(\mathbf{x}_j)$	$\phi(\mathbf{x}_j)$
W	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$	$W(\ \mathbf{x}_j - \mathbf{x}_i\)$



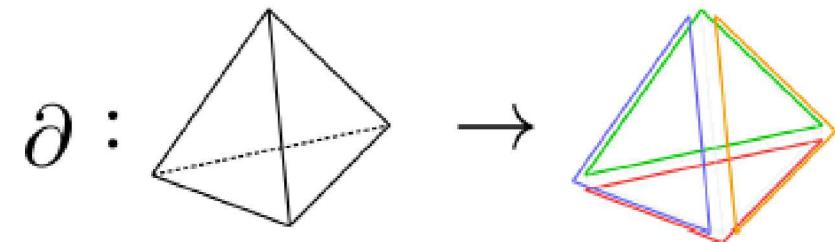
Why is conservation hard in meshfree?

Generalized Stokes theorem:

$$\int_{\Omega} d\omega = \int_{\partial\Omega} \omega$$

Gauss divergence theorem:

$$\int_C \nabla \cdot \mathbf{u} dx = \int_{F \in \partial C} \mathbf{u} \cdot d\mathbf{A}$$



Ingredients to cook up a conservative discretization:

- A chain complex – **a good boundary operator**
- A consistent coboundary operator – **good function approximation**
- A measure on each mesh entity

Quadrature with GMLS

Assume a basis, $\forall p \in \mathbf{V}$, $p = \mathbf{c}^T \mathbf{P}$ and rewrite GMLS problem as

$$c^* = \arg \min_{c \in \mathbb{R}^{\dim(\mathbf{V})}} \frac{1}{2} \sum_{j=1}^N (\lambda_j(u) - c^* \lambda_j(\mathbf{P}))^2 \omega(\tau; \lambda_j).$$

$$\tau(u) \approx c^* \tau(P^*)$$

Ex: Selecting $\tau = \int_c u \, dx$, and defining the vector

$$\mathbf{v}_c = \int_c \mathbf{P} \, dx$$

we can see that a quadrature functionals may be represented as a pairing of the GMLS reconstruction coefficient vector with some vector in its dual space

$$I_c[u] = \mathbf{v}_c^T \mathbf{c}^*$$

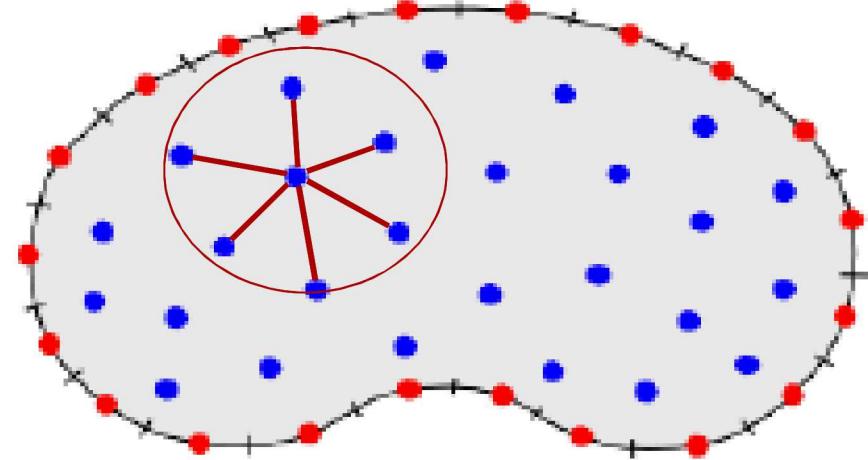
We seek to similarly define *meshfree quadrature functionals* with summation by parts properties.

Mesh surrogate: ε -ball graph

Construct a discrete divergence theorem of form:

$$I_{c_i}[\nabla \cdot \mathbf{F}] = \sum_{j \in N_i^\varepsilon} I_{f_{ij}}[\mathbf{F}] + \mathbb{1}_{i \in \partial\Omega} \int_{\partial\Omega_i} \mathbf{F} \cdot d\mathbf{A}$$

$$I_{f_{ij}}[\mathbf{F}] = -I_{f_{ji}}[\mathbf{F}]$$



Antisymmetry in fluxes lead to cancelation of telescoping sum, providing a global conservation statement:

$$\begin{aligned} \sum_i I_{c_i}[\nabla \cdot \mathbf{F}] &= \sum_i \sum_{j \in \partial\Omega^c} I_{f_{ij}}[\mathbf{F}] + \sum_{i \in \partial\Omega} \int_{\partial\Omega_i} \mathbf{F} \cdot d\mathbf{A} \\ &= \int_{\partial\Omega} \mathbf{F} \cdot d\mathbf{A} \end{aligned}$$

Virtual divergence theorem construction

Let $\mathbf{F} \in P_1(\Omega)^d$. We assume the following ansatz for our *virtual divergence theorem*.

$$\mu_i (\operatorname{div} \mathbf{F})_i = \sum_{j,\beta} \mu_{ij}^\top \mathbf{c}_{ij}(\mathbf{F}) + BC$$

where

- μ_i and $\mu_{ij} = -\mu_{ij}$ are measures **to be determined** corresponding to virtual volumes and face areas
- $\mathbf{c}_{ij}(\mathbf{F})$ is a vector of coefficients associated with the GMLS reconstruction of \mathbf{F} over $P_1(\Omega)^d$ at virtual face f_{ij}
- Seek to enforce local polynomial reproduction property, so that for VDT is exact when applied to $\mathbf{F} \in P$

How to get the areas?

Assume virtual areas μ_{ij}^α may be expressed in terms of a *virtual area potential* multiplied by point evaluation of basis function at virtual face

$$\mu_{ij}^\alpha = (\psi_j^\alpha - \psi_i^\alpha) \phi^\alpha(\mathbf{x}_{ij})$$

Then we obtain the following **weighted graph Laplacian** problem for each basis function

$$\sum_j (\psi_j^\alpha - \psi_i^\alpha) \phi^\alpha(\mathbf{x}_{ij}) = \mu_i \operatorname{div} \phi_i^\alpha$$

Following Fredholm alternative, this has solution if

- $\sum_i \mu_i = \mu(\Omega)$
- $\mu_i > 0$

O(N) solution using black-box AMG

How to get the volumes?

Assumed we have a process for generating volumes satisfying

- $\sum \mu_i = \mu(\Omega)$
- $\mu_i > 0$

Solve the following equality constrained QP

$$\mu^* = \underset{\mu}{\operatorname{argmin}} \sum_i \mu_i^2 \omega_i$$

$$\text{such that } \sum_i \mu_i = \mu(\Omega)$$

For any weight $\omega_i > 0$, this provides the definition

$$\mu_i = \frac{\omega_i}{\sum_k \omega_k} \mu(\Omega)$$

Theorem. *Assume a quasi-uniform pointset X and compactly supported $\{\omega_i\}$. Then there exist $C_1, C_2 > 0$ satisfying*

$$C_1 h^d \leq \mu_i \leq C_2 h^d$$

How to get area scaling?

- A work in progress...

Sketch:

Graph-Laplacian admits variational description

$$a(u, v) = b(v)$$

Given a Poincare-like inequality (Fiedler eigenvalue problem)

$$\|u\|_2^2 \leq C N^\alpha a(u, u)^2$$

Then we can control the energy norm with standard Lax-Milgram estimates

$$N^{-\alpha} \|u\|_2^2 \leq a(u, u)^2 \leq \|b\|_2 \|u\|_2$$

which lets us control the virtual area by the forcing in the graph Laplacian problems

$$|u_j - u_i| \leq \sqrt{a(u, u)} \leq N^{\frac{\alpha}{2}} \|b\|_2$$

Results: singularly perturbed advection-diffusion

Consider conservation laws for conserved variable q

$$\partial_t q + \nabla \cdot \mathbf{F} = 0$$

Where we will assume steady state and the following fluxes:

- **Darcy:**

$$\mathbf{F} = -\mu \nabla \phi$$

- **Singularly perturbed advection diffusion:**

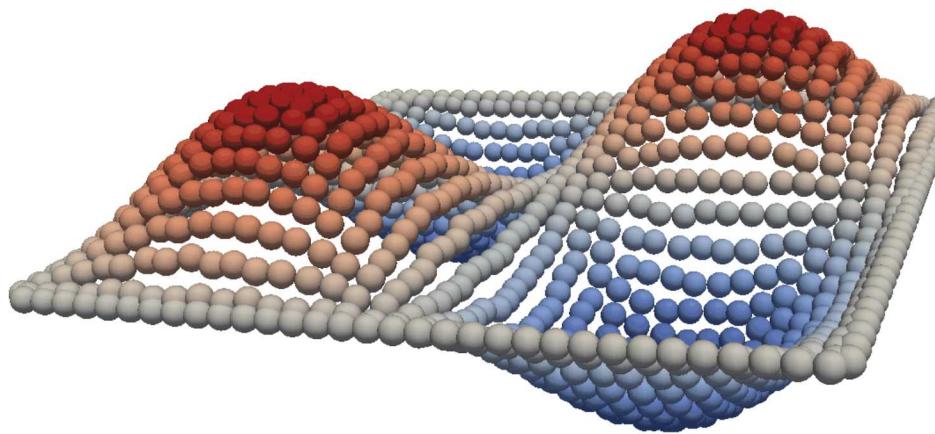
$$\mathbf{F} = -\mu \nabla \phi + \mathbf{a} \phi$$

- **Linear elasticity:**

$$\mathbf{F} = \lambda (\nabla \cdot \mathbf{u}) \mathbf{I} + \mu (\nabla \mathbf{u} + \nabla \mathbf{u}^\top)$$

All problems will be shown for discontinuous material properties to highlight flux continuity of approach.

First order truncation error for discrete divergence



H	unweighted	weighted
1/16	0.081	0.058
1/32	0.049	0.032
1/64	0.024	0.015
1/128	0.011	0.0072

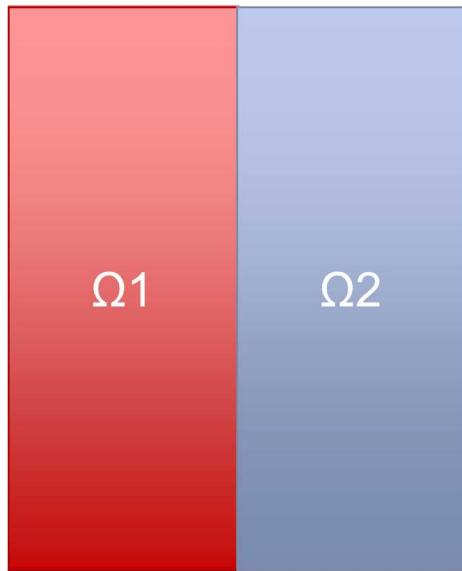
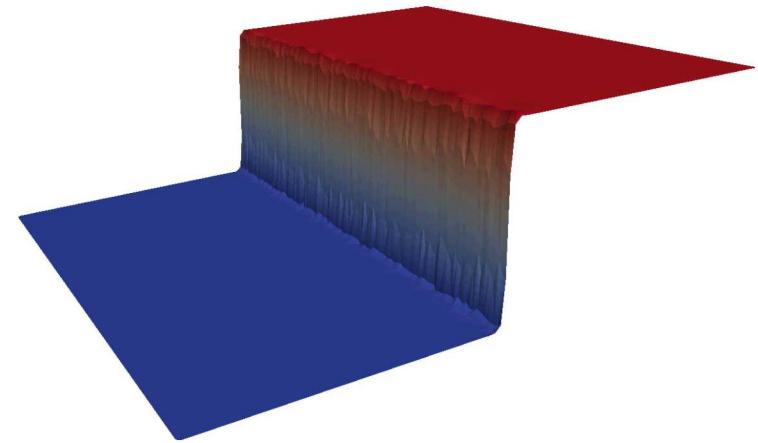
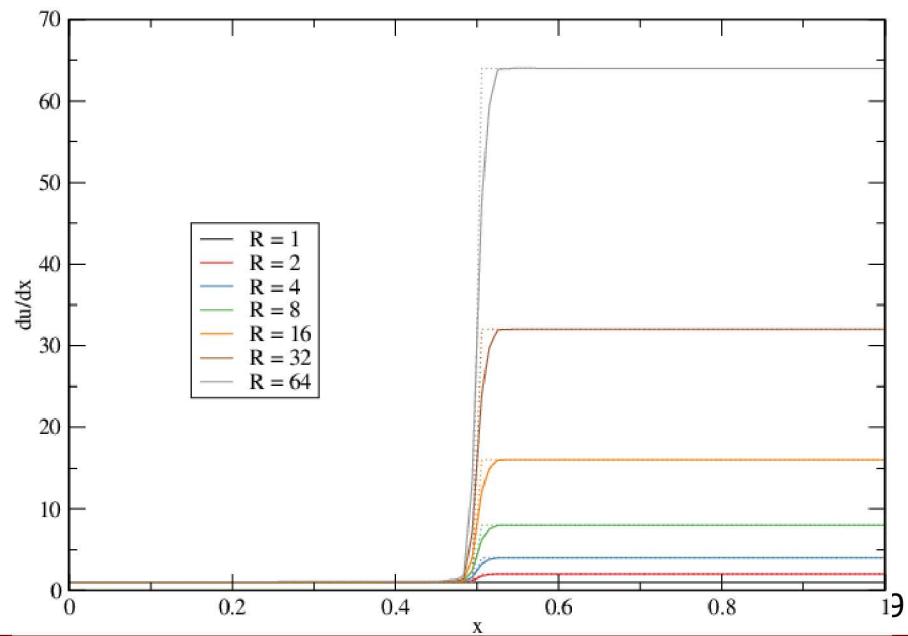
$$\mathbf{F} = - \langle \cos x \sin y, \sin x \cos y \rangle$$

Darcy: jumps in material properties

Flux continuity across interface:

$$[\kappa \nabla \phi \cdot \mathbf{n}] = 0$$

$$\nabla \phi \rightarrow$$

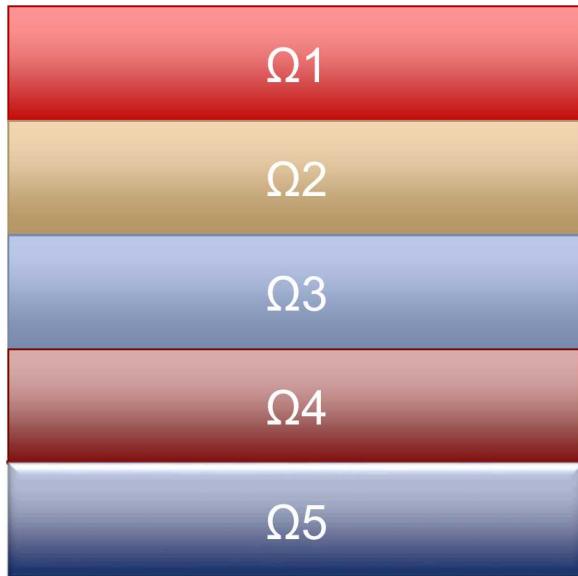
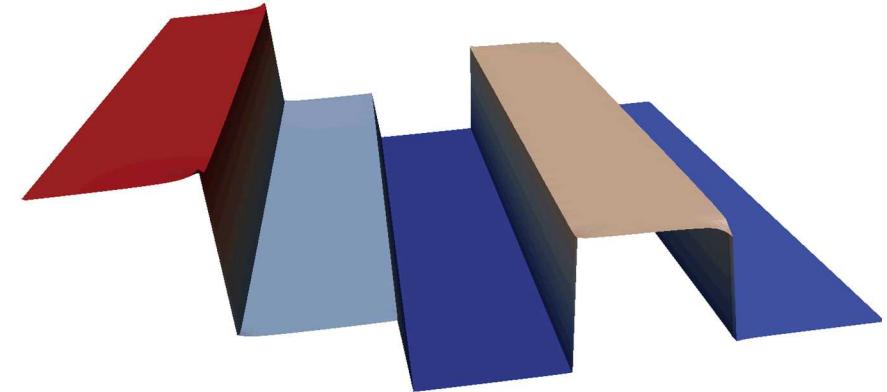
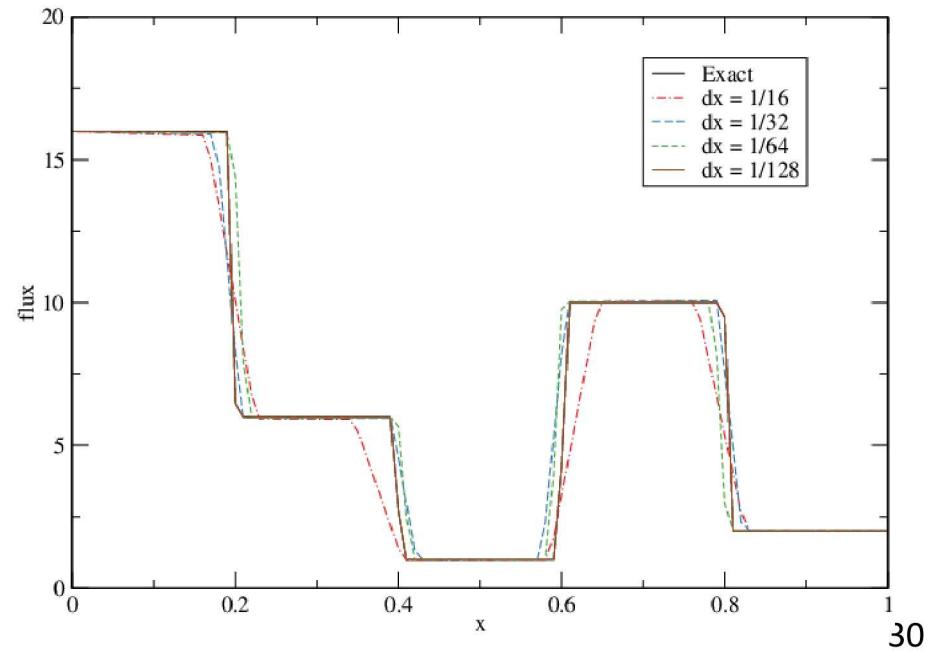


Darcy: jumps in material properties

Flux continuity across interface:

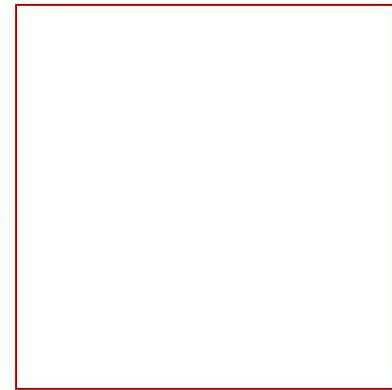
$$[\kappa \nabla \phi \cdot \mathbf{n}] = 0$$

$$\nabla \phi \rightarrow$$



Singularly perturbed advection diffusion

$$\hat{\mathbf{n}} \cdot \nabla \phi = 0$$



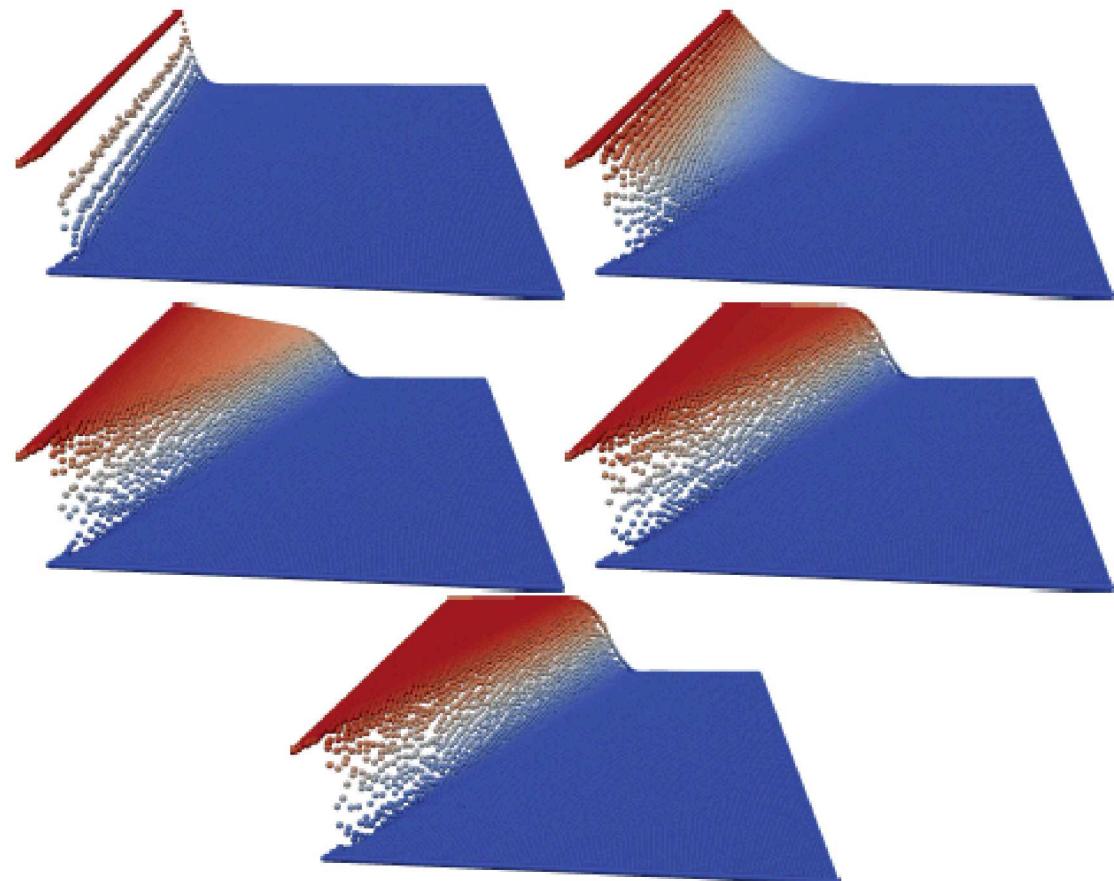
$$\phi = 0$$

$$\frac{\partial}{\partial t} \phi + \nabla \cdot \mathbf{F} = 0$$

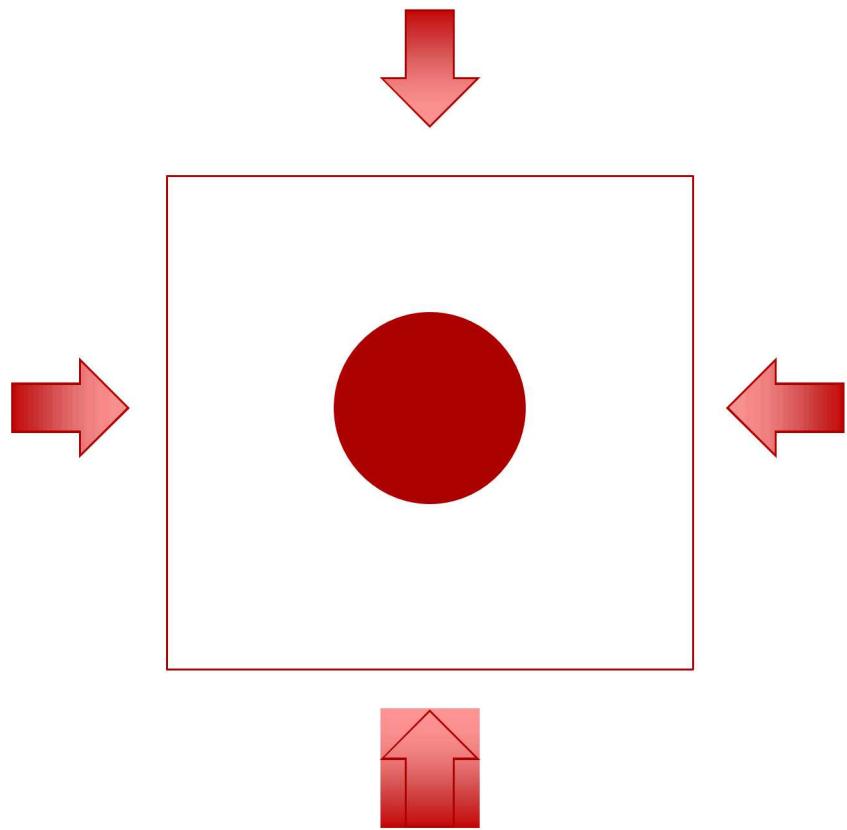
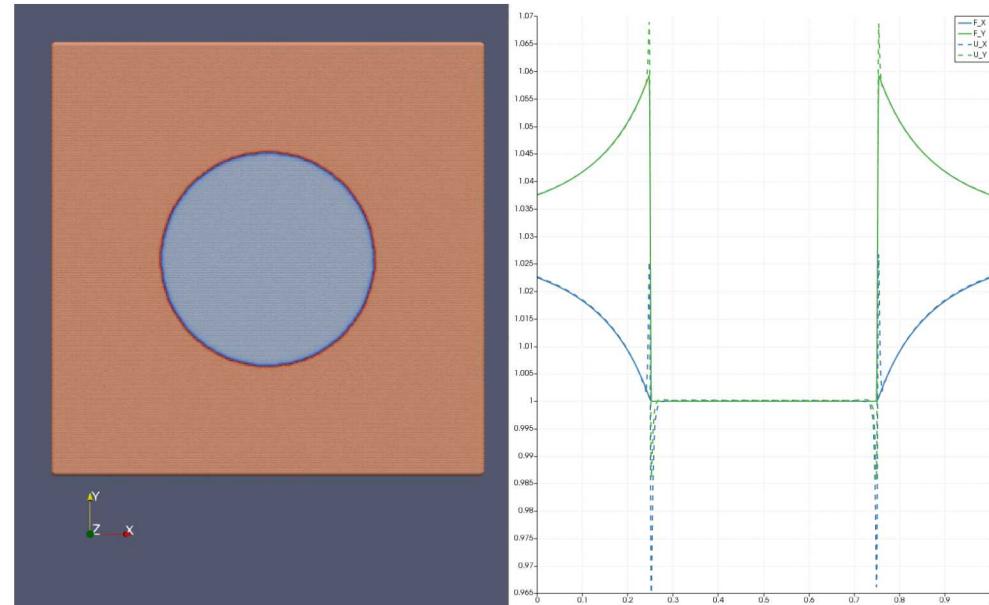
$$\mathbf{F} = \mathbf{a}\phi - \epsilon \nabla \phi$$

Single timestep

$Co \in \{1, 10, 100, 1000, \infty\}$
demonstrating L-stability



Linearly elastic composite materials



Hydrostatic loading of a stiff inclusion
- Normal stress continuity across interface

Unification with Combinatorial Hodge theory

Combinatorial chain complex

$$C_0 \xleftarrow{\partial_0} C_1 \xleftarrow{\partial_1} C_2$$

Combinatorial co-chain complex

$$C^0 \xrightarrow{\delta_0} C^1 \xrightarrow{\delta_1} C^2.$$

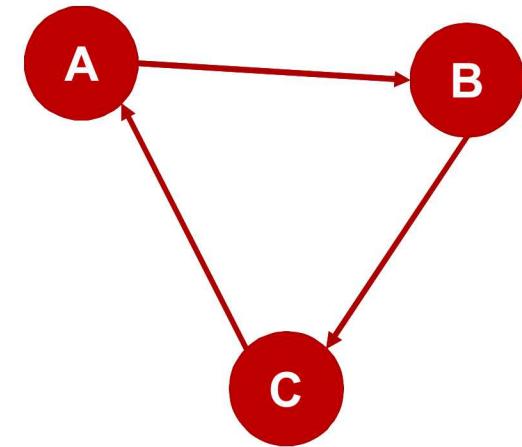
Example: combinatorial gradient

$$\delta_0 : C^1 \rightarrow C^0$$

$$\delta_0 \phi_{ij} = \phi_j - \phi_i$$

Note that:

- δ_0 does *not* converge to ∇
- $\delta_k \circ \delta_{k-1} = 0$



An example 3-clique (A, B, C) belonging to C_2

Current work: a meshfree de Rham sequence

Previous scheme can be rewritten in combinatorial Hodge notation:

$$\mu_c div_h(u)_c = \delta_0^* [(\delta_0 \psi_f)^\top D_f c_f(u)]$$

We may similarly define a mimetic curl operator by moving to the right on the combinatorial de Rham complex

$$I_f[\nabla \times u] = \delta_1^* [(\delta_1 \psi_e)^\top D_e c_e(u)]$$

Choosing $I_f[\nabla \times u] = (\delta_0 \psi_f)^\top D_f c_f(\nabla \times u)$ we obtain

$$\mu_c div_h \circ curl_h(u)_c = \delta_0^* \delta_1^* [(\delta_1 \psi_e)^\top D_e c_e(u)] = 0$$

**A direct extension to define virtual curl satisfying
 $\text{div}^* \text{curl} = 0$**

What is scientific machine learning?

Traditional scientific computing:

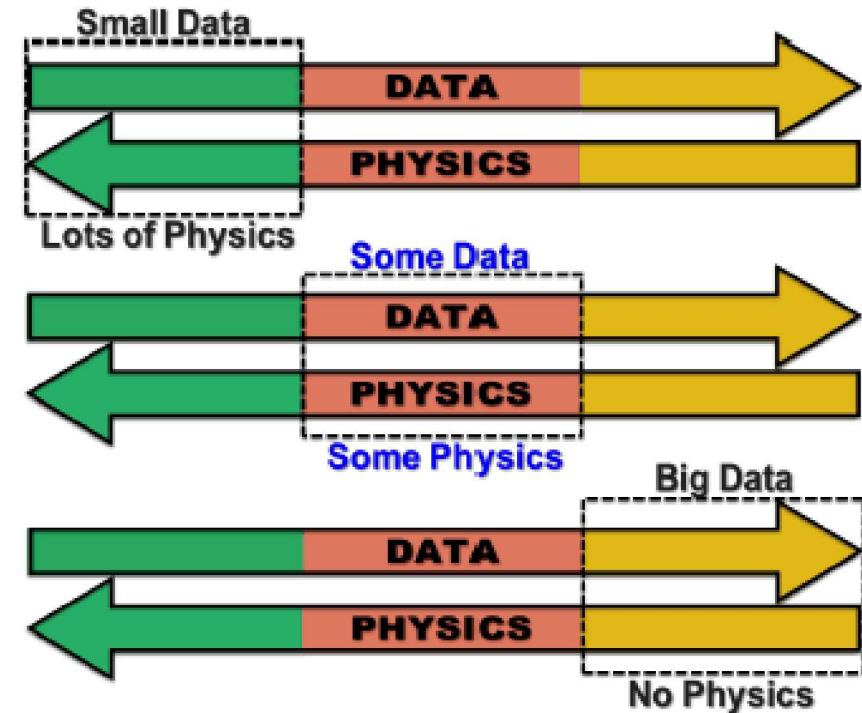
Known model, known theory leading to good discretization with FEM, data primarily for V+V only

SciML:

Known model form, unknown constitutive relationships or closures, small amount of high fidelity data

Traditional machine learning:

No physics, unknown input/output relationship, learn on huge amounts of data + universal approximation



- ***Sparse data:***
 - Data is either expensive, experimentally intractable, or legally unobtainable
- ***Unstructured data:***
 - Data comes from Lagrangian probes, unstructured FEM meshes – unlike traditional ML on images

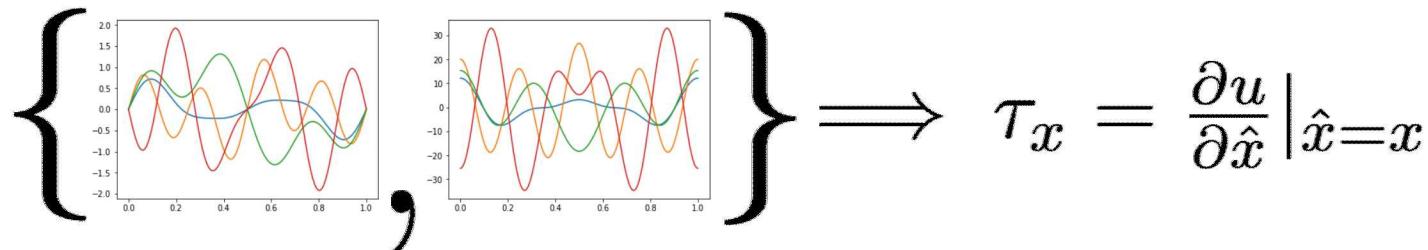
Physics Informed ML: Exploit domain expertise to augment sparse data

Operator regression

Given a collection of functions $u_i \in V$, a functional $\tau_x \in V^*$, and a domain Ω
can we infer τ_x from observations of the form

$$\{u_i(x), \tau_x[u_i]\}_{i=1}^N ?$$

Example:



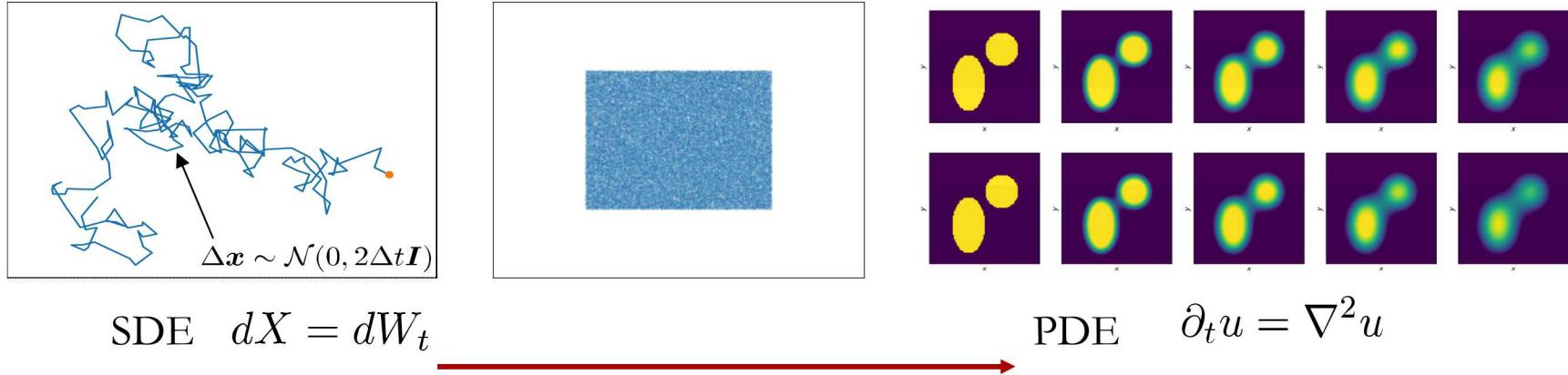
$$\mathcal{L} = \underset{\xi}{\operatorname{argmin}} \sum_i \|\tau_x[u_i] - \mathcal{L}_\xi[u_i]\|_{V^*}^2$$

We present learning frameworks corresponding to choice of parameterization:

- **GMLS-Nets:** Use meshfree approximation theory to regress operators characterized by scattered samples of data
- **Fourier regression:** Characterize operators via parameterization of Fourier symbol
- **Nonlocal operator regression:** Characterize nonlocal operators via parameterization of nonlocal kernel

What applications may be characterized in this way?

- data driven model discovery
- numerical homogenization
- surrogate model development



Example:

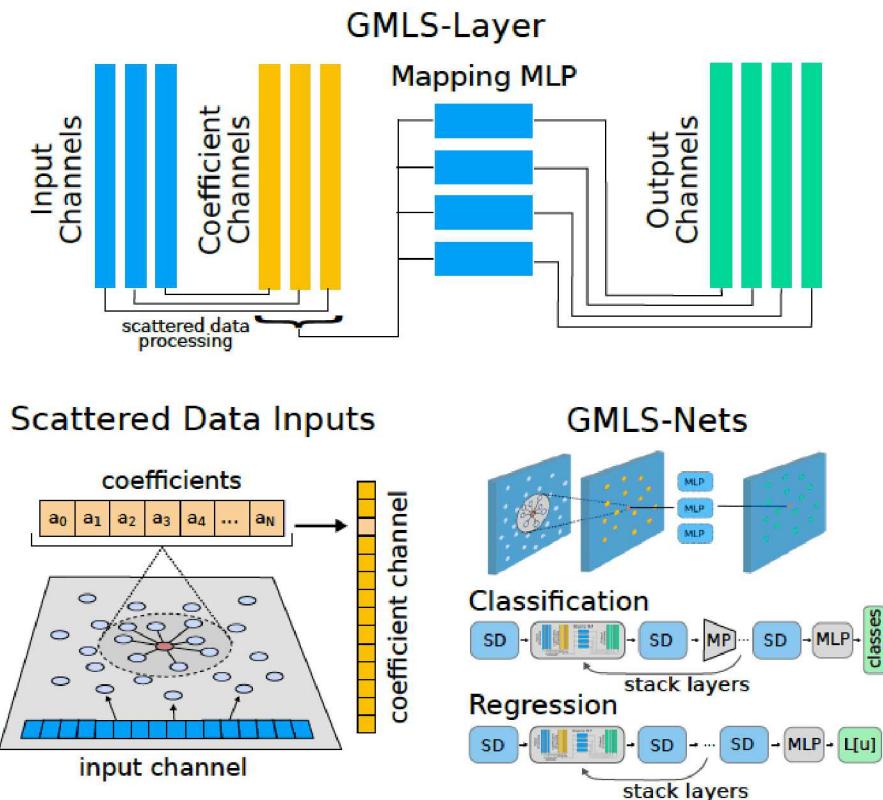
Assumed physics: $\partial_t u = \mathcal{L}(u)$

Observed high-fidelity dynamics: $\left\{ u(t_n), \frac{u(t_{n+1}) - u(t_n)}{\Delta t} \right\}$

GMLS-Nets: SciML architecture for unstructured data

w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

- Assume a basis Φ , so that $p \in P \rightarrow p = a^\top \Phi$
- GMLS thus provides an *optimal local encoding* of data in terms of the coefficient a , providing a low-dimensional encoding that may e.g. exploit physics
- Traditionally, GMLS estimates $\tau(u) = a^\top \tau(\Phi)$, assuming one has knowledge of how the target functional. Instead we seek an operator $q_\xi : a \rightarrow \mathbb{R}$, and use gradient descent to tune ξ to match data
- Functionally identical to convolutional networks - we get a stencil that reproduces the operator, but no restriction on e.g. Cartesian data, collar region, etc.

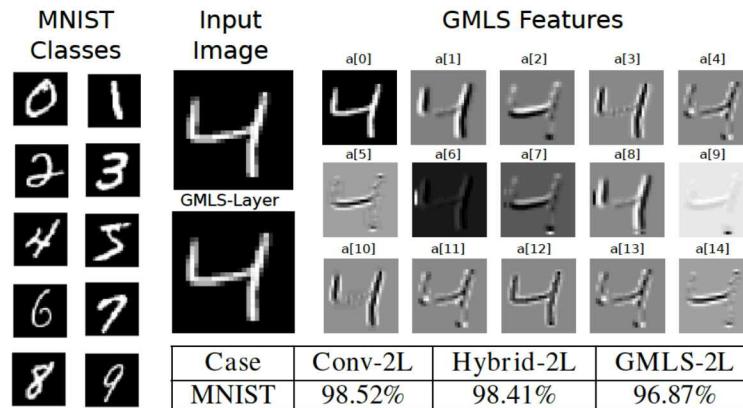


Recently accepted at neuroIPS (<https://arxiv.org/pdf/1909.05371.pdf>)

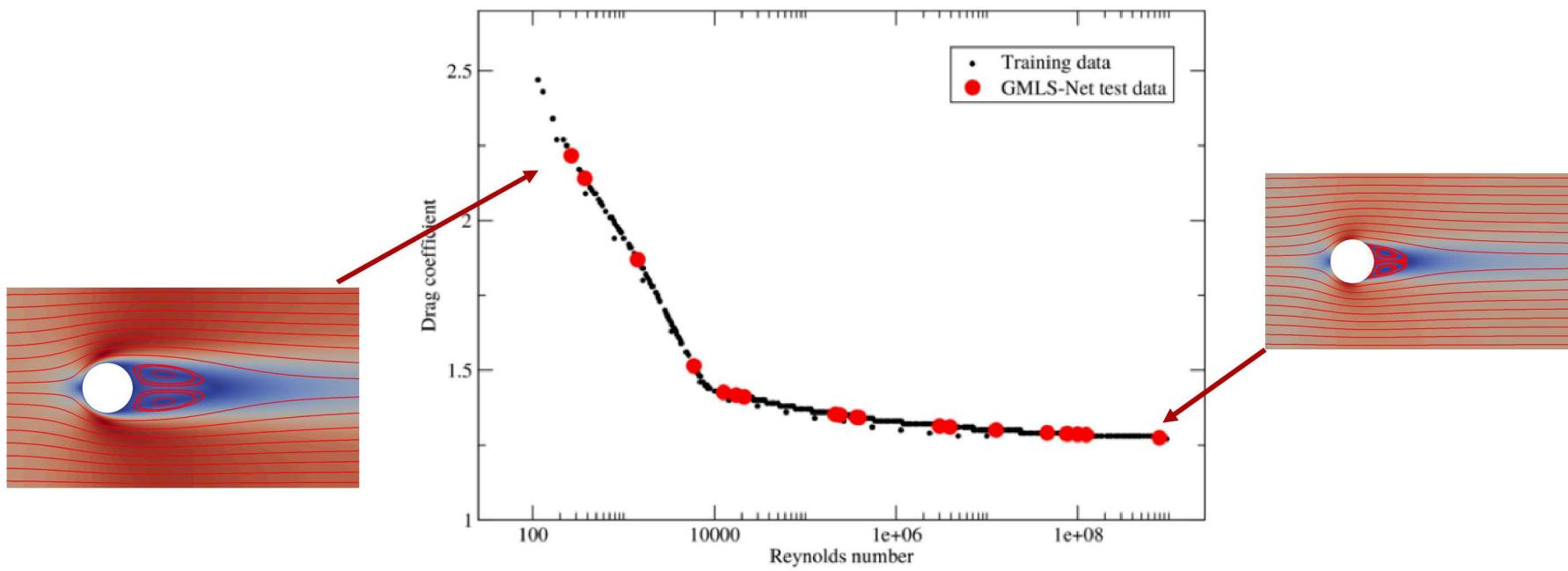
Open-source software: code and training sets publically available for:

- Tensorflow (<https://github.com/rgp62/gmls-nets>)
- PyTorch (<https://github.com/atzberg/gmls-nets>)

GMLS-Nets: results



- Provides similar performance to convNets on MNIST due to similar feature extraction capability
- Generalizes convNets to unstructured scientific data:
 - Prediction of drag from cell center velocity field taken from FV data
 - No pressure/viscosity information: drag characterized entirely by flow



Physics informed neural networks (PINNs)

Idea: regularize loss with terms encoding physics knowledge

$$\mathbf{L} = \mathbf{L}_{data} + \epsilon \mathbf{L}_{physics}$$

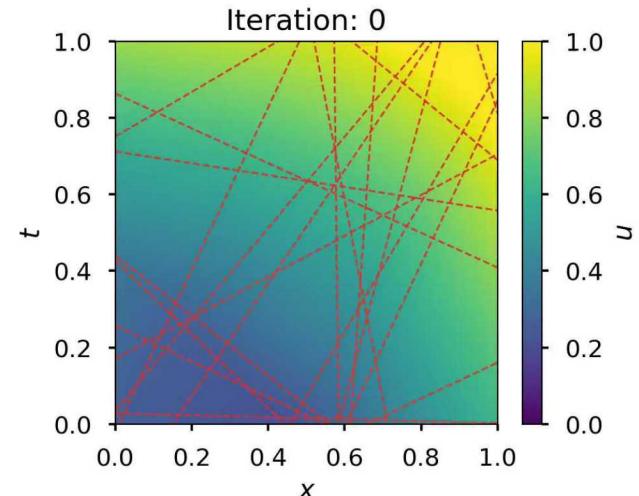
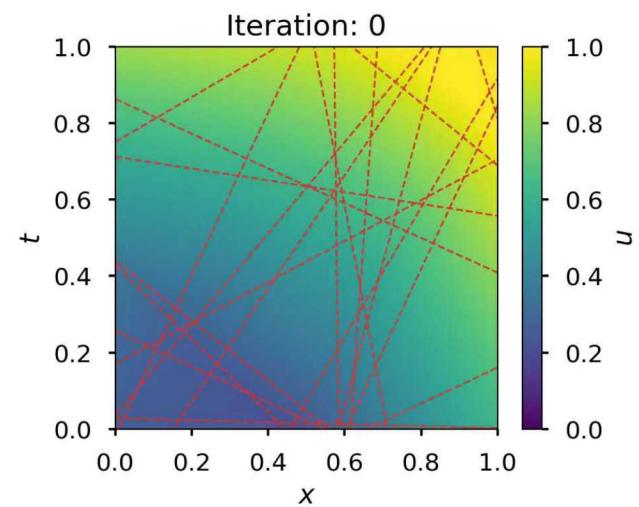
$$\mathbf{L} = \|u_{data} - \mathcal{NN}\|_{\ell_2}^2 + \epsilon \|\mathcal{L}[u_{data}] - \mathcal{L}[\mathcal{NN}]\|_{\ell_2}^2$$

Example:

$$\partial_t u + \partial_x u = 0$$

$u(x, 0)$ = Tent function

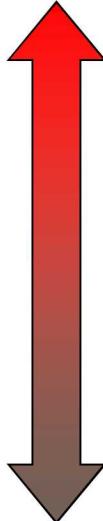
$$u(0, t) = 0$$



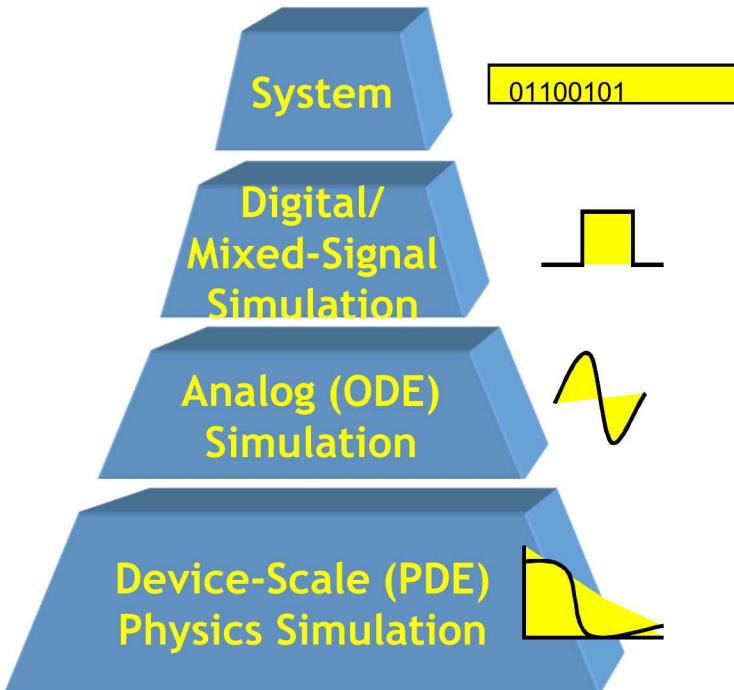
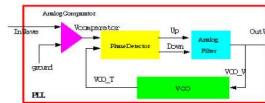
Joint work with Karniadakis, Philms
team to improve performance of PINNs

1 PIRAMID: Target problem

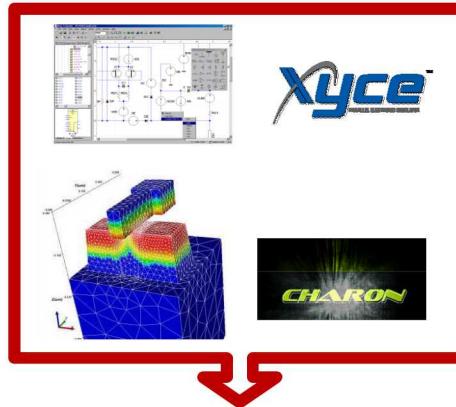
Speed



Fidelity



VHDL



Targeted level of speed
+ fidelity

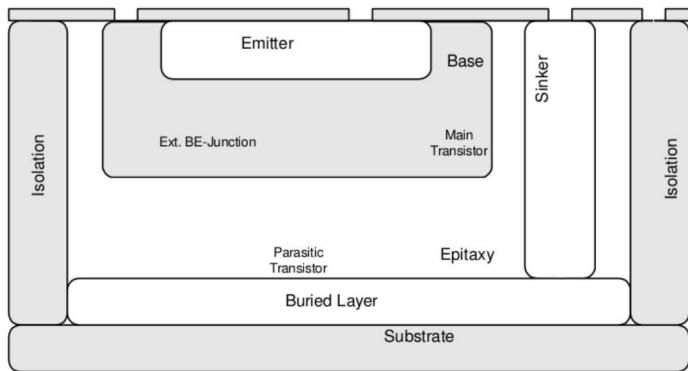
- For system scale simulation, want a process for extracting scalable low-cost network/circuit models from high-fidelity but slow device-scale models
- Often **data-sparse** (high-fidelity sim are expensive/experiments are costly)
- Current approach developing models “by hand” may take **one decade** and multiple domain experts to develop predictive network model!

LDRD goal: develop a novel Machine Learning approach to automate and reduce physics → analog model incorporation effort from decades/years to months/weeks.

2 Device simulation: TCAD

Technology Aided Computer Design (**TCAD**) simulates semiconductor device **geometry** and underlying 2D/3D **physics** at high resolution and fidelity.

TCAD BJT device model



VanRoosbroeck Equations

Poisson equation +
Drift-Diffusion carrier transport

$$\nabla \cdot \epsilon \nabla \phi = -(p - n + N_D^+ - N_A^-)$$

$$\frac{\partial n}{\partial t} = \frac{1}{q} \nabla \cdot (-\mu_n n E - D_n \nabla n) - R_n(n, p)$$

$$\frac{\partial p}{\partial t} = -\frac{1}{q} \nabla \cdot (\mu_n p E - D_p \nabla p) - R_p(n, p)$$

- ✓ Considers **device 2D/3D geometry** and **localized physics**, and can incorporate changes due to environmental physics.
- ✗ Rigorous calibration and validation are time consuming.
- ✗ Simulation of more than a couple devices is impractical.

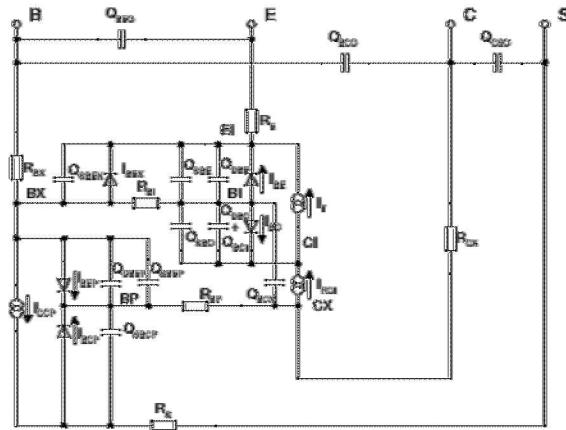
Compact models (CM) are computationally simpler analog models capturing the functional behavior of the device, e.g., can produce I-V characteristics.

Modified Nodal Analysis

(Kerchoff's Current Law + Branch Constitutive Equations)

$$\left[\begin{array}{ccccc} \frac{1}{R_1} & -\frac{1}{R_1} & 0 & 1 & 0 \\ -\frac{1}{R_1} & \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} & -\frac{1}{R_2} & 0 & 0 \\ 0 & -\frac{1}{R_2} & \frac{1}{R_2} & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{array} \right] \begin{bmatrix} v_a \\ v_b \\ v_c \\ i_{v1} \\ i_{v2} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ V1 \\ V2 \end{bmatrix}$$

Circuit compact model

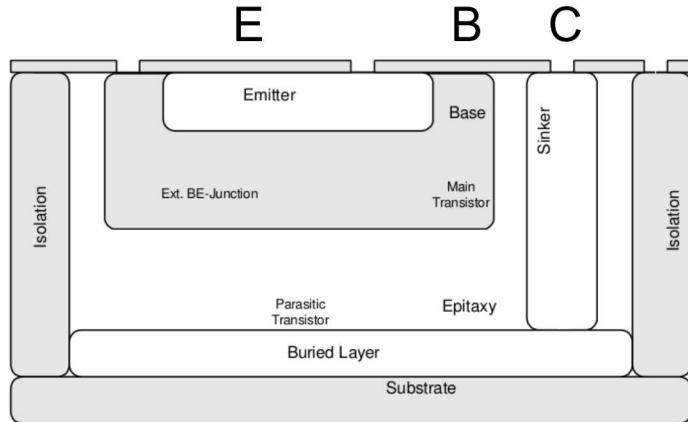


- ✓ Captures functional device behavior via electrical pathways (runs much faster than TCAD) and can be augmented to include new physics.
- ✗ Manual mapping of local physics due to operating environments to circuit components is tedious, severely limiting rapid incorporation of environmental effects into new designs. New physics = More iterations!
- ✗ E.g., QASPR HBT neutron damage model took 7 years to develop.

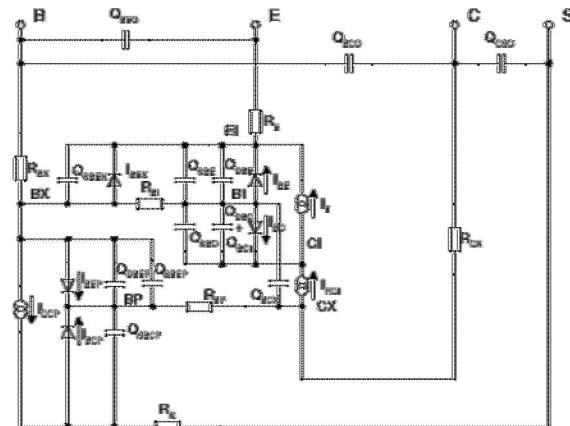
Objective

“Can we **rapidly and reliably** transfer new physics knowledge to new and existing compact models?”

TCAD BJT device model



Circuit compact model

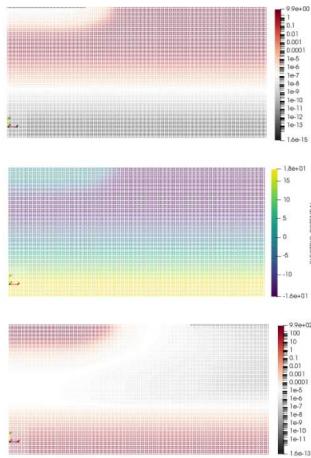


PIRAMID aims to introduce a novel ML approach to **automate the entire process in one pass!**

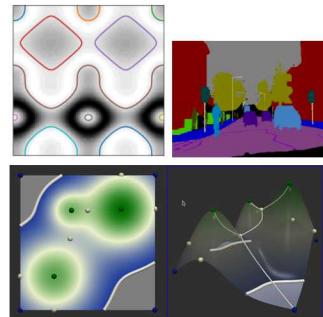
- How can we automatically extract a network/circuit topology from PDE model?
 - How do we parameterize extracted network?

5 PIRAMID process flowchart

Physics Priming (PP) Perfunctory TCAD

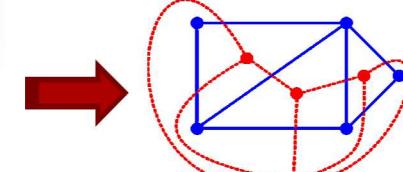


Region Recognition (RR) ML + TDA

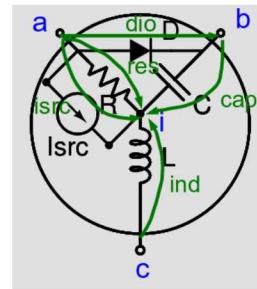


Topology Tailoring (TT)

Topology Tailoring (TT)



Interaction Identification (II) (seeded w/ established CMs)



Simulate high fidelity physics.

Identify significant regions (ML+ Topological Data Analysis)

Identify interactions between significant regions.

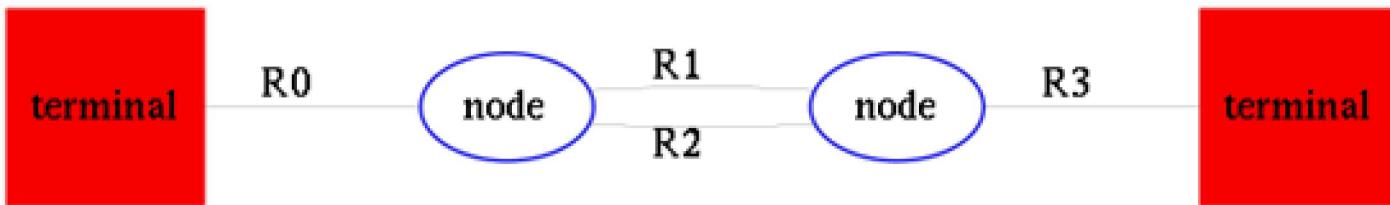
Prescribe electronics components to physical interactions.

Generate **positive feedback** in the machine learning process (supervised training).

Train and Adapt
(using available
experimental data)

Physics informed compact modeling

Given a graph extracted from PDE model, use operator regression to “dress” the graph with circuit components



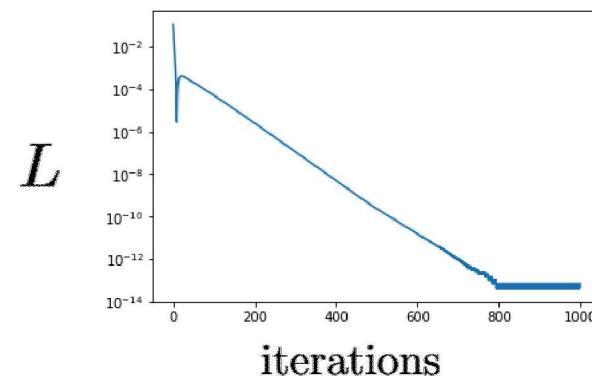
$$\mathbf{L} = \mathbf{L}_{Kirchhoff} + \epsilon \mathbf{L}_{data}$$

$$\mathbf{L} = \sum_{i \in \text{nodes}} \sum_{j \in N_i} |I_{ij}|^2 + \epsilon \sum_{i \in \text{nodes}} |\phi_i^{data} - \phi_i|^2$$

Proof of concept:

Given voltages,

Find resistors that balance currents while providing a target current



Conclusions

- Generalized moving least squares provides an approximation theoretic framework for estimating functionals from general scattered data
- We have used this technique in a wide range of applications
 - Here we presented recent work using GMLS to develop conservative schemes
 - Looking for collaborators to analyze these schemes and apply to subsurface fracture problems
 - For scientific machine learning applications GMLS provides an effective architecture for operator regression
- Incorporation of graphical models with operator regression a promising area to incorporate topological structure into data-driven model development