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Sandia
What does meshfree mean? Pl et

= Physics compatible FEM spaces defined via differential k-forms:

= For a polygonal mesh in 3D

Zero-form: o0, ou
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A meshfree method uses only zero-forms as degrees of freedom
= Easy to push points around if you don’t care about preserving a mesh

= Exchange nice mathematical setting to get more descriptive models

= No Stokes theorems (no conservation), no natural bilinear forms
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Why meshfree? Large deformation problems 77 Ntora

—V?u+Vp=f
V-u=90

ulg, =U+ (z—X) xQ
J5,0 -dA =0

Trask, N., Maxey, M., Hu, X.

A compatible high-order meshless
method for the Stokes equations with
applications to suspension flows

Journal of Computational Physics (2018)

Hu, W., Trask, N., Hu, X.,Pan,W.

A spatially adaptive high-order meshless
method for fluid—structure interactions.
Computer Methods in Applied Mechanics
and Engineering (2019)

Trivial treatment of large deformation problems — no remeshing + remap




Why meshfree? Large deformation problems ) B
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Compatible meshfree discretization: A framework for physics compatible
discretization of multiphysics problems that mimics robustness of mimetic methods
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Why meshfree? Automatic geometry discretization i) feema_

3D Image Data :
(X—ra?/ CT) Labeling Exodus mesh

R

S S RO
o o Wigd . O { ¥
0° G8is 1 *}) \

N > e
LTt f‘"?{iﬁ

At

FEM

Segmentation 5 o

/1

» For engineering problems meshing constitutes 60-70% of time to solution
(SAND-2005-4647), which cannot be improved by moving to larger computers
« Automating geometry discretization is fundamental to developing large

throughput workflows based on either experimental data or UQ/optimization .




Sandia
Why meshfree? Automatic geometry discretization ) foor

S 4 ]
« Meshfree methods operate directly on the degrees of freedom available
in experiment

» Placing a particle at each voxel of the CT scan is sufficient to obtain a high-
fidelity simulation without human-in-the-loop meshing process 6
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Why meshfree? Differential geometry on evolving manifolds

To solve surface PDE, one may learn mapping between local charts and tangent
space to access metric tensor, curvature, surface differential operators, etc.

Wity CusuliMonifde
1 2e04 oB 1 & Nass0D
Y Y

|
|
o

L (—5dvb 4 2Kvb) —~yvP —dp
—ov’ = U,

Trask, Nathaniel, and Paul Kuberry. "Compatible meshfree discretization of surface PDEs."Computational Particle

Mechanics(2019): 1-7.
Gross, B. J., Trask, N., Kuberry, P.,&Atzberger, P. J. (2019).Meshfree Methods on Manifolds for Hydrodynamic Flows on

Curved Surfaces:A Generalized Moving Least-Squares (GMLS) Approach.arXiv preprint arXiv:1905.10469. 8



Sandia
Outline Pl et

= Generalized moving least squares (GMLS)

= An approximation theory framework for generating meshfree
methods with rigorous accuracy guarantees

= Conservative meshless discretization

= How can we construct conservative schemes if we don’t have access
to discrete Stokes theorems?

= Meshfree discretizations of nonlocal mechanics

= Can we construct a meshfree discretization framework for integral
operators for fracture mechanics?

= Meshfree machine learning

= For scientific machine learning applications, can we use scattered data
approximation theory to build learning frameworks appropriate for
unstructured scientific data?

9




Generalized moving least squares (GMLS) ) e

Given u € V, a framework for estimating operators 7 € V* by finding an optimal
reconstruction over a subspace P C V which best matches unstructured samples

A= {Xi(w)};
T(u) ~ 7"(u)
' 2
pEP ,
T‘h ((‘?&fé)) = 7;'@@*)

Example:

Approximate point evaluation of derivatives:

Target functional 7; = D% 0d,, € V* |

Reconstruction space P = m,, \ //\

Sampling functional \; = 6., € V* : | \
Weighting function W = W (||z; — z;||) | N




Generalized moving least squares (GMLS) ) e

Primal problem:
Unconstrained QP

p* = argmin (Zj Aj(P) — A (‘w)) W(r, 7))
pEP

m"(u) :== 7(p*)

Dual problem:
Equality constrained QP
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Preliminaries: Quasi-uniform point clouds i) feema_

-

Definition 0.1. Fill4separation distances Given point cloud X = {z1,...,zx} C €,
define distances
hx = sup min||z — z,||?
x = supminllz

1 . 9
Ix =3 j#?“wz — zj]|
Definition 0.2. Quasi-uniformity A point cloud X is quasi-uniform with respect to cgy
if
gx < hx < cgugx

Proposition 0.1. Suppose bounded €} and quasi-uniform X w.r.t. cq, > 0. Then there
exist c¢1,co > 0 such that

CI.N—‘%% < hx < CQN_%
12




How do error estimates typically work in GMLS?

Consider first approximation of function from point
samples using a polynomial reconstruction




Classical MLS: quasi-interpolants A
[Wendland04]

Definition 1. Local polynomial reproduction: A process defining Vx; € X an approzi-

mation su(z) = ) _; aju(z;) is a local polynomial reproduction if there exist C1,C2 > 0.
1. Ej a;jp; =p(x) VpeP
2. >l <G Vz e
3. aj(z) =0 if ||z — z;]|2 > Cahx and x € Q
Theorem 1. For bounded 2, define * = mLEJQB(w, Cohx). If sy is a local polynomial
reproduction of order m and u € C™T1(Q*) then
lu(z) — su(2)] < CRE |u|gmrr(gr)

Theorem 2. Consider the GMLS process with T = 05, Aj(u) = u(z;), and P =11,,,. IfQ is
compact and satisfies a cone condition, and X is quasi-uniform, then there exists a constant
C > 0 such that supp(W) = C hx where the GMLS problem is solvable and forms a local
polynomaal reproduction.

14
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Polynomial reproduction error estimate @ Isborsris

Proof. Let p € 11,,

/(@) — s¢(@)| < |f(x) —p(z)| + |p(z) — Zafjf.é

< 1f(@) —p(@)|+ 3 loylIps — J

J

<||If =Pl (B=,Cahx)) (1 + Z |0ij)

< 1+ C)If = PllLo (B@,C2hx))




Classical MLS: derivative approximation A
[Mirzaeil2?]

Definition 0.1. Local polynomial reproduction: A process defining Vz; € X an
approximation Dju(z) = } . aju(z;) is a local polynomial reproduction if there exist
C1,C2>0.

1. Ej a;jp; =Dp(z) VpeV
2. Y ley] < Cihy!™ vz eQ
3. aj(z) =0if ||z — x|l > Cohx and x € )
Theorem 0.1. For bounded (), define Q* = mgﬁB(a:, Cahx). If Dy is a local polynomial
reproduction of order m and v € C™T1(Q*) then
[D*u(z) — Dgu(z)] < Chy ™1l gmir ory

Theorem 0.2. Consider the GMLS process with 7(u) = D%u(z), Aj(u) = u(z;), and
V =11,,. If Q is compact and satisfies a cone condition, and X is quasi-uniform, then there
exists a constant C > 0 such that supp(W) = C hx where the GMLS problem is solvable
and forms a local polynomial reproduction.

16




An abstract error analysis framework ) =

Basic technique:
() = T (u)| < () = 7<(p)| + |7x(p) — X (u)l, (Vp € P)
< |7x(u) — 7x(p)| + |7 (p —u)[, <— reconstruction property

NF' . .
< |melu = p)l + | 0 Ai(u = plas, | <— GMLS definition

=1

< |rx(u = p)| + max [Ni(u = p)| 3 ||

tEfx T

> la% | < Cw Il e+ | ALl
iy

Holds for any target functional and approximation space:
I (u) — Tt ()] < |7(u = p)| + Cw |7l - 1AL max[Ai(u —p)|, p€P

F-

17
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Broadly applicable toolbox for meshfree approximation

= All examples from beginning of talk fall into this framework

= Ex: Data transfer applications

1
Af(a) = t; }af /u n; AV( :=—[ y) di
() := |et|,[ w )= 1A ®) =1y ), M) v

= Ex: Solving different PDES

r(w) = div(w) (W) = [p) K@ yhuy) —ul@dy 7(w) = foq0(u)-dA
= Ex: Handling divergence/curl constraints in saddle point problems

Vi={vey,)? V-v=0}
Vi={vel,)? Vxv=0}

18




Solving PDEs with or without a mesh

To generate mesh free schemes for V*¢ = f:

T; VZé(x;) | j" face Vé-dA

‘ Vv
Smmpﬂhmg fmmtmmﬂll Aj

Weighting function W (Jlx; — o)) Wlle; — :ll)

—— Collocation P2
—— Collocation - P4
001 —— Collocation - P6
o—o FV-P1
FV-P3
a FV-P5
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Why is conservation hard in meshfree? ) foor

Generalized Stokes theorem:

O -

Ingredients to cook up a conservative discretization:

e A chain complex — a good boundary operator

* A consistent coboundary operator — good function approximation
* A measure on each mesh entity




Quadrature with GMLS ) B

Assume a basis, Vp e V, p=cTP and rewrite GMLS problem as

N
c* = argmin lz (Aj(u) — C*Aj(P})Qw(T; Aj)-
ccRdim(V) =1

T(u) = c*7(P")

Ex: Selecting 7 = [_u dx, and defining the vector

V.= /de

we can see that a quadrature functionals may be represented as a pairing
of the GMLS reconstruction coefficient vector with some vector in its
dual space

IcJu] = vIc*

We seek to similarly define meshfree quadrature functionals with

summation by parts properties.
21




Mesh surrogate: ¢-ball graph ) e

Construct a discrete divergence
theorem of form:

I,[V-F] = z Iy, [F] "i“lmzeas’z/ F-dA -
j’ENG 8@@ +

" e « °© e " 4
Ifij [F] = _Ifji [F}E \‘. .j*'-:.“:‘—v:r’y-{

Antisymmetry in fluxes lead to cancelation of telescoping sum, providing a
global conservation statement:

-dA

22




Virtual divergence theorem construction

Let F € P;(2)%. We assume the following ansatz for our virtual divergence theorem.
pi (divF), = z pi;cii(F) + BC
3.8
where

e 1; and p;; = —p;; are measures to be determined corresponding to virtual volumes
and face areas

e c;;(F) is a vector of coefficients associated with the GMLS reconstruction of F over
P;(Q)? at virtual face f;;

e Seek to enforce local polynomial reproduction property, so that for VDT is exact when
applied to F' € P




Sandia
How to get the areas? ) foor

Assume virtual areas pg; may be expressed in terms of a virtual area potential
multiplied by point evaluation of basis function at virtual face

uss = (V5 —¥f) ¢* (wi5)

Then we obtain the following weighted graph Laplacian problem for each
basis function

> (W5 — ) ¢ (@i;) = padiv ¢
7
Following Fredholm alternative, this has solution if

o > i = p(Q)

o u; >0

O(N) solution using black-box AMG

24
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How to get the volumes? ) foor

Assumed we have a process for generating volumes satisfying
o > wi=p(Q2)
e u; >0

Solve the following equality constrained QP

©w = argmin E paw;

B i

such that Z i = p(€2)
i
For any weight w; > 0, this provides the definition

1(£2)

M@ Zk Wk

Theorem. Assume a quasi-uniform pointset X and compactly supported {w;}. Then there
exist Cy,Co > 0 satisfying

Oihd ﬁ Hq _<_ Gghd
25
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How to get area scaling? i) feema_

= A work in progress...

Sketch:
Graph-Laplacian admits variational description

a(u,v) = b(v)
Given a Poincare-like inequality (Fiedler eigenvalue problem)
lull3 < C N%a(u,u)”
Then we can control the energy norm with standard Lax-Milgram estimates
N~=[ull3 < a(u,u)* < [[b]|2]ul]2

which lets us control the virtual area by the forcing in the graph Laplacian

problems
|uj — wi| < Va(u,u) < N=|[b||2
26




Results: singularly perturbed advection-diffusion ) e

Consider conservation laws for conserved variable g
81;(1 +V-F=0
Where we will assume steady state and the following fluxes:

e Darcy:
F=—-uVg

e Singularly perturbed advection diffusion:
F=—uVo+ag
e Linear elasticity:
F=X(V-u)I+p(Vu+VuT)

All problems will be shown for discontinuous material properties to highlight
flux continuity of approach.
27




Sandia
First order truncation error for discrete divergence i) feema_

“ unweighted weighted

1/16 0.081 0.058
1/32 0.049 0.032
1/64 0.024 0.015
1/128 0.011 0.0072

S
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Darcy: jumps in material properties ) fooer

Flux continuity across interface:

[ﬁ@‘@zgé ”:KI] oy (]

Vo —

70
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Darcy: jumps in material properties

Flux continuity across interface:

Vo —




Singularly perturbed advection diffusion )

n-V¢o=0

a
—ao+ V- -F=0
Efﬁb

F=ap— eV

Single timestep
Co€ {1, 10, 100, 1000, oo}
demonstrating L-stability

31




Linearly elastic composite materials

4

Hydrostatic loading of a stiff inclusion
- Normal stress continuity across interface




Unification with Combinatorial Hodge theory

Combinatorial chain complex

c, & o, & o,

Combinatorial co-chain complex

c® ot 2y o2,

Example: combinatorial gradient
(5@ :C 1 sy CO

dodi; = Pj — bi

Note that: An example 3-clique (4, B,C)

belonging to Cs
e &g does not converge to V

® 0p00p1=0

Jiang, Xiaoye, et al. "Statistical ranking and combinatorial Hodge theory."
Mathematical Programming 127.1 (2011): 203-244.




Current work: a meshfree de Rham sequence

Previous scheme can be rewritten in combinatorial Hodge notation:

pedivy(u)e = 85 [(6ov5)" Dycy(u)]

We may similarly define a mimetic curl operator by moving to the right on the
combinatorial de Rham complex

15[V x u] = 67 [(81%e) " Dece(u)]
Choosing I¢[V x u] = (6pt0¢)T Dscs(V X u) we obtain

pedivy, o curly(u)e = 0507 [(01%e)T Dece(u)] =0

A direct extension to define virtual curl satisfying

divcurl =0
34




What is scientific machine learning?

___Small Data___
Traditional scientific computing: o--Srallate. ‘
Known model, known theory leading to ~
good discretization with FEM, data

o | -
primarily for V+V only “Tots of PRySics
SciML:

Known model form, unknown constitutive
relationships or closures, small amount of
high fidelity data

“Some Physics

Traditional machine learning:
No physics, unknown input/output
relationship, learn on huge amounts of
data + universal approximation

No Physics

« Sparse data:
« Data is either expensive, experimentally intractable, or legally unobtainable
* Unstructured data:
« Data comes from Lagrangian probes, unstructured FEM meshes — unlike
traditional ML on images

Physics Informed ML: Exploit domain expertise to augment sparse data ;:
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Operator regression

Given a collection of functions u; € V', a functional 7,, € V*, and a domain {2
can we infer 7, from observations of the form

{ui(), T[] }ﬁl ?

__ Ou
i }:> Tr = 3z li=x

£ = argmin D lImafua] — Lefui] [+

We present learning frameworks corresponding to choice of parameterization:

¢ GMLS-Nets: Use meshfree approximation theory to regress operators
characterized by scattered samples of data

e Fourier regression: Characterize operators via parameterization of Fourier
symbol

¢ Nonlocal operator regression: Characterize nonlocal operators via
parameterization of nonlocal kernel 36
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What applications may be characterized in this way? ) foor
e data driven model discovery
e numerical homogenization

e surrogate model development

".'(ﬂ"‘ » x x X x x
7% K e
| ' | v’ ;n xﬂ xn xu x-
“ Az ~ N(0,2AtI) i i i ! :

SDE dX = dW, ~ PDE oyu = VZu

Example:

Assumed physics: 0;u = L(u)

Observed high-fidelity dynamics: {'u,(tn,), u(t“+2;“(t”)

37




GMLS-Nets: SciML architecture for unstructured data 7| Neoora

w/ Ravi Patel (SNL), Paul Atzberger (UCSB)

e Assume a basis ®,sothat pe P > p=4aT®

e GMLS thus provides an optimal local encoding of
data in terms of the coefficient a, providing a low-
dimensional encoding that may e.g. exploit physics

e Traditionally, GMLS estimates 7(u) = aT7(®), as-
suming one has knowledge of how the target func-
tional. Instead we seek an operator g¢ : a — R, and
use gradient descent to tune £ to match data

e Functionally identical to convolutional networks - we
get a stencil that reproduces the operator, but no
restriction on e.g. Cartesian data, collar region, etc.

Input
Channels
Coefficient
Channels

I

scattered data h'—"

processing

GMLS-Layer
Mapping MLP
—mE:
—l— | 35
- || 32
—-T

Scattered Data Inputs

coefficients

(oo oo on oo for] s
| |

input channel

OTTTTTTTTITTITT]

coefficient channel

GMLS-Nets

pp:p

CIaSS|ﬁcat|on

||
06 ) ()00

stack layers
Regression

e )@

stack Iayers

Recently accepted at neurolPS (htips://arxiv.org/pdf/1909.05371.pdf)

Open-source software: code and training sets publically available for:
» Tensorflow (https://github.com/rgp62/gmlis-nets)
« PyTorch (https://github.com/atzberg/gmls-nets)

38




GMLS-Nets:

MNIST
Classes

IEH

Input
Image

results

GMLS Features

a[1] a[2]

al3]

GMLS-Layer
Case Conv-2L | Hybrid-2L | GMLS-2L
MNIST 98.52% 98.41% 96.87%
i IR R L [ LB Rl I IR R Rl ﬁ LA LLL
25 « Training data _
% ® GMLS-Net test data
L -}\ L

77 Ntora

Provides similar performance to convNets on
MNIST due to similar feature extraction
capability
Generalizes convNets to unstructured scientific
data:
e Prediction of drag from cell center
velocity field taken from FV data
* No pressure/viscosity information: drag
characterizated entirely by flow

| L i i pautip

| 10 i uia

l L L i il II AL i iiinil

10000

le+06 le+08

Reynolds number
’ 39




Physics informed neural networks (PINNs)

Idea: regularize loss with terms encoding

Iteration: O

1.0 T 1.0
physics knowledge . e
, 0.6 0.6
L= Ldam, + emﬂphym’;as - S
0.4 0.4
0.2 0.2
0.0 0.0
00 02 04 06 08 1.0
Example: Oy + 8,0 = 0 10 N I
0.8 0.8
u(x,0) = Tent function e "
m(@§ ﬁ) — @ 0.4 0.4
0.2 0.2
0.0 0.0
. . . . . 00 02 04 06 08 1.0
Joint work with Karniadakis, Philms X
team to improve performance of PINNs 40




: ‘ PIRAMID: Target problem

Speed .
| 01100101 | G e
ZE L—“T VHDL

Digital/
Mixed-Signal

Analog (ODE)
Simulation

Device-Scale (PDE) i

Fidelity Physics Simulation Targeted level of speed
+ fidelity

» For system scale simulation, want a process for extracting scalable low-cost
network/circuit models from high-fidelity but slow device-scale models
+ Often data-sparse (high-fidelity sim are expensive/experiments are costly)
* Current approach developing models “by hand” may take one decade and multiple
domain experts to develop predictive network model!

LDRD goal: develop a novel Machine Learning approach to automate and reduce
physics 2 analog model incorporation effort from decades/years to months/weeks.




, 1 Device simulation: TCAD

Technology Aided Computer Design (TCAD) simulates semiconductor device
geometry and underlying 2D /3D physics at high resolution and fidelity.

TCAD BJT device model VanRoosbroeck Equations
Poisson equation +
Drift-Diffusion carrier transport

f ) Emitter ( ) (
[ ]Base 2 V-eVp= —(p—n+ Ny —N;)
, Mo on 1
}_fg Ext. BE-Junction Tiandsh % E — aV . (—‘unnE — Dn Vn) — Rn (n’ p)
dp 1
iwy | | Frinie (4npE — D,Vp) — Ry(n, )

Buried Layer

Substrate

Y
\ J\

v Considers device 2D /3D geometry and localized physics,

and can incorporate changes due to environmental physics.

X Rigorous calibration and validation are time consuming,
X Simulation of more than a couple devices is impractical.



; 1 Device simulation: circuit compact models

Compact models (CM) are computationally simpler analog models capturing

the functional behavior of the device, e.g., can produce I-V characteristics.

Modified Nodal Analysis
(Kerchoff’s Current Law +
Branch Constitutive Equations)

[ 1
R,
1 1
R, R,

0

v Captures functional device behavior via electrical pathways (runs much

+

A~

1
1
4+ —
R,

| =
[

S o =

0

'FU|.—.

2

=] MFU|i—A

1

0

0

0

1

0

IﬁSoool

B

Q

m
W

=y

©

Circuit compact model

Qe

L

N

W\:ﬁ

faster than TCAD) and can be augmented to include new physics.

X Manual mapping of local physics due to operating environments to circuit
components 1s tedious, severely limiting rapid incorporation of
environmental effects into new designs. New physics = More iterations!

X E.g, QASPR HBT neutron damage model took 7 years to develop.




+ 1 Objective

n

“Can we rapidly and reliably transfer new physics knowledge to new

and existing compact models?”

TCAD BJT device model

E

B

1 [

7 S
[ Emitter

J Base

Ext. BE-Junction

Isolation

Main
Transistor

Para:
Tran

sitic Epitaxy
sistor

a

Sinker

C

Buried Layer

1
ra

3
~

Isolation

Y

Substrate

\ AN

Circuit compact model

B

O E
1

c

U

&‘Cﬁ

B

PIRAMID aims to introduce a novel ML

approach to
automate the entire process in one pass!

* How can we automatically extract a network/circuit topology

from PDE model?
* How do we parameterize extracted network?




s 1 PIRAMID process flowchart

Physics Priming (PP) Region Recognition (RR) Topology
Perfunctory TCAD ML + TDA Tailoring (TT)

Interaction
Identification (IT)
(seeded w/ established CMs)

Simulate high fidelity physics. Train and Adapt

(using available
experimental data)

Identify significant regions (ML+ Topological Data Analysis)
Identify interactions between signiﬁcant regions.
Prescribe electronics components to physical interactions.

Generate positive feedback in the machine learning process (supervised training).



« 1 Physics informed compact modeling E.I

Given a graph extracted from PDE model, use operator regression to
“dress” the graph with circuit components

R1 ‘ e
R2

L= Z 2 |13 +e Z |pdate _ ;|

1€nodesjEN; 1€Enodes
Proof of concept: |
Given voltages,
Find resistors that balance L -
currents while providing a target o
current

[I) 260 460 E(IJG BiI)D IDIO-D

iterations
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Conclusions

= Generalized moving least squares provides an approximation
theoretic framework for estimating functionals from general
scattered data

= We have used this technique in a wide range of applications

= Here we presented recent work using GMLS to develop conservative
schemes

= Looking for collaborators to analyze these schemes and apply to
subsurface fracture problems

= For scientific machine learning applications GMLS provides an
effective architecture for operator regression
= |ncorporation of graphical models with operator regression a
promising area to incorporate topological structure into data-
driven model development

47




