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.| Motivating Example: Multi-Fluid Plasma
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Multi-fluid plasmas: Challenges:
* Evolve multiple charged fluids * Lots of equations
* Interactions with electromagnetics * Handling involutions (divergence constraints)

* Neutral fluid limit: Magnetohydrodynamics e Multiple time scales



Multiple Time Scales

- dpa A
Fluid Time Scales: — +-— 0

B Advection O pt)
Diffusion T + ISR + 8% + Ta) = o
W Sound speed”
Plasma Time Scales:
Speed of light
Plasma Oscillation
Collisions
B Cyclotron frequency

Fluid standard modes: u-c, u, u+c

Plasma time scales are usually stiff

 Component time scales (advection, diffusion)

Coupling time scales (sound speed, speed of light, etc...)

*I’'m over simplifying the sound speed for the sake of presentation, usually an energy equation is required



Multiple Time Scales

Plasma models are replete with multi-scale phenomena:

» Strongly dependent on species mass, density, and temperature

» Speed of light, plasma and cyclotron frequency are often stiff!

e Can be broken into frequency, velocity, and diffusion (not used here) scales:

Take home: These
plasmas are hard to
simulate!




| Multiple Time Scales: What is stift?

What is stiff?
? “Is the air in this room stiff?” — Jed Brown (UC Boulder)

A It depends, what do you want to know?
1. Heat transfer, how effective is your heater? Probably stiff
2. How effective is the air mixing? Stiff sound speed
3. What s the impact of a gas explosion? Not stiff (exclude chemistry)

What are the consequences?

 Think of the “speed” of the mode to be the explicit Euler stability time step

By defining the dynamics you want to resolve, you select which modes are stiff
e Stiff modes’ explicit Euler stability limited is violated by the resolved time scale

& Stiff




What is this talk about?

Multi-physics problems often have multiple stiff modes depending on choice of

resolved time scale:

» This talk tries to answer the question of “How do we handle these stiff
modes?”

How do we handles these stiff modes?

1. For implicit time integration, we develop block preconditioners that try to
account for the stiff modes in the Jacobian

2. We pursue Implicit-Explicit time integration to focus nonlinear solvers on
handling only stiff physics, resolved physics can be integrated explicitly

This is summarized by looking at the multi-fluid plasma equations, and applying a
combination of techniques to handle the complex range of time scales
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1. A motivating example: Multi-Fluid Plasmas
* Types of time scales
* Quantifying stiffness
2. Fully implicit methods
* Motivating example
* Block preconditioners
3. Time integration
 IMEX RK
 ALE Methods
4. Multi-fluid plasmas
5. Final Thoughts
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2. Fully implicit methods
* Motivating example
* Block preconditioners



| Implicit Time integration
< Stiff

Fast

\

J

ImpIici! Solver

* Implicit time integration overcomes stiffness
* We use Newton-Krylov to evolve implicit physics

Solve Jpr, = —F(xp) where J = OF/0x

Tht+1 = Tk T Dk

Mo|S

 Effective preconditioning is the key to parallel scalability of Newton-Krylov I

* We pursue block preconditioning to handle multi-physics



A Simple Example”

Assume positive ax«, simplifies to a second order wave:

2u+auu Gy | O [u| |0
ot |v Ayy Aoy | Ox |V 10

Using a finite difference discretization, Jacobian is:

AOO A()l_ _ALt] + auuD afufUD
AlO All_ aqu ALtI + ava_

“From Chacdn, L., “An optimal, parallel, fully implicit Newton—Krylov solver for three-dimensional viscoresistive
magnetohydrodynamics,” Physics of Plasmas, 2008.



A Segregated System
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* Most of 4;; are “large sparse” matrices
* This structure is common:
1. Multi-physics (the focus of this talk)
2. Constraints
3. Optimization
« “Effective preconditioners” are robust and scalable for these systems



|II

“Classica

Jacobi

Benefits:
e Easy to implement!
* Nice convergence theory

Block Preconditioners

Gauss-Seidel

When are they “effective”?
* Little coupling
* One directional coupling




Schur Complements for 2x2 Systems

Use a block LU factorization:

AOO
Ao

Aor] | I 1 [
Ay
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ApAyy 1 S

where S = All — AlgAaolA()l

An important result:

M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for
indefinite linear systems, SISC, 21 (2000).

Msc =

AOO

Aot
S




| Three Block Preconditioners

GMRES iterations averaged over 10 steps

AOO AOl . ALtI + auuD auvD
AlO All B a'qu ﬁ]’ T ava

* h=1/500,At =h
* Three different preconditioners
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* Required inverses of Ayy, A4, and S
computed directly




Recipe for Block Preconditioners

1. Consider the desired time step At
2. Look at explicit stability limit of all time scales:
 Diffusion: vVAt/Ax?
* Advection: |u|At/Ax
* Waves (typically from coupling): |w|At/Ax
3. Modes where the stability limit is “relatively
large” for desired time step must be addressed
in the preconditioner!

This is motivated by the ideas of “Physics-Based” preconditioning: See
Mousseau, Knoll, and Rider, JCP 2000.



Incompressible Navier-Stokes

du+u-Vu—V- -vrVu+Vp=f
V-u=20

Jacobian with LU Factorization:

F BTl [ 1 FBT:>M_FBT
B C| |BF ' I S - S
where S ~ C — BF'B”

~ F—1 using multigrid
—1 ~ §—1 using SIMPLEC, PCD or LSC



Three Types of Preconditioner

1. Domain Decomposition (DD)
* |LU Factorization on each processor (with overlap)

2. Multilevel methods: ML Library (Tuminaro, Sala, Hu, Siefert, Gee)
 Labeled Aggressive Coarsening (AggC)

 Multiple unknowns per node Lovel 2 (36 modes) Lot 1Ok Level0 ) s
. ILU solvers e

3. Block Preconditioners: Block LU Fact.
 Used multigrid for sub solves
 Three different Schur complements

1. SIMPLEC: —B absRewSum(F)_lBT ‘m@ﬁﬁ%@mﬁwwﬁﬁﬁfmmmﬁxwm
2. PCD: —L,F,;'Qy
3. LSC: —(BQ,'B")(BQ,'FQ,'B") " (BQ,'B")

Aggregation based Multigrid: Vanek, Mandel, Brezina, 1996, Vanek, Brezina, Mandel, 2001, Sala, Formaggia, 2001



| Navier-Stokes: Results
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e Stabilization: SUPG & PSPG

200

Linear Ite(ations: Re=200 with S'UPG—PSPG

10;I1me/NonIingar step: Re=200 with SUPG-PSPG

Kelvin Helmholtz: Transient
* Re = 5000

* 1to 1024 Processors

* Stabilization: SUPG & PSPG
*CFL=2.5

— AggC — AggC
e—e DD e—e DD
E—Em PCD-GS m—-E PCD-GS
150 || ¢ LscC-Gs ¢ LSC-GS
&4 SIMPLEC-GS o &4 SIMPLEC-GS
g O 10°}
(%] ]
s 7]
2 g
+ 100 | £
® =
2 )
= E 10t }
50}
0 : : : 10° ; ; .
10* 10° 10° 10’ 10' 10* 10° 10° 10’ 108
Number of unknowns Number of unknowns
Linear Iterations: Re=5000 with SUPG-PSPG _ Time/Nonlinear step: Re=5000 with SUPG-PSPG
140 | — AggC — AggC
e—e DD e—e DD
- =—m PCD-ILU | == PCD-ILU
¢ SIMPLE-ILU #—¢ SIMPLE-ILU
o 100} | &
= -~
) (2]
= 80| 1 E‘ 1
© e
Q =
c 60} I N)
= E
=
40}
20} ; ; |
0 ‘ ‘ ‘ 10° . : :
10* 10° 10° 10’ 10 10* 10° 10° 10’ 10°

Number of unknowns

* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes

Equations, J. Comp. Phys., 231:345-363, 2011.

Number of unknowns



|nCOm preSSi b‘e M H D: B-Field Lagrange Multiplier Formulation

Magnetohydrodynamics (MHD) equations couple
fluid flow to magnetics equations

1
ot Ho
V- -u=0
B
a__VX(uXB)—I—QVXVXB-l—VT:O
ot 1o

V-B =0
Using a stabilized finite element formulation
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* Equal order basis functions, C, and Cj are stabilization operators



Multiple Time Scales: MHD

1
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V- -B =0
Some time scales are obvious:
> Diffusion (fast, often implicit)
> Elliptic constraints (real fast, often implicit)
» Advection (fast or slow, explicit or implicit)
Others are not so obvious (to me anyway)



| Multiple Time Scales: MHD

1
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A linearization about (u,B), dropped diffusive terms
» Particulars of linearization important to fixed point
convergence
Alfvén Wave generated by coupling
» Highlighted coupling gives wave speed: B

VA =
> Secondary gives wave “character”: anisotropic v PO




| Splitting for MHD

Two split block factorization preconditioners

@ M split-3x3 =

F
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» Coupled multigrid for magnetics (D)
> Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

> Block LU with PCD or SIMPLEC for Fluids

Myt xa =
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> Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

» Block LU with PCD or SIMPLEC for Fluids

» Block LU with SIMPLEC for magnetics



Do these splittings work?

Structurally small perturbation:

F BT Z
MSplit—BXB = |B ¢
Y |YF'B"| D
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Island Coalescence: 2D Vector Potential

0.5 (LD

Simulation on half domain ‘
* Symmetry BC
e Perturbed Harris-Sheet |

A%z, y,0) = 6 In |cosh (g) + € cos (%)]

1-D

Results details (an initial study): |
> Lundquist number: 10*
» Starting time right before reconnection: 5.75s I
» Results averaged over 45 uniform time steps |
> Runonl, 4, 16, 64, 256, and 1024 processors (~33000 unks/core)



Island Coalescence: Weak Scaling

Linear Iterations: At=0.0125

200 Time/Nonlinear Step: At=0.0125
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Fully coupled Algebraic Block Preconditioners
AggC: Aggressive Coarsening Multigrid Split: New Operator split preconditioner
DD: Additive Schwarz Domain Decomposition SIMPLEC: Extreme diagonal approximations

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations
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3. Time integration
* IMEX RK
 ALE Methods



| Implicit-Explicit (IMEX) Time integration

< Stiff
% S
]
\ ' J \ ] J
Implicit G(U) Explicit F(U)

* IMEX assumes additive splitting into fast (G) and slow (F) modes

U+ FU)+GU) =0
* Focuses implicit algorithm on only the modes that require it
* We again use Newton-Krylov to evolve implicit physics



IMEX Runge Kutta (IMEX-RK) Methods

Again, an ODE where “F” is slow and “G” is fast:

U+FU) +GU) =0

* Implicit-Explicit (IMEX) methods evolve “F” explicitly and “G”
implicitly

 There are multi-step (BDF) and multi-stage (RK) versions of these
methods

* QOurfocusis on IMEX-Runge Kutta (IMEX-RK) methods



IMEX-RK Methods

We start with an ODE:
U+FU)+GU) =0

* Two Butcher tableaus are used:

AN

cla elA
bt IS TOr Implicit terms, l;t IS TOr explicit terms

* An s-stage IMEX-RK method satisfies (‘c’ defines time node)

1—1 )
UD =U" — ALY AgFPUY) — ALY T A;GUY)  fori=1...s,
j=1 j=1

U =U™ — ALY b FUD) — ALY b,GU)

1=1 i=1



Monolithic ALE Equations

Monolithic ALE scheme’solves (x is the moving frame):

x| o o,
ot |y
ou
| 4V F—[VxU[T+S=0
ot |

Depending on the choice of coordinate velocity we can recover:

Eulerian (no mesh motion)

Lagrangian (material velocity)
ALE (prescribed mesh)



| IMEX Monolithic ALE ODE Form

- Treat mesh ) [0

y

[ . 5 - @ - ‘7 — 07
{ " motion explicitly — " [0t |y

oUu

> —|[Vx UV +Vx Fr+8r+Vx-Fg+Sg=0

Y f‘/\\\ y \\\

A

17 Implicit and Explicit l[;j

Rules of the game:

1.
2.

w

Mesh motion is treated explicitly

Other flux and source terms are handled implicitly or explicitly
depending on “speed”

For ALE, we use a nonlinear elasticity formulation for mesh relaxation
Up to Lagrangian mesh nodes, mesh motion is linear within a IMEX
Runge-Kutta step



| Compressive CDR Problem

Transient nonlinear convection-diffusion-reaction (CDR) proble

with an exact solution:

%—Fg(ue—)\%)—l—se—()

ot ' Ox o
(s e [252)

Where the compressive velocity and nonlinear source terms are:
U tanh m
u = — an —
5

fi=6T7U1.0—-(u/U)?%)
fo=—(10+t)* X7+~ f1

fs=76 (2t x+ (1L.0+¢*) u) tanh [((1'0 ; tz)”““]

[f1+ (1.0 —e)* (fo+ 2 A7(1.0+ )2 [exp(—t/7)]2(1.0 — €)% — f3)]

Se = 02 T



| Compression Problem: IMEX ALE

Lagrangian

R | Ny
y Nt

TEMPERATURE 1 6 2 10

-2.108e+01
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| Euler Equations: ALE Form

Our early efforts have focused on making mesh motion explicit
» Other terms are handled implicitly

Ox=v

00 =SNG + (V)9

)~ EREE) - (SGR
-V (Bu-T"+q + (VE}Y

O FE =




ALE Convergence results: Mach 1.333

Euler equations advection of a smooth
density hump in a constant velocity field
* No natural dissipation

Density Bump: L1 Error

1072

103 |

1I.|2 ll.rll ‘Fl.lé

104 |

L1 Error

10°t — 2nd Order
=—a Density

=—a Momentum
=—a Total Energy |

10° '
1073 107 10t

dt

For smooth profiles IMEX expected
convergence rate is achieved




Sedov type problem

EEEREH
2BBEGR

This is a diffusive Euler pre

* Viscosity=Thermal Conc

* Lagrangian has explicit - ’
and implicit ALE convec

 ALE: 75% of Lagrangian:
the top and right bounc
relax in interior

IMEX Lagrangian

) NESEREEEREEEEE
28 PSRV VRV VR VRV U]
NSNS RGGIII

Take Home: IMEX ALE schemes can be
applied to complex mesh motion
problems (more work still required)

IMEX ALE it s Implicit Eulerian
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Multi-Fluid Plasma Formulation
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Discretization Tools

We have (at least) two major challenges:
1. Involutions from Maxwell’s equations
2. Multiple time scales

We will attack each of these in turn with two discretization tools
1. “Exact-Sequence” discretizations to structurally enforce
involutions (not discussed today, | can talk off line)
2. Implicit-Explicit (IMEX) time integration to handle multiple time
scales



| Fast/Stiff/Implicit modes in plasma model

% + N (paua> - Zmarsrc _ Z marsink

ot
srcs sinks
Stiff Modes: )
paua) da
i +v aua®uo¢+ aI+Ha — — Pa
Speed of light ot % b )= g P
Plasma Oscillation + 3 maug = Y mau 4 Y RS
Collisions srcs sinks Bta
OE 2 1 o
B Cyclotron frequency — AV xB=——) Zp.u,
875 €0 mey
0B
- B —
5 + V X

Speed of light arises from coupling of electromagnetic field: explicit CFL ~cAt/Ax

Plasma oscillation arises from Ampere’s law to momentum conservation: explicit CFL ~At
Collisions explicit CFL~At

Cyclotron frequency explicit CFL~|B|At




Plasma: Electrons and Electromagnetics

* Use IMEX to integrate fast electromagnetic time scales with an
implicit solver, and slow fluid time scales with an explicit solver.

8 Ipa

o + S8 o

& Stiff




Plasma: IMEX damps fast time scales

* L-stable implicit time integrator in IMEX stabilizes fast, under-resolved |
modes. ‘
Transverse Electromagnetic (TEM) |
U | ’ waves
: ’1 i r1 | \ Fast (speed of light)
3 Longitudinal Electron Plasma (LEP)

N - waves
— TEMWave Slow (speed of sound)

— LEP Wave

i [ns]

* Under-resolved fast modes may not impact dynamics of interest, and
can therefore be ignored.

_1'8 |\.__/ I L | -
.00 0.05 0.10 0.15 0.20 0.25 0.30



Plasma: Convergence

Resolved explicit modes Under resolved implicit
converge at proper order for components may not

IMEX integrator converge due to phase and
amplitude distortion

10
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Nonlinear Algorithm

For IMEX we have to solve a nonlinear problem:
* We are using Newton-Krylov
* To get scalability we must precondition*

*E. G. Phillips, J. N. Shadid, E. C. Cyr, S. T. Miller, Enabling Scalable Multi-Fluid Plasma Simulations through
Block Preconditioning, Accepted to Lecture Notes in Computational Science and Engineering, 2019.

JiBxe= —f (x)
X = X + Axp

Nonlinear terms

FM

Jxkv =
Linear terms




Examining the IMEX Scheme

* Fluid matrix is mass matrix (CG fluids gives global coupling)

* Maxwell solver is effective (and should remain unperturbed)
» Handles speed of light coupling

* Important to get plasma frequency and cyclotron frequency coupling
» Handled by preconditioning
» These are local (ODE-like) coupling terms

* Many linear operators that can be computed once and reused

We will try to construct a scheme:

* Take advantage of only local coupling in fluid operators

* Maxwell solver is effective (and should remain unperturbed)

* Handle plasma/cyclotron frequency coupling efficiently

* Reduce the number of recomputations required per nonlinear step




Introduce DG Fluids/CG Maxwell

* DG Fluids will make the fluid contribution block diagonal on each element
» Local nature of DG discretization
» IMEX splitting choice
* Support for involutions still preserved
» No Magnetic monopoles is the same
» Weak enforcement of Gauss’ law works (math is more complex)

DG decouples fluid
terms in IMEX
scheme!




| Quasi-Newton Method

Typically I would do Newton-Krylov, but...

Block lower Gauss-Seidel

7 Triangular solve .
</ Leverages Maxwell solver

7 Block diagonal fluid solve

< Implicit cyclotron frequency
X Implicit plasma frequency

Couple in plasma
frequency using
Schur complement

Both schemes:

Simplified linear construction
Only inner Maxwell Krylov solve
Will require more iterations
than Newton

Maybe cheaper then Newton

Block GS with Schur Complement

7 Triangular solve

/ Leverages Maxwell solver
«/ Block diagonal fluid solve
< Implicit cyclotron frequency
< Implicit plasma frequency



Plasma Frequency Schur Complement

the “black” part of the approximate Jacobian. BIBES IG5 With Sehulr Complement
* Mode derived from coupling Ampere’s law and
momentum equation

To step over plasma frequency we must work it into ‘
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 We apply the local Schur complement to the fluid
contribution as a correction

(Pa WW) 1l qu ~ 4B
Atm' Pa ), ——pPpup Unlike the “analysis” above, we
At €0 M mg .
\ B ] use the full current in the Schur
Corre'ctlon complement correction



O-Wave Convergence Results (EMPIRE-Fluid)

A linear wave verification test*™
e Refining in space and time . _
+ Running IMEX SSPRK2 L” errorin £y
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*S. Miller, J. Niederhaus, R.M.J. Kramer, and G. Radtke, Robust Verification of the Multi-Fluid Plasma Model in
Drekar.. United States: N. p., 2017. Web.




O-Wave Nonlinear Solver (EMPIRE-Fluid)

Adding Schur complement improves
nonlinear convergence

* Still has strong growth in iteration 107
count with increasing time steps 10! ;

* Schur complement assembly takesa & 100:
small fraction longer than without 2 ..

* Cost/benefit tradeoff study against % mz
Newton-Krylov with similar % m_3’_z
preconditioner required ig m_;

z ]

Each nonlinear iteration requires: 1073

1

1. Reconstruction of fluid Jacobian
inverse
2. Solve of Maxwell system

Residual Convergence
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e \With SC
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Anderson Acceleration

One More Trick: Anderson Acceleration

Algorithm AA: Anderson Acceleration

GIVEN g AND m > 1.

Requires same computations as SET 71 = g(x0).

Quasi-Newton For k=1,2, ... (UNTIL CONVERGED) DO:

Fixed point around x = g(x) SET my = min{m,k}.

Combines multiple nonlinear DETERMINE ~(*) = h‘fjk’b ye-+>Ymu—1)  THAT SOLVES
steps improving convergence AT (0= (g P,y -1)7 I Fll2-

Typically less complex to SET T 41 = g(zk) — Gy ™.

implement than full Newton £ — ilag) — =

Walker and Ni, SINUM 2011: Fie = (Afimps--s A1) with Af; = f(ziq) — f(z:).
“Essentially equivalent” to Gr = (AGk—my, -, Agr_1) with Ag; = g(z;11) — g(z;).

GMRES \ Anderson, ACM 1965

This is what | remember (understand) about Anderson (thanks Homer!). If you want more
details about Anderson, talk with Roger Pawlowski and then tell me what you learned!




L1 error

| Two Fluid Plasma Vortex

Two fluid plasma vortex in MHD limit
* |MEX time discretization, DG fluid discretization, CG

10° A

1071 4

1072 4
1|/==- 1storder

Maxwell discretization

e Using Schur-Complement in all simulations

Convergence study:

* N,xN,x N, =[8x8x8, 16x16x16, 32x32x32]

* N,=[10,20,40]
* Speed of light: Cdt/dx =8
Iteration study: 8x8x8 grid

LY error

| === Error ion_px

== Error electron_px
— 2nd order
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| Two Stream Instability™* —
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* We run this only through the linear growth regime I



Outline

1. A motivating example: Multi-Fluid Plasmas
* Types of time scales
* Quantifying stiffness
2. Fully implicit methods
* Motivating example
* Block preconditioners
3. Time integration
 IMEX RK
* ALE Methods
4. Multi-fluid plasmas
5. Final Thoughts




Final Thoughts

1. Stiffness is as much a function of the question asked of the model, as the model
itself

2. Preconditioners for multi-physics can target stiff physics and ignore non-stiff
physics and still scale

3. Time integration targeting implicit evolution of only stiff physics can simplify
preconditioner construction and still yield high-order: IMEX

4. Combining different techniques, physics-based/block-preconditioning, IMEX
time integration and carefully chosen spatial discretization leads to methods
with attractive computational characteristics

5. Considering moving beyond Newton-Krylov framework where appropriate
using quasi-Newton and Anderson can simplify Jacobian/preconditioner
construction and still achieve efficiencies (preliminary!)



Our References

. E.C. Cyr, J.N. Shadid, and R.S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-
Stokes Equations, Journal of Computational Physics, 231:345-363, 2012.

. E. C. Cyr, J. N. Shadid, R. S. Tuminaro, R. P. Pawlowski, L. Chacon, A New Approximate Block Factorization
Preconditioner for Two Dimensional Incompressible (Reduced) Resistive MHD”, SIAM Journal on Scientific
Computing, 2013.

. E.G. Phillips, H.C. Elman, E.C. Cyr, J.N. Shadid, and R.P. Pawlowski, A Block Pre- conditioner for an Exact

Penalty Formulation for Stationary MHD, SIAM Journal on Scientific Computing, Vol. 36: B930-B951, 2014.

. E.C. Cyr, J.N. Shadid, and R.S. Tuminaro, Teko: A Block Preconditioning Capability with Concrete Example
Applications in Navier-Stokes and MHD, SISC, Vol. 38 (5), 2016.

. J. N. Shadid, E. C. Cyr, R. P. Pawlowski, T. M. Widley, G. Scovazzi, X. Zeng, E.G. Phillips, S. Conde, J.
Chuadhry, D. Hensinger, K.L. Fischer, A.C. Robinson, W.J. Rider, J. Niederhaus, and J. Sanchez, Towards an
IMEX Monolithic ALE Method with Integrated UQ for Multiphysics Shock- hydro, Sandia Technical Report,
SAND2016-11353, 2016

. E. G. Phillips, J. N. Shadid, E. C. Cyr, Scalable Preconditioners for Structure Preserving Discretizations of
Maxwell Equations in First Order Form, SIAM Journal on Scientific Computing, 40 (3), B723-B742, 2018.

. S. T. Miller, E. C. Cyr, J. N. Shadid, R. M. J. Kramer, E. G. Phillips, S. Conde, R. P. Pawlowski, IMEX and exact
sequence discretization of the multi-fluid plasma model, Journal of Computational Physics, 397:108806,
2019.



