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3 1 Motivating Example: Multi Fluid Plasma
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Multi-fluid plasmas:
• Evolve multiple charged fluids
• Interactions with electromagnetics
• Neutral fluid limit: Magnetohydrodynamics
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Challenges:
• Lots of equations
• Handling involutions (divergence constraints)
• Multiple time scales



Multiple Time Scales

Fluid Time Scales:
Advection
Diffusion
Sound speed*

Plasma Time Scales:
Speed of light
Plasma Oscillation
Collisions
Cyclotron frequency
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• Fluid standard modes: u-c, u, u+c
• Plasma time scales are usually stiff
• Component time scales (advection, diffusion)
• Coupling time scales (sound speed, speed of light, etc...)

•

I'm over simplifying the sound speed for the sake of presentation, usually an energy equation is required



Multiple Time Scales
Plasma models are replete with multi-scale phenomena:

• Strongly dependent on species mass, density, and temperature

• Speed of light, plasma and cyclotron frequency are often stiff!

• Can be broken into frequency, velocity, and diffusion (not used here) scales:
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Take home: These
plasmas are hard to

simulate!



6 Multiple Time Scales: What is stiff?

What is stiff?
? "Is the air in this room stiff?" — Jed Brown (UC Boulder)
A It depends, what do you want to know?

1. Heat transfer, how effective is your heater? Probably stiff
2. How effective is the air mixing? Stiff sound speed
3. What is the impact of a gas explosion? Not stiff (exclude chemistry)

What are the consequences?
• Think of the "speed" of the mode to be the explicit Euler stability time step
• By defining the dynamics you want to resolve, you select which modes are stiff
• Stiff modes' explicit Euler stability limited is violated by the resolved time scale

Stiff
LA

C(-)pe cAx (lice Vei Wci COpi V„Ax. u,,Ax.



What is this talk about?

Multi-physics problems often have multiple stiff modes depending on choice of
resolved time scale:

This talk tries to answer the question of "How do we handle these stiff
modes?"

How do we handles these stiff modes?
1. For implicit time integration, we develop block preconditioners that try to

account for the stiff modes in the Jacobian
2. We pursue Implicit-Explicit time integration to focus nonlinear solvers on

handling only stiff physics, resolved physics can be integrated explicitly

This is summarized by looking at the multi-fluid plasma equations, and applying a
combination of techniques to handle the complex range of time scales
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Implicit Time integration
Stiff
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Implicit Solver

• Implicit time integration overcomes stiffness
• We use Newton-Krylov to evolve implicit physics

Solve Jpk F(xk) where J = OFIOx

LA

xk+1 = xk + pk

• Effective preconditioning is the key to parallel scalability of Newton-Krylov
• We pursue block preconditioning to handle multi-physics



A Simple Example*

Assume positive a., simplifies to a second order wave:
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Using a finite difference discretization, Jacobian is:
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*From Chacón, L., "An optimal, parallel, fully implicit Newton—Krylov solver for three-dimensional viscoresistive

magnetohydrodynamics," Physics of Plasmas, 2008.



A Segregated System

A00

A10

A01

A11

• • •

• • •

AON

A1N

•

.

.

ANO AN1 ' ' ' ANN

xo

xl

.

.

.

XN

bo
b1
.

.

.

bN

• Most of Au are "large sparse" matrices

• This structure is common:

1. Multi-physics (the focus of this talk)

2. Constraints

3. Optimization

• "Effective preconditioners" are robust and scalable for these systems



"Classical" Block Preconditioners
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Benefits: When are they "effective"?

• Easy to implement! • Little coupling

• Nice convergence theory • One directional coupling



Schur Complements for 2x2 Systems

Use a block LU factorization:

[A00

A10

A011 I i ] [Aoo A011
All [A1(000 I s ]

where S= A11 A10 AaA01
An important result:

M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for

indefinite linear systems, SISC, 21 (2000).
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Three Block Preconditioners

GMRES iterations averaged over 10 steps
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• h = 1/500, At = h
• Three different preconditioners
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• Required inverses of A00, An, and S
computed directly
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Recipe for Block Preconditioners

1. Consider the desired time step At

2. Look at explicit stability limit of all time scales:

• Diffusion: vAt/Ax2

• Advection: lulAt/Ax

• Waves (typically from coupling): lwiAt/Ax

3. Modes where the stability limit is "relatively

large" for desired time step must be addressed

in the preconditioner!

This is motivated by the ideas of "Physics-Based" preconditioning: See
Mousseau, Knoll, and Rider, JCP 2000.



Jacobian with LU Factorization:

Incompressible Navier-Stokes 
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• F-1 , p-1 using multigrid
I• S-1 rr ,_\1-1 using SIMPLEC, PCD or LSC



Three Types of Preconditioner
1. Domain Decomposition (DD)
• ILU Factorization on each processor (with overlap)

2. Multilevel methods: ML Library (Tuminaro, Sala, Hu, Siefert, Gee)
• Labeled Aggressive Coarsening (AggC)
• Multiple unknowns per node
• ILU solvers

3. Block Preconditioners: Block LU Fact.
• Used multigrid for sub solves
• Three different Schur complements

1. SI M PLEC:  B absRowSum(F)-1  BT

2. PCD: LpF21Qp

3. LSC: (BQ;1 BT)(BQ. 'Q. BT) (BQ. BT)

Aggregation based Multigrid: Vanek, Mandel, Brezina, 1996, Vanek, Brezina, Mandel, 2001, Sala, Formaggia, 2001



Navier-Stokes: Results

Backward Facing Step: Steady

• Re = 200

• 1 to 1024 Processors

• Stabilization: SUPG & PSPG
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Kelvin Helmholtz: Transient

• Re = 5000

• 1 to 1024 Processors

• Stabilization: SUPG & PSPG

• CFL = 2.5

Linear Iterations: Re=5000 with SUPG-PSPG
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* E. C. Cyr, J. N. Shadid, R. S. Tuminaro, Stabilization and Scalable Block Preconditioning for the Navier-Stokes

Equations, J. Comp. Phys., 231:345-363, 2011.



1 I n co m p ress i b l e M H D: B-Field Lagrange Multiplier Formulation
Magnetohydrodynamics (MHD) equations couple
fluid flow to magnetics equations
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• Equal order basis functions, and are stabilization operators



Multiple Time Scales: MHD
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Some time scales are obvious:

> Diffusion (fast, often implicit)

> Elliptic constraints (real fast, often implicit)

> Advection (fast or slow, explicit or implicit)

Others are not so obvious (to me anyway)



Multiple Time Scales: MHD
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A linearization about (u,B), dropped diffusive terms

> Particulars of linearization important to fixed point

convergence

Alfvén Wave generated by coupling

> Highlighted coupling gives wave speed: 113 
VA =   

> Secondary gives wave "character": anisotropic vivo



Splitting for MHD
Two split block factorization preconditioners

M Split-3 x 3 —

F Z F-1 F BT
I I B C

f7 ñ I

> Coupled multigrid for magnetics (I)

> Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

> Block LU with PCD or SIMPLEC for Fluids
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> Block LU with SIMPLEC for Magnetics-Velocity (Alfvén)

> Block LU with PCD or SIMPLEC for Fluids

> Block LU with SIMPLEC for magnetics



I Do these splittings work?
Structurally small perturbation:

F BT
B CM S plit-3 x 3

Favorable spectrum:
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Island Coalescence: 2D Vector Potential
KO.

Simulation on half domain
• Symmetry BC
• Perturbed Harris-Sheet

) cosh IN E
_ CCIS (:)1

Results details (an initial study):
➢ Lundquist number: 104
➢ Starting time right before reconnection: 5.75s
➢ Results averaged over 45 uniform time steps
➢ Run on 1, 4, 16, 64, 256, and 1024 processors (^'33000 unks/core)



1 Island Coalescence: Weak Scaling
Linear Iterations: At=0.0125

106 10
7

10
8

Number of Unknowns
109

Fully coupled Algebraic 
AggC: Aggressive Coarsening Multigrid

DD: Additive Schwarz Domain Decomposition

Time/Nonlinear Step: At=0.0125

106 107 10
8

Number of Unknowns

Block Preconditioners 
Split: New Operator split preconditioner

SIMPLEC: Extreme diagonal approximations

Take home: Split preconditioner scales algorithmically,
more relevant for mixed discretizations

109



27 References
Physics-Based:

1. Perot, J. Blair. An analysis of the fractional step method. Journal of Computational Physics 108, no. 1 (1993): 51-58.

2. Mousseau, V. A., D. A. Knoll, and W. J. Rider. Physics-based preconditioning and the Newton—Krylov method for

non-equilibrium radiation diffusion. Journal of Computational Physics 160, no. 2 (2000): 743-765.

3. Murphy, M. F., G. H. Golub, and A. J. Wathen. "A note on preconditioning for indefinite linear systems." SIAM

Journal on Scientific Computing 21, no. 6 (2000): 1969-1972.

4. Chacón, L., D. A. Knoll, and J. M. Finn. "An implicit, nonlinear reduced resistive MHD solver." Journal of

Computational Physics 178, no. 1 (2002): 15-36.

5. Chacón, L., "An optimal, parallel, fully implicit Newton—Krylov solver for three-dimensional viscoresistive

magnetohydrodynamics," Physics of Plasmas, 2008.

Block Preconditioning:

1. Silvester, David, Howard Elman, David Kay, and Andrew Wathen. "Efficient preconditioning of the linearized

Navier—Stokes equations for incompressible flow." Journal of Computational and Applied Mathematics 128, no. 1-2

(2001): 261-279.

2. H. Elman, V. E. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro, Block Preconditioners Based on Approximate

Commutators, SIAM J. Sci. Comput., 27 (2006), pp. 1651-1668.

3. Elman, H. C., V. E. Howle, J.N. Shadid, R. Shuttleworth, and R. S. Tuminaro. "A taxonomy and comparison of parallel

block multi-level preconditioners for the incompressible Navier—Stokes equations." Journal of Computational

Physics 227, no. 3 (2008): 1790-1808.

4. Elman, Howard C., David J. Silvester, and Andrew J. Wathen. Finite elements and fast iterative solvers: with

applications in incompressible fluid dynamics. Oxford University Press, USA, 2014.



Outline

1. A motivating example: Multi-Fluid Plasmas
• Types of time scales
• Quantifying stiffness

2. Fully implicit methods
• Motivating example
• Block preconditioners

3. Time integration
• IMEX RK
• ALE Methods

4. Multi-fluid plasmas
5. Final Thoughts

■



Implicit-Explicit (IMEX) Time integration
Stiff

4-•
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-- 

Explicit F (U)

LA
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• IMEX assumes additive splitting into fast (G) and slow (F) modes

iii. + F (1/0 + G (1/0 = 0 I
• Focuses implicit algorithm on only the modes that require it
• We again use Newton-Krylov to evolve implicit physics



IMEX Runge Kutta (IMEX-RK) Methods

Again, an ODE where "F" is slow and "G" is fast:

u + F(1/) ± G(1/) = 0

• Implicit-Explicit (IMEX) methods evolve "F" explicitly and "G"

implicitly

• There are multi-step (BDF) and multi-stage (RK) versions of these

methods

• Our focus is on IMEX-Runge Kutta (IMEX-RK) methods



1 IMEX-RK Methods
We start with an ODE:

•

F(u) + G(11) = 0

• Two Butcher tableaus are used:

c A c A
O7 

bt
is for implicit terms,   is for explicit terms

v 

• An s-stage IMEX-RK method satisfies (`c' defines time node)
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Monolithic ALE Equations

Monolithic ALE schemsolves (x is the moving frame):

Ox

at Y

at IT

i-T = 0,

+ vx • .T. — [Vx UrV. + S o

Depending on the choice of coordinate velocity we can recover:

Eulerian (no mesh motion)

Lagrangian (material velocity)

ALE (prescribed mesh)



IMEX Monolithic ALE ODE Form

0u

at Y

Treat mesh
motion explicitly

[V, U] 'N'T +v. Amtmild

N
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+Vx • .FE + SE = 0

  Implicit and Explicit [_)

Rules of the game:
1. Mesh motion is treated explicitly
2. Other flux and source terms are handled implicitly or explicitly

depending on "speed"
3. For ALE, we use a nonlinear elasticity formulation for mesh relaxation
4. Up to Lagrangian mesh nodes, mesh motion is linear within a IMEX

Runge-Kutta step



1 Compressive CDR Problem
Transient nonlinear convection-diffusion-reaction (CDR) problem
with an exact solution:

Oe Oe
+ (ue — À—) + Se = 0

St Ox Ox

c = (1.0 + exp(tIT) 
sech(1.0 +6 t2)xl)

150
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50
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Where the compressive velocity and nonlinear source terms are:

u = —U tanh[x6]

fl = T U(1.0 - (111(1)2)

f2 = -(1.0 t2)2 T 62 - fl

f3 = T CS (2 t x + (1.0 + t2) u) tanh 
r1.0 (-5k t2)x]

+ (1.0 — e) * (f2 + 2 A T(1.0 + t2)2 [exp(—th-)]2(1.0 — e)2 — f3)]
- 62 TSe



1 Compression Problem: IMEX ALE
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Euler Equations: ALE Form

Our early efforts have focused on making mesh motion explicit
>Other terms are handled implicitly
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ALE Convergence results: Mach 1.333

Euler equations advection of a smooth
density hump in a constant velocity field
• No natural dissipation
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For smooth profiles IMEX expected
convergence rate is achieved



Sedov type problem
2.:z.

2.7

This is a diffusive Euler prl'
• Viscosity=Thermal Con(

i. 

• Lagrangian has explicit „
and implicit ALE conveco,

oa
• ALE: 75% of Lagrangian o,

the top and right boun( 
relax in interior
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—DENSITY ALE
—DENSITY Lagranglan
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Take Home: IMEX ALE schemes can be
applied to complex mesh motion
problems (more work still required)

IMEX Lagrangian
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Multi-Fluid Plasma Formulation

• Multi-species Euler
coupled to Maxwell

• Strong collisions
terms

• Maxwell involutions
must be enforced
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Discretization Tools

We have (at least) two major challenges:
1. Involutions from Maxwell's equations
2. Multiple time scales

We will attack each of these in turn with two discretization tools
1. "Exact-Sequence discretizations to structurally enforce

involutions (not discussed today, I can talk off line)
2. Implicit-Explicit (IMEX) time integration to handle multiple time

scales



Fast/Stiff/Implicit modes in plasma model

Stiff Modes:
Speed of light

Plasma Oscillation
Collisions

Cyclotron frequency
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• Speed of light arises from coupling of electromagnetic field: explicit CFL —cAtlAx

• Plasma oscillation arises from Ampere's law to momentum conservation: explicit CFL —At

• Collisions explicit CFL—At

• Cyclotron frequency explicit CFL—lBlAt



Plasma: Electrons and Electromagnetics
• Use IMEX to integrate fast electromagnetic time scales with an

implicit solver, and slow fluid time scales with an explicit solver.

oGoaucv)
at

V▪ I
CD

Opa

at
V V. (paua)

' Gocella ua paI +IL)

OE

at

OB

at

c2V x B

+VxE

Stiff

T17,ce
pa (E u, x B)

1 qa 
pa Ua

CO rnaa

cope cAx (Lice VseOx ue6oc



Plasma: IMEX damps fast time scales
• L-stable implicit time integrator in IMEX stabilizes fast, under-resolved
modes.

1.0

0 3

— 0.3

11

i pii

— TEM Wave

  LEP Wave
iV

D. D5 D.2D

Transverse Electromagnetic (TEM)
waves

Fast (speed of light)

Longitudinal Electron Plasma (LEP)
waves

Slow (speed of sound)

• Under-resolved fast modes may not impact dynamics of interest, and
can therefore be ignored.



Plasma: Convergence
Resolved explicit modes
converge at proper order for
I M EX integrator
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Nonlinear Algorithm

For IMEX we have to solve a nonlinear problem:

• We are using Newton-Krylov

• To get scalability we must precondition*

Jkl)

FM

CO

LF
P cc

PaUa

Ea

el

Jic6̀ Xk= -f(Xk)
Xk = Xk AXk

Nonlinear terms
- fluid matrix (mass like)

• Lorentz Force

Linear terms
Maxwell equations

Current Operator

*E. G. Phillips, J. N. Shadid, E. C. Cyr, S. T. Miller, Enabling Scalable Multi-Fluid Plasma Simulations through

Block Preconditioning, Accepted to Lecture Notes in Computational Science and Engineering, 2019.



Examining the IMEX Scheme r[z
• Fluid matrix is mass matrix (CG fluids gives global coupling)
• Maxwell solver is effective (and should remain unperturbed)

➢ Handles speed of light coupling
• Important to get plasma frequency and cyclotron frequency coupling

➢ Handled by preconditioning
➢ These are local (ODE-like) coupling terms

• Many linear operators that can be computed once and reused

We will try to construct a scheme:
• Take advantage of only local coupling in fluid operators
• Maxwell solver is effective (and should remain unperturbed)
• Handle plasma/cyclotron frequency coupling efficiently
• Reduce the number of recomputations required per nonlinear step



Introduce DG Fluids/CG Maxwell
• DG Fluids will make the fluid contribution block diagonal on each element

➢ Local nature of DG discretization
➢ IMEX splitting choice

• Support for involutions still preserved
➢ No Magnetic monopoles is the same
➢ Weak enforcement of Gauss' law works (math is more complex)

DG decouples fluid
terms in IMEX

scheme!



Quasi-Newton Method
Typically I would do Newton-Krylov, but...

Block lower Gauss-Seidel

1

e' Triangular solve
e' Leverages Maxwell solver
e' Block diagonal fluid solve
e' Implicit cyclotron frequency

X Implicit plasma frequency

—
Couple in plasma

frequency usingSchur complement
Both schemes:

• Simplified linear construction

• Only inner Maxwell Krylov solve

• Will require more iterations

than Newton

• Maybe cheaper then Newton

Block GS with Schur Complement

•

1
1

e' Triangular solve
e' Leverages Maxwell solver
e' Block diagonal fluid solve
e' Implicit cyclotron frequency
e' Implicit plasma frequency



Plasma Frequency Schur Complement

To step over plasma frequency we must work it into
the "black" part of the approximate Jacobian.
• Mode derived from coupling Ampere's law and

momentum equation

a(Per   E

a q

• We apply the local Schur complement to the fluid
contribution as a correction

(Pau.) at q
qs

PPuPat ' co, m„,

Corr tion

Block GS with Schur Complement

1
Unlike the "analysis" above, we
use the full current in the Schur

complement correction



0-Wave Convergence Results (EMPIRE-Fluid)

A linear wave verification test*

• Refining in space and time

• Running IMEX SSPRK2

Analytical Solution

101

10,

Ll error in Ey
—A— Errors

--- 2nd Order

10 2 x 10-14 3 x 10-144 x 10--- 6 x 10-1c

At

* S. Miller, J. Niederhaus, R.M.J. Kramer, and G. Radtke, Robust Verification of the Multi-Fluid Plasma Model in

Drekar.. United States: N. p., 2017. Web.



0-Wave Nonlinear Solver (EMPIRE-Fluid)

Adding Schur complement improves
nonlinear convergence
• Still has strong growth in iteration

count with increasing time steps
• Schur complement assembly takes a

small fraction longer than without
• Cost/benefit tradeoff study against

Newton-Krylov with similar
preconditioner required

Each nonlinear iteration requires:
1. Reconstruction of fluid Jacobian

inverse
2. Solve of Maxwell system
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One More Trick: Anderson Acceleration

Anderson Acceleration

• Requires same computations as
Quasi-Newton

• Fixed point around x = g (x)

• Combines multiple nonlinear

steps improving convergence

• Typically less complex to
implement than full Newton

• Walker and Ni, SINUM 2011:

"Essentially equivalent" to
GMRES

Algorithm AA: Anderson Acceleration

GIVEN xo AND m > 1.
SET xi = gGro)•
FOR k = 17 2, . (UNTIL CONVERGED) DO:

SET mk = k}.

DETERMINE 7(k) = THAT SOLVES

min.,f(k)=(„fgc). -Fk112-

SET xk+1 = g(ik) gklitk)•

= g(x,) -

.Fk = (Afk-nik, • • Afk-i) with = f - f (xi)
= (Agk_77„, . A9k-1) with = g(zi+i) - g(ri).

I Anderson, ACM 1965

This is what l remember (understand) about Anderson (thanks Homer!). lf you want more
details about Anderson, talk with Roger Pawlowski and then tell me what you learned!



Two Fluid Plasma Vortex
Two fluid plasma vortex in MHD limit

• IMEX time discretization, DG fluid discretization, CG

Maxwell discretization

• Using Schur-Complement in all simulations

Convergence study:

• Nx x Nx x Nx =[8x8x8, 16x16x16, 32x32x32]

• Nt = [10,20,40]

• Speed of light: C dt/dx = 8

Iteration study: 8x8x8 grid
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Outline

1. A motivating example: Multi-Fluid Plasmas
• Types of time scales
• Quantifying stiffness

2. Fully implicit methods
• Motivating example
• Block preconditioners

3. Time integration
• IMEX RK
• ALE Methods

4. Multi-fluid plasmas
5. Final Thoughts

■



Final Thoughts

1. Stiffness is as much a function of the question asked of the model, as the model
itself

2. Preconditioners for multi-physics can target stiff physics and ignore non-stiff
physics and still scale

3. Time integration targeting implicit evolution of only stiff physics can simplify
preconditioner construction and still yield high-order: IMEX

4. Combining different techniques, physics-based/block-preconditioning, IMEX
time integration and carefully chosen spatial discretization leads to methods
with attractive computational characteristics

5. Considering moving beyond Newton-Krylov framework where appropriate
using quasi-Newton and Anderson can simplify Jacobian/preconditioner
construction and still achieve efficiencies (preliminary!)
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