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Printed Electronics: Concept
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Printed Electronics: Methods

Master-based and digital deposition methods provide wide scope of

scalability and customization Digita Patterning Physical Master
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Aerosol Jet Printing: Background

Aerosol jet printing (AJP) uses focused deposition of micron-
scale ink droplets suspended in a carrier gas flow
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AJP is a versatile technology for
prototyping functional devices
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Aerosol Jet Printing: Physics

Analytical models of the five physical processes can provide insight when coupled
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Fundamental description guides
printer and process design

@ciiERsy oo Secor, E.B. Flex. Print. Electron. (2018) 3, 035002.
_N._é';% tntern partment of Energy's National Nuclear Securlty




Sandia National Laboratories

Aerosol Jet Printing: Physics

Models identify factors limiting | |
print quality and resolution _ ‘drier’ inks
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Aerosol Jet Printing: Physics

A dry sheath gas can induce spatially nonuniform drying within the
printhead on timescales of relevance
Qualitative description Model illustration Simulated line profile
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Aerosol Jet Printing: Reliability

Fundamental mechanisms support understanding of process drift, a
major limitation of aerosol jet printing

Smith, M., et al. Flex. Print. Electron. (2017) 2, 015004.
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Aerosol Jet Printing: Reliability

Custom system design provides flexibility to 30 hr print test over 5 sessions
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Multimaterial Printing: Concept

In-line mixing of aerosols upstream of the printhead
for simultaneous codeposition of distinct inks

gas flow Binary multimaterial printing

Conventional 2 material prints
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Graded multimaterial printing
In-line mixing — varying composition
Ink 2

ESx=2R=
A UNC N USSR NS

Unigue multimaterial printing platform for graded
patterning with micron-scale mixing, digital control
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Multimaterial Printing: Printhead Design

Laminar static mixers modeled for aerosol applications
using COMSOL to design custom mixing printhead Mixing Efficacy
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Multimaterial Printing: Printhead Design @

Modeling streamlines design optimization under
mixing efficacy, settling, and volume constraints Mixing Efficacy
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Multimaterial Printing: Proof of Concept

Initial demonstration with optical materials uoresce'n'r'Ch

for straightforward characterization

Ink 1: Norland optical adhesive NOA 61

Ink 2: Norland optical adhesive NOA 61
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Multimaterial Printing: Functional Gradients @

Widespread opportunities for functionally graded materials based on broad
compatibility of aerosol jet printing

Magnetite composite

2mm Broad scope of Graphene/magnetite
compatible materials composite

Epoxies
Acrylates
Polyimide

PMMA
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Silver
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Gold
Metal oxides
Metal hydrides

Platform for fabricating arbitrary gradients offers extensive design flexibility for
widespread applications in mechanical, electronic, magnetic, and thermal systems
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