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2 I Desired Quantities

+Equation of state: E (p , T) , P (p ,T)

+Opacities

+Transport Coefficients



3 Properties over Large P-T Space
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4 Theoretical Physics In a Nutshell •

Exercise 1.1.1.1.1a: Given locality, causality, Lorentz invariance, and known physical data since 1860, show that the Lagrangian
describing all observed physical processes (sans gravity) can be written:
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5 Cascade of Approximations
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Time-dependent properties within linear response regime:

+Electrical/Thermal Conductivity by Kubo-Greenwood

+Spectral functions, opacities, etc.

6 I (Time-Independent) Schrödinger Equation

iatklf = filf flil•N EN (1)N
Equilibrium properties fully determined.

3 = Tr(e-'311) e I3EN F (o,T) —kT log(3)
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7 I Solution of Schrödinger Equation...(Psych)

1 2 3 4 N-1 N

1) Build up basis states

li) = Itrn • • • tO
2) Write Hamiltonian in basis:

Hii = (ilfIlj) 14)) cili)
i

3) Solve the eigen problem.

Hc ENC

Problems:
:•• Dimensionality:

+ 2N basis functions.

+ Can store c for 39 spins in 64GB

:•• Scaling:

••• 0(2N) memory cost, C1(2aN)

computational cost. EXPONENTIAL

SCALING.

+ Adding 1 spin doubles memory and
multiplicatively increases computational

cost.
•• 3x3x3 spin block. What about 6.02x1023:

electrons???



8 I Plan of Attack by Atomistic Simulation

1. Consider a small system with N-100 ions and N-100 electrons.

2. Separate electronic and ionic degrees of freedom.

3. Solve the electronic problem. 6 x 6

4. Solve the ionic problem.

5. Extrapolate to the thermodynamic limit.

Note: There are theories that are formulated in the thermodynamic limit. Not
widely used in inhomogeneous systems.



9 I Problem Statement: Mg2SiO4
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1. We place N-100 ions and N-100 electrons in a box.

2. This defines the Hamiltonian by V(R) (nuclear charge &
number of electrons.

3. Impose periodic boundary conditions.
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10 I Split Nuclei & Electrons: Born-Oppenheimer Approximation

Assume the wavefunction is separable.

TN (r, R) VAir (r, R)xnNi (R)
We can approximately separate the electron and ion equations into the following equations:

fIel = ilel + lrvei(r, R) + '17-„ (r) + f/i/- (R)

H el VA/r(r, R) = E iT(R)klieA/r(r, R)

1
(il n ± g r (R)) xnN/ (R) = ENxnAT (R)

Well controlled approximation:

1. m/M is small

2. No near degeneracies between electronic energy levels.
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12 I Solving the lon Problem at Low Temperature
Quasi-harmonic Approximation

1E e (R) Eel(R0)

2
(R — Ro) • VR VREel

+Exactly diagonalize the nuclear Hamiltonian

Beyond Quasi-harmonic Approximation

+Keep more terms!
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1 3 I Solving the lon Problem Everywhere Else: Molecular Dynamics

Assuming classical nuclei, we want to compute the following:

KA)0 = 1  dRA(R) exp ( , 3 Fel (R))
Z

Z = f dR exp (—,(3Fei (R))

Integrate classical equations of motion for ensemble at temperature T

(A)T

V RFel (R)) eytt(t) — -\/2111e-ykbTe(t)

1 
f dtA(R(t))

T 0 (A)
Ergodic Hypothesis

o (A)T



14 Example: Mg2SiO4
950
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0

Datafile: ...jects/mg2sio4/licilmd_data/tprops.dat

vg: 834.48815 +/- 1.89251

0 10000 20000 30000 40000

Timestep
Datafile: ...jects/mg2sio4/ficilmd_data/tprops.dat

50000

Avg: 4.92004 +/- 0.00538
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15 I What can we compute?

Electronic Properties

+Energies & Pressures

+Electrical conductivity

+Optical properties

Ionic Dynamical Properties

+Ionic diffusion constants

+VACF

((ri (t)
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16 I Solving the lonic Problem: Final Thoughts

Quantum Nuclei at Finite Temperature

z [R] exp dt [T(R(t)) + Fel (R(t))1)

I I I 1 l 1 1 I I I I I I 

+Path-integral molecular
dynamics

+Ring-Polymer Molecular
Dynamics

+Path-integral Monte
Carlo

- 4 -2 0 2 4
x (Å)



17 I Solving the Electronic Problem

fIel
kileAlr(r,R) — Ele\IT (R)ilf eAlr (r

Method Scaling Ground State Excited State Free Energy

Full CI Exp

Hartree-Fock 0(N4)

Coupled Cluster 0(N6)+

Kohn-Sham DFT 0(N3)+

Orbital-Free
DFT

0(N)

VMC/DMC 0(N3)+

GW 0(N5)

•
•

•

•

RPIMC 0(N3) • • •



1 8 Hohenberg-Kohn Theorem (Ground State)

[Theorem 1: 'The external potential Ve.,„ is uniquely determined by the ground state densio r)po(".

•:•Theorem 2: 'There exists a functional of the densio whose variational minimum corresponds to the ground state
energy ho and densio po(r) of the true many-body system."

EHK[p] - f drp(r)Vext (r) + F[p]

+ po(r) is enough to determine everything knowable about the system.

+If we knew EHK[p] (which exists), we could find po(r).

NOTE: Extensions of Hohenberg-Kohn can be done for a free-
energy functional, for time-dependent functionals.



19 Density Functional Theory

lielTe (r;   (R)kK(r;

F [p] p(r)



20 I Kohn-Sham Density Functional Theory

KS-DFT is a method of approximating the universal exchange correlation functional. Ansatz is as
follows:

E Ks[p] = TKS[p] Ellartree[P] Exe[pl + 1 dr p(r)Vext(r)

EHartree[P] =1 drdri p(r)p(ri) 
1r —

Decompose the density into a set of orthonormal orbitals:

2) Evaluate the functional as follows: TKS[P] =

p(r) ii)z

N-1

E drcY:(r)V2cbi(r)
i=o

2

1-4;xe[P]
Exchange-Correlation energy functional:
A.K.A. the "everything we missed" energy functional



21 1 Intuition for Ex,[p]

Exchange energy:

EH F = (WHFWITHF)

E'xF 
[p] =

THF = det(M) M = (ri

= C S[101+ E I artree[d+ F [fid+ f dr p(r)Vext(r)

— 
drdrm(r1)(1);(00i(r)Oi(e)

1r —

Correlation energy:

1 1
g(r) = 45(r - ri)) SN(k) = -

N
(8/90P-k)

P

VN ) =
1 ,

P2 forc drysr(r)[gN(r)-1H- 2y2 [sN(k) —11
koo

1.00

0.80

-sr7 0.60

0.40

0.20 -

0.0°0

• N=54
❑ N= 24
O N= 12 

2
k/rs

3 4 5



22  How do we approximate Exc[p]
+Calculate exchange-correlation energy exactly for model systems.

+Try to satisfy exact constraints... usually analytic and based on model systems.

exc(0,T) is known for the homogeneous electron gas

VOLUME 45, NUMBER 7 PHYSICAL REVIEW LETTERS 18 AUGUST 1980

Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley

National Resource for ComPutation Chemistry, ,Lawrence Berkeley Laboratory. Berkeley, Caktornia 94720

and

B. J. Alder

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

(Received 16 April 1980)

An exact stochastic simulation of the Schroedinger equation for charged bosons and

fermions has been used to calculate the correlation energies, to locate the tran.sitions

to their respective crystal phases at zero temperature within 10%, and to establish the

stability at intermediate densities of a ferromagnetic fluid of electrons.

PACS numbers; 67.90.+1, 71.45.Gm



23 I Approximations!

Local Density Approximation: ELDA
xc

Generalized Gradient Approximation (GGA):

Hybrid Functionals:

Non-local van der Waals:

Exhybrid [p]

Eleli[p]

ExGCGA[p]

Idr p(r)cixr (p(r))

fdr p(r)F(p(r),V p(r))Elxinp(r))

a0GA[p] aEr [I)]

Idrdrip(r)K(r, ri)p(ri)



24 A small list from LibXC...

LDA: LDA, PW92, TETER93

GGA: AM05, BGCP, B97-GGA1, B97-K, BLYP, BP86, EDF1, GAM, HCTH-93, HCTH-120, HCTH-147, HCTH-407,
HCTH-407P, HCTH-P14, PBEINT, HTBS, KT2, MOHLYP, MOHLYP2, MPBE, MPW, N12, OLYP, PBE, PBEINT,
PBESOL, PW91, Q2D, SOGGA, SOGGA11, TH-FL, TH-FC, TH-FCFO, TH-FCO, TH1, TH2, TH3, TH4, XLYP,
XPBE, HLE16

MetaGGA: M06-L, M11-L, MN12-L, MSO, MS1, MS2, MVS, PKZB, TPSS, HLE17

Hybrids: B1LYP, B1PW91, B1WC, B3LYP, B3LYP*, B3LYP5, B3LYP5, B3P86, B3PW91, B97, B97-1 B97-2, B97-3,
BFIANDH, BHANDHLYP, EDF2, MB3LYP-RC04, MPW1K, MPW1PW, MPW3LYP, MPW3PW, MPWLYP1M,
03LYP, OPBE, PBEO, PBEO-13, REVB3LYP, REVPBE, RPBE, SB98-1A, SB98-1B, SB98-1C, SB98-2A, SB98-2B,
SB98-2C, SOGGA11-X, SSB, SSB-D, X3LYP

MetaHybrids: B86B95, B88B95, BB1K, M05, M05-2X, M06, M06-2X, M06-HF, M08-HX, M08-SO, MPW1B95,
MPWB1K, MS2H, MVSH, PW6B95, PW86B95, PWB6K, REVTPSSH, TPSSH, X1B95, XB1K

Range-separated: CAM-B3LYP, CAMY-B3LYP, HJS-PBE, HJS-PBESOL, HJS-B97X, HSE03, HSE06, LRC_WPBE,
LRC_WPBEH, LCY-BLYP, LCY-PBE, M11, MN12-SX, N12-SX, TUNED-CAM-B3LYP, WB97, WB97X

■



25 1

We've specified  1-4,KsTpl by picking hxdp I. I ow do we get the
ground state energy and density?



26 I The Kohn-Sham Equations

(— 2 '72 + vett' (0) C6i (r) = €202 (r)

Veil (r) = Vext (r) + f dr' I 1r9Vr)' 1 1515'pr(cr[ci
+  

+Introduce a basis.

+Use density to determine veff(r). p(r) = Elv-01 C5i.(r) 2

+Solve the eigenproblem.

+Update density to correspond to new set of orbitals.

+Repeat until density and orbitals stop changing.

O(N3) for matrix diagonalization



27 I What is Computable within DFT?

41 (11,) Fel (R) — kT log(2fel)

+Ground-state energy, free energy.

+Specific heats.

+Pressures, forces, elastic constants.

+Electrical/thermal conductivities, optical properties.

+ Computable within Kubo-Greenwood for the auxiliary KS system.

tt• Good approximation most of the time.

+ Ground state KS serves as basis for rigorous many-body methods like Q
GW.

C and



28 I DFT In Practice: OK Equation of State.
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29 I Finite Temperature: Beryllium Hugoniot
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30 I Difficulties with DFT

1) Insulator-to-metal transitions. (self-interaction
errors + band gap)

2) Molecular disassociation. (multireference issues +
self-interaction errors)

3) Band-gaps. (derivative discontinuity)

4) Magnetic phase transitions. (energies are small)

5) Error cancellation.

In parallel with DFT, many-body methods
development occurs in 1641.
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Pierleoni et al., PNAS 113, 2016

400



31 Finite-Size Effects

-0.106

+Need to be large enough to capture
relevant correlations.

+After that, difference between -0.108
thermodynamic limit and finite cells are
often integration errors. -St

c4
•Run multiple cell sizes, look how Z
properties converge. --- -0.110ril
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32

Conclusions & Questions


