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2 | Desired Quantities

“*Equation of state: E(p,T), P(p,T)
“*Opacities

“*Transport Coefficients




3 | Properties over Large P-T Space
10™

=10P
E
E
=
,:%i 10°
ol
%’i
£
— 107
] |
""*7@:3:?11;@*‘*L 1072 1 107 10* 10°P

Density (grams/centimeter”)

Figure from Mike Desjarlais



| Theoretical Physics In a Nutshell

Exercise 1.1.1.1.1a: Given locality, causality, Lorentz invariance, and known physical data since 1860, show that the Lagrangian
describing all observed physical processes (sans gravity) can be written:
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s | Cascade of Approximations
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Classical Mechanics

Schrodinger
Equation




6 | (Time-Independent) Schrodinger Equation |

O = HU wep HO\ = Fn®dy |

Equilibrium properties fully determined.

Z =Tr(e PH) = > e PPN ummmy F(p,T) = —kT log(Z) |

N T
E(p,T):—QZ P(va):_<8—F>
0P o),
Time-dependent properties within linear response regime:
“*Electrical/Thermal Conductivity by Kubo-Greenwood I

“*Spectral functions, opacities, etc. ‘



7 | Solution of Schrodinger Equation...(Psych)

1 2 3 4 N-1 N
Problems: ‘
% Dimensionality:

s 2N basis functions. |

1) Build up basis states % Can store c for 39 spins in 64GB
»* Scaling:

|7/> — H\i,TT .« . T\L> < O2Y) memory cost, O(22N)

computational cost. EXPONENTIAL

4

2) Write Hamiltonian in basis: SCALING. |
H;; = <Z|]:]|]> D) = Z c;|1) % Adding 1 spin doubles memory and
p multiplicatively increases computational
3) Solve the eigen problem. cost. I

o0

* 3x3x3 spin block. What about 6.02x10%3
HC — EN C electrons??? |



8

Plan of Attack by Atomistic Simulation

Consider a small system with N~100 ions and N~100 electrons.
Separate electronic and ionic degrees of freedom.

Solve the electronic problem. @ % ¥

Solve the ionic problem.

Extrapolate to the thermodynamic limit.

Note: There are theories that are formulated in the thermodynamic limit. Not
widely used in inhomogeneous systems.



9 | Problem Statement: Mg,SiO,

. We place N~100 ions and N~100 electrons in a box.

DO

This defines the Hamiltonian by V(R) (nuclear charge &
number of electrons.

V\JJ

Impose periodic boundary conditions.




0 I Split Nuclei & Electrons: Born-Oppenheimer Approximation

Assume the wavefunction is separable.
el (4. n
\IJN(Ta R) _ \PN(ra R)XN (R)
We can approximately separate the electron and 1on equations into the following equations:
H =T + Vor(r; R) + Vee(r) + Vir(R)

HUy (r;R) = B (R) Py (r; R)

!

(I" + EJ(R))X%(R) = Exnx}(R)

Well controlled approximation:
1. m/M is small

2. No near degeneracies between electronic energy levels.
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12 I Solving the lon Problem at Low Temperature

Cy/INKy,

Quasi-harmonic Approximation

1
E°(R) ~ E4(Ry) + 5(R —Ry) - VR®VREY - (R—Rp) +...

“*Exactly diagonalize the nuclear Hamiltonian

o F = E(()Zl + F’U’ib

Beyond Quasi-harmonic Approximation

“*Keep more terms!
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13 | Solving the lon Problem Everywhere Else: Molecular Dynamics
Assuming classical nuclei, we want to compute the following:
(A)s = [ RAR)exp (~5F(R))
Z = /dReXp (-BF*(R))

Integrate classical equations of motion for ensemble at temperature T

P(t) = —VrF“(R) — YR(t) — /2M~kyTE(t)

Ergodic Hypothesis

(A), = %/OT dtA(R(t)) <A>,8 — <A>T




14| Example: Mg,SiO,

Datafile: ...jects/mg2sio4/liq/md_data/tprops.dat
T T T

I (Avg: 834.48815 +/- 1.89251]
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5 1 VWhat can we compute!?

Electronic Properties <(rz (t) —r; (O) ) 2 > g = 6DZ

X Energies & Pressures

“*Electrical conductivity 14000 |
“*Optical properties L2000
. . ] 10000 |
Ionic Dynamical Properties X
8000
A
***Tonic diffusion constants 2 sl
++*VACF 4000 |
2000
0

_Mg

Datafile: ...projects/mg2sio4/liq/md_data/msd.dat
1 T 1

1000 2000 3000 4000

Time|fs]



16 | Solving the lonic Problem: Final Thoughts

Quantum Nuclei at Finite Temperature

Z = /D[R] exp (— /Oﬂ dt [T(R(t)) + Fel(R(t))])

T T [ T T 1 l LU I T

—

b

“*Path-integral molecular
dynamics

“*Ring-Polymer Molecular
Dynamics

“*Path-integral Monte
Carlo




7 | Solving the Electronic Problem

HUy (r;R) = EY (R) Py (r; R)

Full CI

Hartree-Fock O(N“) = e
Coupled Cluster O(N®)+ = — o
mmmmm) Kohn-Sham DFT  O(N3)+ = ¢ =
Orbital-Free O(N) = @ e
DFT
) \/MC/DMC O(N3)+ = % ®
GW O(N3) & @ e
RPIMC O(N3) . ® =



18 I Hohenberg-Kohn Theorem (Ground State)

“*Theorem 1: “The external potential 1,

exct

is uniquely determined by the ground state density p,(t)”.

“*Theorem 2: “There exists a functional of the density whose variational minimum corresponds to the ground state

energy B, and density p,(x) of the true many-body system.”

Enklpl = | drp(r)Vey(r) + F|p]

“*py(r) is enough to determine everything knowable about the system.

“*If we knew E[p] (which exists), we could find p,(t).

NOTE: Extensions of Hohenberg-Kohn can be done for a free-
energy functional, for time-dependent functionals.



19 | Density Functional Theory

A0 (15 R) = ES(R)U(r; R)

EFlp| p(r)




20 I Kohn-Sham Density Functional Theory

KS-DFT 1s a method of approximating the universal exchange correlation functional. Ansatz is as

follows:
EKS [P] — TKS[IO] -+ EHartree[p] + Emc[p] + /dI‘P(I')Ve:ct(I')

\

Erareredls] = / drdp PEIP(E)

r —r'|

1)  Decompose the density into a set of orthonormal orbitals: ,0(1') = Zi\ial M o (1') ‘2

N-1
1
2)  Evaluate the functional as follows: Tkslp) = ~3 Z / dré; (r)V2¢;(r)
1=0

E Exchange-Correlation energy functional:
€TC A.K.A. the “everything we missed” energy functional




Intuition for Ewc[p]
Exchange energy: Uy p = det(M) M = ¢;(r;)

EHF — (‘IJHF”;”‘IJHF) — TKS[p]_'_EHartree[P]_"EfF[p]+/ dI‘p(I‘)ngt(r)

EHF[p Z/d JIr ,Cf)* ()gbi(r)q’)j(r )

Ir — /|
1<

Correlation energy:

1
P SUCEENIRMOE R

i#0 0.80
p = L
(Vn) = 5[ drvg, (r)[gn(r)— 1]+—Zv [Sn(k) — 1] = 060F
0 w2
k0 0.401
0.20|-
0.00, e



22 I How do we approximate Eazc[p]

**Calculate exchange-correlation energy exactly for model systems.

“*Try to satisfy exact constraints... usually analytic and based on model systems.

exc(Py 1) s known for the homogeneous electron gas

VoLuME 45, NUMBER 7 PHYSICAL REVIEW LETTERS 18 AuGusT 1980

Ground State of the Electron Gas by a Stochastic Method

D. M. Ceperley
National Resource for Computation in Chemistry, Lawvence Bevkeley Laboratory, Bevkeley, California 94720

and

B. J. Alder
Lawrence Livevmore Labovatory, Universily of California, Livermore, California 94550
(Received 16 April 1980)

An exact stochastic simulation of the Schroedinger equation for charged bosons and
fermions has been used to caleulate the correlation energies, to locate the transitions
to their respective crystal phases at zero temperature within 10%, and to establish the
stability at intermediate densities of a ferromagnetic fluid of electrons.

PACS numbers; 67.90.+1, 71.45.Gm




Approximations!

Local Density Approximation: E L DA / dr p( ) h Om ( p(r) )
Generalized Gradient Approximation (GGA): EiGA[p] = / drp( ) ( (I‘) V p(r))ehom(‘ (I‘))

Hybrid Functionals: ~ E1¥°T [ p] = (1 — a) ES94(p] + aEZ T [p]

Non-local van der Waals: E?i [p] — / drdr’p(r)K(r, I'f)ﬂ(r'f)




24 | A small list from LibXC...

LDA: LDA, PW92, TETER93

GGA: AMO5, BGCP, B97-GGA1, B97-K, BLYP, BP§6, EDF1, GAM, HCTH-93, HCTH-120, HCTH-147, HCTH-407,

HCTH-407P, HCTH-P14, PBEINT, HTBS, KT2, MOHLYP, MOHLYP2, MPBE, MPW, N12, OLYP, PBE, PBEINT,
P]lBD%SOIL{, P\51</691, Q2D, SOGGA, SOGGAT11, TH-FL, TH-FC, TH-FCFO, TH-FCO, TH1, TH2, TH3, TH4, XLYP,
XPBE, HLE

MetaGGA: M0G-I., M11-I, MN12-1., MS0, MS1, MS2, MVS, PKZB, TPSS, HL.E17

Hybrids: BILYP, BIPW91, BIWC, B3LYP, B3LYP*, B3LLYP5, B3LLYP5, B3P86, B3PW91, B97, B97-1 B97-2, B97-3,
BHANDH, BHANDHLYP, EDF2, MB31L.YP-RC04, MPW1K, MPW1PW, MPW3LYP, MPW3PW, MPWLYP1M,
O3LYP, OPBE, PBEO, PBEO-13, REVB3LYP, REVPBE, RPBE, SB98-1A, SB98-1B, SB98-1C, SB98-2A, SB98-2B,
SB98-2C, SOGGA11-X, SSB, SSB-D, X3L.YP

MetaHybrids: B86B95, B88B95, BB1K, M05, M05-2X, M06, M06-2X, M06-HE, M08-HX, M08-SO, MPW1B95,
MPWBIK, MS2H, MVSH, PW6B95, PW86B95, PWB6K, REVTPSSH, TPSSH, X1B95, XB1K

Range-separated: CAM-B3LYP, CAMY-B3LYP, HJS-PBE, H|S-PBESOL, H|S-B97X, HSE03, HSE06, LRC_WPBE,
LRC_WPBEH, LCY-BLYP, LCY-PBE, M11, MN12-SX, N12-SX, TUNED-CAM-B3LYP, WB97, WB97X



25

Wewe specified Ey¢/p] by picking E~.-[p]. How do we get the
ground state energy and density?



26 I The Kohn-Sham Equations
1 . ,
(—§V2 + ’Ueff(l‘)) ¢i(r) = €i¢i(r)

p(r’)  OE..[p]
r—1/| " dp(r)

Veff(r) = Veze(r) + /dr’

*»*Introduce a basis.

“*Use density to determine v_(1). p(r) = Z;N:Bl |p;(r) |2
“*Solve the eigenproblem.
“*Update density to correspond to new set of orbitals.

“*Repeat until density and otbitals stop changing.

O(NP) for matrix diagonalization




27 I What is Computable within DFT?
ESZ(R) Fel(R) = —kT log(Zel)

“*Ground-state energy, free energy.
“*Specific heats.

& ®
*»*Pressures, forces, elastic constants.

“*Electrical /thermal conductivities, optical properties.
% Computable within Kubo-Gteenwood for the auxiliary KS system.

+» Good approximation most of the time.

“* Ground state KS serves as basis for rigorous many-body methods like QMC and
GW.



28 | DFT In Practice: OK Equation of State.

Error in Calculated Equilibrium Volume Error in Calculated Equilibrium Bulk Modulus
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29 | Finite Temperature: Beryllium Hugoniot

(a) 16 (b) 200
€ This Work
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©14 | 160 1 o  wise
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McCoy, Knudson, Desjarlais, PRB 100, 2019



30 | Difficulties with DFT

B

1) Insulator-to-metal transitions. (self-interaction

errors + band gap) Fluid H

Mazzola diss.

: . : : 2000
2)  Molecular disassociation. (multireference issues +

self-interaction errors)

3) Band-gaps. (derivative discontinuity) B
.§ Mazzola IMT
. .. . o
4)  Magnetic phase transitions. (energies are small) qé.)- "
: 1000
5)  Error cancellation, e

In parallel with DFT, many-body methods
development occurs in 1641.

100 200 300 400
Pressure (GPa)

Pierleont ez al., PNAS 113, 2016



31 | Finite-Size Effects

“*Need to be large enough to capture
relevant correlations.

@ After that, difference between
thermodynamic limit and finite cells are
often integration errors.

“*Run multiple cell sizes, look how
properties converge.

E /N (Ryd)

-0.106

-0.108

-0.110

-0.112

Chiesa et al. PRILL 97, (1997)



32

Conclusions & Questions




