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2 | Problem and Motivation

Problem: Unlike gas phase, no universal kinetic theory for diffusion in multi-component mixtures
(MCM) elx'ists. The complexity of the problem only increases for MCM absorbed into porous
materials!

Need: Need the ability to rapidly and accurately predict MCM diffusion for a wide range of
materials and conditions. Diffusion impacts material performance, production and aging.

= Experimental Methods: (absorption, CT, QENS, NMR diffusometry etc.). Time consuming, difficult for MCM and
temperature. Limited number of materials.

= Molecular Dynamic (MD) Simulations: Detailed information. Simulations for different loadings, temperatures,
or materials becomes extensively time restrictive for engineering applications.

Solution: Develop machine learning (ML) methods for predicting diffusion.

= Machine Learning: Rapidly growing field in Materials Science (Future efforts needed at Sandia!)
= Materials Genome

= Computational Materials Engineering Initiative
= lonic liquid Genome

= Polymer Genome

= Electrolyte Genome

=Surrogate Model Development: Fundamental understanding of diffusion in MCM from ML.

Why LDRD?: From a materials scientist’s perspective - Need rapid accurate
models, applied for infinite number of MCM and materials ... Need to develop
fundamental and broadly applicable understanding of diffusion.
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3 | Current Theories for Diffusion in Mixtures

Maxwell Stephen (MS) Model
(dominant diffusion model)
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4 I Start Small - Lennard Jones Fluids
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5 | Molecular Dynamics and Lennard Jones

« Zhu et al. collected multiple sets of MD data from other authors

» Fit the data to generate 9 parameters used in his equation
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s | The Database

Zhu’s Dataset
550 data points from 8 sources

Parameters were fit using data from only one source (Rowley 1997)

Total Dataset
Originally 1183 data points from 19 sources
16 Argon studies, 1 Lithium, 1 unity, 1 unknown

Trimmed down to 884 data points after cleaning
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s I Current Dataset After Being Cleaned
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9 | Distribution of Data

Density
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10 | Scaling the Data - Normal Distribution
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11 I Using Kfold to Assess the Performance

All Data

Test data

Splits dataset in even “folds”
- 10% of the data points become test points

o Other 90% is used to train model
> 10 “folds” are created

Training data

| Foid1 || Fold2 || Foid3 || Foid4 || Foids |

split1 | Fold1 || Fold2 || Fold3 || Folda || Fold5 |

split2 | Fold1 || Fold2 || Fold3 || Fold4 || Foids |

>“ Finding Paramefers

Split3 | Fold1 || Fold2 || Fold3 || Fold4 || Foids |

Can “shuffle” the dataset before splitting to improve
performance

spiit4. | Fold1 || Fold2 || Fold3 || Fold4 || Folds |

Spiits | Fold1 || Fold2 || Fold3 || Fold4 || Folds |/

Final evaluation { Test data
Scaling Method Forest (No Shuffle) Forest (Shuffle) |

Raw Data 0.55 + 0.53 0.45 + 0.21
Standard 0.55+0.53 0.44 +0.18
Robust 0.55+0.53 0.45 + 0.29

Normalizer 0.60 + 0.54 0.76 £ 0.25 I
MinMax 0.55 + 0.53 0.46 + 0.19
Box-Cox 0.55 + 0.54 0.45 + 0.15
Yeo-Johnson 0.55+0.54 0.44 +0.18
Normal 0.58 + 0.56 0.46 + 0.19
Uniform 0.55+0.54 0.46 + 0.19



2 I RMSE Calculated Over a |10-Fold CV

SVR Linear Ridge Lasso SGD Forest

Raw Data 2.44 + 0.90 2.46 £ 0.76 2.47 £ 0.72 2.97 + 0.97 2.49 + 0.62 0.45 + 0.21
Standard 2.09 £ 1.02 2.38+£0.99 2.45 + 0.80 3.02+0.78 2.40 + 0.92 0.44 + 0.18
Robust 2.27 £+ 1.04 2.47 £+ 0.71 2.43 +£0.85 3.03+0.74 2.46 + 0.77 0.45 + 0.29
Normalizer 2.75 + 0.81 2.37£0.79 2.42 + 0.62 2.99 + 0.91 2.68 +0.74 0.76 + 0.25
MinMax 2.56 £ 0.79 2.44 + 0.81 2.37 £1.02 3.00 + 0.88 2.42 +0.90 0.46 + 0.19
Box-Cox 1.97 £ 0.77 2.37 £ 0.65 2.25+1.02 2.99 + 0.91 2.28 + 0.96 0.45 + 0.15
Yeo-Johnson 2.03+£1.12 2.43 £ 0.91 2.43 +£0.93 2.98 £ 0.92 2.45+0.86 0.44 + 0.18
Normal 1.73+0.73 2.12 £ 0.65 2.13 £ 0.62 3.03+0.75 2.14 + 0.51 0.46 + 0.19
Uniform 2.44 +0.76 2.41 + 0.94 2.47 £+ 0.72 3.05+0.65 2.45 + 0.81 0.46 + 0.19

Random Forest is the best performer regardless of
scaling method. Therefore, more time was put
towards optimizing Random Forest parameters



3 I RMSE Calculated Over a 10-Fold CV

SVR Linear Ridge Lasso SGD Forest
Raw Data 2.44 + 0.90 2.46 £ 0.76 2.47 £ 0.72 2.97 £ 0.97 2.49 + 0.62 0.45 + 0.21
Standard 2.09 +1.02 2.38+0.99 2.45 + 0.80 3.02 £ 0.78 2.40 + 0.92 0.44 + 0.18
Robust 2.27 £+ 1.04 2.47 + 0.71 2.43 +0.85 3.03+0.74 2.46 + 0.77 0.45 + 0.29
Normalizer 2.75 + 0.81 2.37 £0.79 2.42 + 0.62 2.99 + 0.91 2.68 £+ 0.74 0.76 +0.25
MinMax 2.56 £ 0.79 2.44 + 0.81 2.37 +1.02 3.00 £+ 0.88 2.42 +0.90 0.46 + 0.19
Box-Cox 1.97 + 0.77 2.37 £ 0.65 2.25+1.02 2.99 + 0.91 2.28 £ 0.96 0.45 + 0.15
Yeo-Johnson 2.03+1.12 2.43 + 0.91 2.43 +0.93 2.98 + 0.92 2.45 + 0.86 0.44 + 0.18
Normal 1.73+0.73 2.12 + 0.65 2.13+0.62 3.03+0.75 2.14 + 0.51 0.46 + 0.19
Uniform 2.44 +0.76 2.41 £ 0.94 2.47 +0.72 3.05+0.65 2.45 + 0.81 0.46 + 0.19
Chapman Speedy Speedy (ext) Zhu
1.22+0.60 1.17 £ 0.61 0.61+0.18 0.26 + 0.18

Zhu’s model shows much better performance.



14 | How Random Forest Works

mse=2.415
samples =2
value =21.777

Rho <=-1.846
mse = 7.551
samples = 1065
value = 1.051

Tru V

Rho <=-1.906
mse = 54.798
samples = 32

value = 12.866

'

wxlse

Rho <=-1.587
mse = 1.629
samples = 1033
value = 0.685

l

Temp <= -0.891 Temp <=0.274 Rho <=-1.775 Rho <=-1.014
mse = 17.164 mse = 22.689 mse = 4.058 mse = 0.259
samples = 5 samples =27 samples = 93 samples = 940
value = 26.21 value = 10.395 value = 3.909 value = 0.366
mse = 5.164 mse = 10.808 mse = 17.386 mse = 4.358 mse = 1.63 mse =0.436 mse = 0.047
samples = 3 samples = 24 samples = 3 samples =41 samples = 52 samples = 136 samples = 804
value = 29.165 value =9.215 value = 19.84 value = 5.156 value = 2.926 value = 1.324 value = 0.204




15 | Interpolation With Random Forest
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« Trained all but one data point
D* = 26.26
Rho* = 0.005
T* =0.900599

» Tested on full dataset and single
point
Prediction = 24.4

« Data point closest to the test point
D* = 12.991
Rho* = 0.01
T* = 0.900501
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Random Forest has the ability to interpolate!
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 Trained on Zhu’s dataset
- Largest D* is 9.2

 Tested on Meier’s data
Largest D* is 31.8
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Random Forest has no ability to extrapolate!



17 | Feature Engineering - Algorithm

Entire Database

Training and Target Features (100%)

Holdout Set Training Set
Environmental | i) Lo
SC | e nce %OF%ES%%% Recursive Feature Elimination
Cross Validation
Nano
Fold 1 [Fold 2| Fold 3| Fold 4 | Fold 5
| PAPER ot (18%) | (18%) | (18%) | (18%) | (18%)
Train | Train | Train | Train | Test
CrossMark Prediction of nanoparticle transport behavior from Train | Train | Train | Test | Train
. physicochemical properties: machine learning [rvain | Tran | Tost | Train | Tran
2sm o™ provides insights to guide the next generation of
transport mOdElST Train | Test | Train | Train | Train
Eli Goldberg,? Martin Scheringer,**® Thomas D. Bucheli® and Konrad Hungerbihler® R "rein [ Train | Train | Train Cross

Validation
Results
Fig.3&6
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Y

Trim Training Set To Match
RFECV Selected Features
A A +
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| () Holdout

A 4

Results
Fig. 4 &7




Feature Engineering - Feature Importance

Oth iteration (107 features)

Feature[rho”3 / T72.5] (0.202618

1. ( )
2. Feature[T"2.5 / rho"3] (0.099727)
3. Feature[T"3.5 / rho"4] (0.096488)
4. Feature[rho™2 / T"1.5] (0.093950)
5. Feature[T"3.0 / rho”4] (0.052531)
6. ( )
7 ( )
8 ( )
9. ( )
1

Feature[T"1.5 / rho”2] (0.051877

. Feature[T"3.5 / rho"5] (0.049922
. Feature[rho”3 / T"2.0] (0.034661

Feature[rho™1 / T"1.0] (0.033637

0. Feature[rho”2 / T"2.0] (0.029279)

51. Feature[rho*] (0.001054)

84. Feature[T*] (0.000106)

107. Feature[rho™5 / T*1.0] (0.000001)

4th jteration (67 features)

Feature[T"2.5 / rho"3] (0.213646

1. ( )
2. Feature[T"3.5 / rho"4] (0.123838)
3. Feature[T"2.5 / rho™4] (0.119322)
4. Feature[rho™3 / T"2.5] (0.068148)
5. Feature[T"3.0 / rho"4] (0.063451)
6. ( )
7 ( )
8 ( )
9. ( )
1

Feature[T"3.5 / rho”5] (0.056052

. Feature[T"2.0 / rho"3] (0.055414
. Feature[T"1.5 / rho"2] (0.055036

Feature[rho”2 / T"1.5] (0.034017

0. Feature[rho”3 / T"2.0] (0.028228)

49. Feature[rho*] (0.000476)

67. Feature[rho”3 * T"1.5] (0.000063)



19 | Feature Engineering - Feature Importance
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. Feature[T"1.0 / rho”1] (0.019573
. Feature[rho™4 / T"3.0] (0.018454
. Feature[rho"3 / T"3.0] (0.016722

Final Iteration (17 features)

. Feature[T"2.5 / rho"3] (0.147572)
. Feature[T"3.5 / rho"4] (0.115308)
. Feature[T"2.5 / rho"4] (0.108927)
. Feature[rho”3 / T"2.5] (0.093794)
. Feature[T"3.5 / rho"5] (0.085812)
. Feature[T"1.5 / rho"2] (0.075866)
. Feature[T"3.0 / rho"4] (0.065934)
( )
(

Feature[rho™2 / T"1.5] (0.062274

. Feature[T"2.0 / rho"3] (0.052163)
. Feature[rho”3 / T"2.0] (0.049755
. Feature[T"3.0 / rho”3] (0.025409
. Feature[T"2.0 / rho”2] (0.021161
. Feature[rho™1 / T"1.0] (0.021112
. Feature[rho”2 / T"2.0] (0.020165

(

(

(

N S S N ' ' '

T* and rho* never make
it to the final iterations



20 | RMSE at Each Iteration
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Not a significant difference in the
error

Interested in how the model
performs with less than 7 features



21 I Random Forest RMSE Comparison

Features T* & rho* T* & rho* Rho?-9/T'5 & T2-3/rho3-0
Kfold Type No Shuffle Shuffle Shuffle
Raw Data 0.55+0.53 0.45 +0.21 0.31+0.15
Standard 0.55+0.53 0.44+0.18 0.28 +0.16
Robust 0.55+0.53 0.45+0.29 0.30+0.17
Normalizer 0.60 + 0.54 0.76 £ 0.25 1.98 + 0.68
MinMax 0.55+0.53 0.46 + 0.19 0.31+0.14
Box-Cox 0.55+0.54 0.45+0.15 0.31+0.14
Yeo-Johnson 0.55 + 0.54 0.44 £+ 0.18 0.30+£0.12
Normal 0.58 + 0.56 0.46 + 0.19 0.31+0.14
Uniform 0.55+0.54 0.46 + 0.19 0.28+0.14
Chapman Speedy Speedy (ext) Zhu

1.22+0.60 1.17x0.61 0.61+0.18 0.26+0.18

Feature Engineering has generated promising results.



22 | What’s Next

* |s Random Forest the method we want to move forward with?
» Extrapolation is important for what we are trying to do
« Attempt to create a Neural Net

« What features to try next and how many?
» Possibly add exponentials and logarithms

» Begin transitioning to pure solutions
» Decide what features are important in real systems



