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2 Problem and Motivation

Problem: Unlike gas phase, no universal kinetic theory for diffusion in multi-component mixtures
(MCM) exists. The complexity of the problem only increases for MCM absorbed into porous
materials!

Need: Need the ability to rapidly and accurately predict MCM diffusion for a wide range of
materials and conditions. Diffusion impacts material performance, production and aging.

Experimental Methods: (absorption, CT, QENS, NMR diffusometry etc.). Time consuming, difficult for MCM and
temperature. Limited number of materials.

Molecular Dynamic (MD) Simulations: Detailed information. Simulations for different loadings, temperatures,
or materials becomes extensively time restrictive for engineering applications.

Solution: Develop machine learning (ML) methods for predicting diffusion.

Machine Learning: Rapidly growing field in Materials Science (Future efforts needed at Sandia!)
Materials Genome

Computational Materials Engineering Initiative

lonic liquid Genome

Polymer Genome

Electrolyte Genome

Surrogate Model Development: Fundamental understanding of diffusion in MCM from ML.

Why LDRD?: From a materials scientist's perspective - Need rapid accurate
models, applied for infinite number of MCM and materials ... Need to develop
fundamental and broadly applicable understanding of diffusion.



3 Current Theories for Diffusion in Mixtures
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4 Start Small - Lennard Jones Fluids
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5 Molecular Dynamics and Lennard Jones

• Zhu et al. collected multiple sets of MD data from other authors
• Fit the data to generate 9 parameters used in his equation
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6 The Database

Zhu's Dataset

550 data points from 8 sources

Parameters were fit using data from only one source (Rowley 1997)

Total Dataset

Originally 1183 data points from 19 sources

16 Argon studies, 1 Lithium, 1 unity, 1 unknown

Trimmed down to 884 data points after cleaning



7 I Raw Dataset

Density Color Map

10 15 20

Calculated Diffusion

0.5

I

I



8 Current Dataset After Being Cleaned
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9 Distribution of Data
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10 I Scaling the Data - Normal Distribution
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11 Using Kfold to Assess the Performance

Splits dataset in even "folds"
10% of the data points become test points
Other 90% is used to train model

10 "folds" are created

Can "shuffle" the dataset before splitting to improve
performance

Scaling Method
Raw Data
Standard
Robust

Normalizer
MinMax
Box-Cox

Yeo-Johnson
Normal
Uniform

Forest (No Shuffle)
0.55 ± 0.53
0.55 ± 0.53
0.55 ± 0.53
0.60 ± 0.54
0.55 ± 0.53
0.55 ± 0.54
0.55 ± 0.54
0.58 ± 0.56
0.55 ± 0.54

All Data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

soul.

spa 2
rig P I H ets

Fold 
1_,

Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

spilta Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

solt4 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

5011..5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Forest (Shuffle)
0.45 ± 0.21
0.44 ± 0.18
0.45 ± 0.29
0.76 ± 0.25
0.46 ± 0.19
0.45 ± 0.15
0.44 ± 0.18
0.46 ± 0.19
0.46 ± 0.19

evalUation Test data



12 RMSE Calculated Over a 10-Fold CV

SVR Linear Ridge Lasso SGD Forest
Raw Data 2.44 ± 0.90 2.46 ± 0.76 2.47 ± 0.72 2.97 ± 0.97 2.49 ± 0.62 0.45 ± 0.21

Standard 2.09 ± 1.02 2.38 ± 0.99 2.45 ± 0.80 3.02 ± 0.78 2.40 ± 0.92 0.44 ± 0.18

Robust 2.27 ± 1.04 2.47 ± 0.71 2.43 ± 0.85 3.03 ± 0.74 2.46 ± 0.77 0.45 ± 0.29

Normalizer 2.75 ± 0.81 2.37 ± 0.79 2.42 ± 0.62 2.99 ± 0.91 2.68 ± 0.74 0.76 ± 0.25

MinMax 2.56 ± 0.79 2.44 ± 0.81 2.37 ± 1.02 3.00 ± 0.88 2.42 ± 0.90 0.46 ± 0.19

Box-Cox 1.97 ± 0.77 2.37 ± 0.65 2.25 ± 1.02 2.99 ± 0.91 2.28 ± 0.96 0.45 ± 0.15

Yeo-Johnson 2.03 ± 1.12 2.43 ± 0.91 2.43 ± 0.93 2.98 ± 0.92 2.45 ± 0.86 0.44 ± 0.18

Normal 1.73 ± 0.73 2.12 ± 0.65 2.13 ± 0.62 3.03 ± 0.75 2.14 ± 0.51 0.46 ± 0.19

Uniform 2.44 ± 0.76 2.41 ± 0.94 2.47 ± 0.72 3.05 ± 0.65 2.45 ± 0.81 0.46 ± 0.19

Random Forest is the best performer regardless of
scaling method. Therefore, more time was put
towards optimizing Random Forest parameters

I



13 RMSE Calculated Over a 10-Fold CV

SVR Linear Ridge Lasso SGD Forest
Raw Data 2.44 ± 0.90 2.46 ± 0.76 2.47 ± 0.72 2.97 ± 0.97 2.49 ± 0.62 0.45 ± 0.21

Standard 2.09 ± 1.02 2.38 ± 0.99 2.45 ± 0.80 3.02 ± 0.78 2.40 ± 0.92 0.44 ± 0.18

Robust 2.27 ± 1.04 2.47 ± 0.71 2.43 ± 0.85 3.03 ± 0.74 2.46 ± 0.77 0.45 ± 0.29

Normalizer 2.75 ± 0.81 2.37 ± 0.79 2.42 ± 0.62 2.99 ± 0.91 2.68 ± 0.74 0.76 ± 0.25

MinMax 2.56 ± 0.79 2.44 ± 0.81 2.37 ± 1.02 3.00 ± 0.88 2.42 ± 0.90 0.46 ± 0.19

Box-Cox 1.97 ± 0.77 2.37 ± 0.65 2.25 ± 1.02 2.99 ± 0.91 2.28 ± 0.96 0.45 ± 0.15

Yeo-Johnson 2.03 ± 1.12 2.43 ± 0.91 2.43 ± 0.93 2.98 ± 0.92 2.45 ± 0.86 0.44 ± 0.18

Normal 1.73 ± 0.73 2.12 ± 0.65 2.13 ± 0.62 3.03 ± 0.75 2.14 ± 0.51 0.46 ± 0.19

Uniform 2.44 ± 0.76 2.41 ± 0.94 2.47 ± 0.72 3.05 ± 0.65 2.45 ± 0.81 0.46 ± 0.19

Chapman Speedy Speedy (ext) Zhu

1.22 ± 0.60 1.17 ± 0.61 0.61 ± 0.18 0.26 ± 0.18

Zhu's model shows much better performance.

I



14 How Random Forest Works

mse = 2.415

samples = 2
value = 2.1.777

Temp <= -0.891
mse = 17.164
samples = 5

value = 26.21

mse = 5.164

samples = 3
value = 29,165

Rho -1.846
mse = 7.551

samples = 1065
value = 1.051

True

Rho <= -1.906

mse = 54.798
samples = 32

vahie = 12.866

Temp <= 0.274
rase = 22.689
samples = 27

vahie = 10.395

inse = 10.808

samples = 24
value = 9.2.15

mse = 17.386

samples =3
value = 19.84

\\\Flse

Rho -<=

rase =

-1.587

1.629
= 1033

0.685

samples

value =

V

Rho <= -1.775
mse = 4.058
samples = 93

value =3.909

Rho <= -1.014
mse = 0.259
samples = 940

value = 0.366

mse = 4.358 mse = 1.63 mse = 0.436 mse = 0.047

samples = 41 samples = 52 samples = 136 samples = 804
value = 5.156 value = 2.926 value = 1.32.4 value = 0.2.04



1 5 I Interpolation With Random Forest
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• Trained all but one data point
D* = 26.26
Rho* = 0.005
T* = 0.900599

• Tested on full dataset and single
point
Prediction = 24.4

• Data point closest to the test point
D* = 12.991
Rho* = 0.01
T* = 0.900501

Random Forest has the ability to interpolate!



1 6 I Extrapolation With Random Forest
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• Trained on Zhu's dataset
- Largest D* is 9.2 I

• Tested on Meier's data
- Largest D* is 31.8

Random Forest has no ability to extrapolate!
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17 Feature Engineering - Algorithm
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18 Feature Engineering - Feature Importance

Oth iteration (107 features)

1. Feature[rho^3 / T^2.5] (0.202618)
2. Feature[T^2.5 / rho^3] (0.099727)
3. Feature[T^3.5 / rho^4] (0.096488)
4. Feature[rho^2 / T^1.5] (0.093950)
5. Feature[T^3.0 / rho^4] (0.052531)
6. Feature[T^1.5 / rho^2] (0.051877)
7. Feature[T^3.5 / rho^5] (0.049922)
8. Feature[rho^3 / T^2.0] (0.034661)
9. Feature[rho^1 / T^1.0] (0.033637)
10. Feature[rho^2 / T^2.0] (0.029279)
•••

51. Feature[rhol (0.001054)
•••

84. Feature[r] (0.000106)
•••

107. Feature[rho^5 / T^1.0] (0.000001)

4th iteration (67 features)

1. Feature[T^2.5 / rho^3] (0.213646)
2. Feature[T^3.5 / rho^4] (0.123838)
3. Feature[T^2.5 / rho^4] (0.119322)
4. Feature[rho^3 / T^2.5] (0.068148)
5. Feature[T^3.0 / rho^4] (0.063451)
6. Feature[T^3.5 / rho^5] (0.056052)
7. Feature[T^2.0 / rho^3] (0.055414)
8. Feature[T^1.5 / rho^2] (0.055036)
9. Feature[rho^2 / T^1.5] (0.034017)
10. Feature[rho^3 / T^2.0] (0.028228)
•••

49. Feature[rhol (0.000476)
•••

67. Feature[rho^3 * T^1.5] (0.000063)



19 Feature Engineering - Feature Importance

Final Iteration (17 features)

1. Feature[T^2.5 / rho^3] (0.147572)
2. Feature[T^3.5 / rho^4] (0.115308)
3. Feature[T^2.5 / rho^4] (0.108927)
4. Feature[rho^3 / T^2.5] (0.093794)
5. Feature[T^3.5 / rho^5] (0.085812)
6. Feature[T^1.5 / rho^2] (0.075866)
7. Feature[T^3.0 / rho^4] (0.065934)
8. Feature[rho^2 / T^1.5] (0.062274)
9. Feature[T^2.0 / rho^3] (0.052163)
10. Feature[rho^3 / T^2.0] (0.049755)
11. Feature[T^3.0 / rho^3] (0.025409)
12. Feature[T^2.0 / rho^2] (0.021161)
13. Feature[rho^1 / T^1.0] (0.021112)
14. Feature[rho^2 / T^2.0] (0.020165)
15. Feature[T^1.0 / rho^1] (0.019573)
16. Feature[rho^4 / T^3.0] (0.018454)
17. Feature[rho^3 / T^3.0] (0.016722)

T* and rho* never make
it to the final iterations



20 RMSE at Each Iteration
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• Not a significant difference in the
error

• Interested in how the model
performs with less than 7 features



21 Random Forest RMSE Comparison

Features T* Et rho* T* Et rho* Rho2.°/T1'5 a, T2.5/rho3.°

Kfold Type No Shuffle Shuffle Shuffle
Raw Data 0.55 ± 0.53 0.45 ± 0.21 0.31 ± 0.15
Standard 0.55 ± 0.53 0.44 ± 0.18 0.28 ± 0.16
Robust 0.55 ± 0.53 0.45 ± 0.29 0.30 ± 0.17

Normalizer 0.60 ± 0.54 0.76 ± 0.25 1.98 ± 0.68
MinMax 0.55 ± 0.53 0.46 ± 0.19 0.31 ± 0.14
Box-Cox 0.55 ± 0.54 0.45 ± 0.15 0.31 ± 0.14

Yeo-Johnson 0.55 ± 0.54 0.44 ± 0.18 0.30 ± 0.12
Normal 0.58 ± 0.56 0.46 ± 0.19 0.31 ± 0.14
Uniform 0.55 ± 0.54 0.46 ± 0.19 0.28 ± 0.14

Chapman Speedy Speedy (ext) Zhu
1.22 ± 0.60 1.17 ± 0.61 0.61 ± 0.18 0.26 ± 0.18

Feature Engineering has generated promising results.



22 What's Next

• Is Random Forest the method we want to move forward with?
• Extrapolation is important for what we are trying to do
• Attempt to create a Neural Net

• What features to try next and how many?
• Possibly add exponentials and logarithms

• Begin transitioning to pure solutions
• Decide what features are important in real systems


