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Background




31 Salt’'s Advantages for Nuclear Waste Isolation

1. Intact salt, without cracks, is virtually impermeable to fluid flow.
2. Cracks heal with sufficient confining pressure and time.
3. Salt viscoplastically flows in the presence of shear stress.

4. Salt is a good thermal conductor.
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5‘ WIPP Layout
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Waste Compaction




Standard Waste Containers

Schematic

Park, B.Y. and Hansen, F. D., “Determination of the
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Broome, S.T., Ingraham, M.D., Flint, G.M., Hileman, M.B., Barrow, P.C.,
and Herrick, C.G., “Laboratory Testing of Surrogate Non-degraded Waste
Isolation Pilot Plant Materials”, 2016, American Rock Mechanics Assoc.,
ARMA 16-120




s | Homogenized Waste Compaction

Prop = 13.57 MPa
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9‘ Homogenized Waste Compaction
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10| New Container Design

Schematic
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1| Discretized Waste Compaction
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121 Discretized Waste Compaction
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Empty Room Collapse and Reconsolidation




14‘ Examples of Rubble Piles from Roof Falls

Upper Horizon Lower Horizon

' E300-S3650




15| Relevant Physical Phenomena

1. Gradual room closure
a. Driving force for empty room closure

2. Fracturing around room
a. Changes room shape and size
b. Controls the size and character of rubble pile

3. Rubble pile reconsolidation

a. Involves rearrangement, fracture, dislocation-based
viscoplasticity, and pressure solution redeposition

0. Rubble supplies back pressure

4. Flow through the rubble pile

a. Depends on flow network as well as pathway size, roughness,
and tortuosity.




Room Collapse and Reconsolidation Simulation
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Potential Future Work




181 Potential Future Work

1. Gradual room closure

a. Improve intact salt model
Reassess anhydrite model
Create a clay seam model
Improve crushed salt model

o oo

2. Waste compaction
a. Study whether roof falls are important
0. Improve standard waste constitutive model
c. Investigate container homogenization
d. Uncertainty quantification

3. Empty room collapse and reconsolidation
a. Add damage and healing to intact salt model
b. Implement a meshless method into Sierra/Solid Mechanics
c. Validate against crushed salt experiments and natural analogs
d. Uncertainty quantification
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Extra Slides




20| Gradual Room Closure

Prop = 13.57 MPa
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