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Quantum information

Quantum chemistry
• Calculation of molecular potentials
• Nitrogen and Oxygen fixation, development of

catalytic converters

Medicine
• Structure-based drug development

Quantum computing
• Number factorization (Shor's algorithm)
• Search in unstructured data, searching for

solutions to hard problems
(Grover's search algorithm)

Quantum simulation
• Simulating many-body systems
• Already for about 20 qubits not possible to

simulate classically.

Quantum Communication
• Securing a quantum channel

cooling

•
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laser cooling
Trapped lons
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• Blatt and Wineland "Entangled States of

Trapped Atomic Ions." Nature 453,

1008-15 (2008).
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• Monroe and Kim. "Scaling the lon Trap

Quantum Processor." Science 339,1169

(2013)

jimosoiCIL
Neutral Atoms
• Rydberg states
• Atoms in cavities

Superconducting Josephson
junctions
• Devoret and Schoelkopf.

"Superconducting Circuits for Quantum

Information: An Outlook." Science 339,
1169 (2013).

Quantum dots
• Awschalom, et al., "Quantum Spintronics:

Engineering and Manipulating Atom-Like

Spins in Semiconductors." Science 339,
1174 (2013).
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3 Trapped Ion processors

Best available qubits with history of reliability and quality
• Ions (qubits) are identical
• Near-ideal prep and measure

• Error < 8 x 10-4
• No idle errors (tong coherence times)

• Coherence time > 15min possible
• Lowest gate errors

• Single-qubit error < 1 x 10-4
• Two-qubit error < 1 x 10-3

• Single chain qubit registers demonstrated
• Low crosstalk

Reconfigurable in software
• Optimal for any application
• Change between quantum computer and

quantum simulator is change in control
• All-to-All Connectivity
• Ideal for emulating other qubit systems

Trapped Ions:
fully connected

Solid State:
2D nearest neighbor
coupling

QSCOUT



4 Why microfabrication

• Microfabrication enables scalable traps
• Junctions and transitions
• Integration of passive and active components
• Integration of optics

• Repeatable and reproducible properties
• Fabrication of identical devices

1



5 Challenges of microfabrication

• Microfabrication enables scalable traps
• Junctions and transitions
• Integration of passive and active components
• Integration of optics

• Repeatable and reproducible properties
• Fabrication of identical devices

1111111
Itte

News...:711-444
We will demonstrate the state of the art in trap fabrication
and demonstrate that microfabricated surface traps can be
used for high fidelity quantu (*.rations

• Small distance to electrodes
• Higher anomalous heating

• Nearby dielectrics
• Possibly charging of the trap due to

scattered laser light
• Small features

• Sensitive to dust
• Higher anharmonic contributions to trap

potential
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7 Trap fabrication capabilities

• Based on CEMOS back of line
• Crucial capabilities outside CMOS integrated
• Up to 6-level metallization

• Planarized
• Islanded electrodes
• Reduced rf capacitance
• Any electrode geometry can be realized

• Removed dielectric (better shielding)
• Integrated trench capacitors for rf shunting
• Loading holes and slots
• Release singulation (e.g. bowtie shapes)

S4800 1.0kV 7.7rnm x4 00k SE(M) 2/28/2012 ()TV • 10.durn

Switchable Y Junction

Electrical
Via

Capacitor Top
Electrode

Capacitor
Dielectric

Capacitor
Bottom

Electrode
Spacer

M2
oxide

tlerlasllcon

handle dlicon

M3
M1

Ring Trap

det HV
TLD 2 00 kV

curr HFW
50 •A 47.0 m

dwell
300.00 ns 52.0

IMO
1819 Helios G3
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8 I High Optical Access trap HOA-2

)\1/4,, Loading

•
11
11
/

 v

J1110111111.1114
MIIIMPRIr

Junction

......, ...  

Quantum
1  

Shuttling

Transition

  .--.............
  ... ..1•111M11110.-

,

• Excellent optical access rivaling 3-D
• 2TE for imaging
• NA=0.2 through slot
• NA=0.12 skimming surface

• High trap frequencies (characteristic distance 140µm)
• Full control over principal axes orientation
• Junctions

• Transitions between slotted and above-surface trap regions

.
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9 Ytterbium trap characteristics

Trap frequencies:
• radial 2 - 5 MHz
• rf frequency 50 MHz
• stable for long ion chains

Heating rates

— 30 quanta/s

it" 125 quanta/s

Ytterbium, 2.7 MHz Trapping time:
• >100 h observed

(while running measurements)
• >5 min without cooling



10 Some of Sandia's Traps

High Optical Access (H0A) trap

Y-junction traps

Circulator trap

S4800 1 OkV 15 3mm x30 SE(M) 2/29/2012 14:55 1.00mm

Stylus trap

s4800 5.0kV 2.6mm x220 SE(M) 5/2

Ring trap

2'00'un';

Microwave tra

Localized near-field microwa

EPICS trap

v

____MIIIIIIIIr=

I-4

83400 10.0kV 26.7mm x13 SE 4.0Omm
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11 I RF dissipation

CP

RS

Ps

Pp

Re, _Rsu2w2(-1..-v2

2 7)

1 cut/2

2 Rp

0 min.

10 min.

20 min.

30 min.

Thunderbird

For 100 V amplitude at 100 MHz:

1-10A-2.0

RF Voltage at trap (-280 V)

I-10A-2.1

Trap Temp G
HOA-2 300 K 7.6 pF

4 K

HOA-2.1 300 K 7.6 pF
4 K

Thunderbird 300 K 2.4 pF

R, Rp Ps Pp

1.2 Q
0.5 Q

1.2 MQ 140 mW
60 mW

4.2 mW

0.9 Q
0.5 Q

1.6 MQ 100 mW
60 mW

3.1 mW

0.6 Q 1.5 MQ 6.7 mW 3.3 mW

QSCOUT



Phoenix trap fabrication
12 Original plans for Phoenix

High optical access
topology: bow-tie
with 1.2 mm isthmus

On-board RF

shunt capacitors

Thru-chip slotted
quantunifregion

NI 11[111[11 

Surface trap ion
loading region

Trap RF electrode
capacitance (length)
minimized

Capacitive pick-up
for RF voltage
measurement

Temperature sensor and
resistive heater wires

Wirebond I/0
blocks at ends

QSCOUT



Phoenix trap fabrication
13 Trap features

1 1 1 1 1 1 1 I 1—T i i o__o i---L ► i i I 
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• Transition 

• 9 degrees of

freedom

• Low spatial

frequencies

Quantum region 

• Segmentation of 22 inner

electrode pairs and 11

outer pairs for better

control of ion chains and

spatial re-ordering of ions

• 22x701.im = 15401.1m long

• lon height 701..tm

Loading region 

• 5 electrode pairs

• Loading slot 180um x 3um

1 1 1 1 1 11 1 1 1
I I I I I I I I I I
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Phoenix trap
14 Transition characterization

3.5

0.5

0

-19 -1.8 -1.7 -16 -1.5 -1.4 -13 -12

Position [mm]

2.5

0.5
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80
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68
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11 11ET-1 , 11 11

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4

Position [mm]

• Transition between slotted and above surface parts of trap is optimized to minimize
variations in the trace of the curvature tensor

• RF pseudopotential hump is about 0.5meV for a 2.5MHz radial trap frequency
• lon height above slot and above surface differs to keep trap frequencies (trace of

curvature tensor) constant

-1.3 -1.2

1
1
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Rf-dissipation in traps
electrical characterization

Rs

C P

RP

Rs : Series resistance (lead resistance)

Rp (rf) parallel resistance (dielectric absorption)

C capacitance

For 100 V amplitude at 100 MHz:

Trap Temp G
Phoenix-0 (measurement) 300 K 4 pF

Phoneix-surface (calc.) 4 K

Phoenix-slotted (calc.) 300 K 5.5 pF
4 K

HOA-2.1 300 K 7.6 pF
4 K

Thunderbird 300 K 2.4 pF

Ps

R8 Rp P, Pp

0.4 Q 5 mW Pp

0.05 Q 1 mW

0.4 Q 9.4 mW
0.05 Q 1.4 mW

0.9 Q 1.6 MQ 100 mW 3.1 mW
0.5 Q 60 mW

0.6 Q 1.5 MQ 6.7 mW 3.3 rnW

QSCOUT
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16 Custom trap package

Legacy 4 Level CPGA Packaging Assembly

Interposer
lon Trap Die

Spacer

CPGA

Objectives:
• Improved rf- and ground performance
• Compatible with bowtie chip without interposer
• Simplified assembly
• Backwards compatibility with MQCO package

Properties:
• AlN for improved thermal conductivity and

reduced thermal expansion vs A1203
• Two rf connections with minimized

capacitance (3pF) and resistivity (50mOhm)
• Backwards compatible with prior HOA devices
• Metal coverage of top surface
• All metal is signal or ground (no floating metals)

Simplified 2 part assembly

QSCOUT



Custom trap package
17 Is available

Compared to commercial off the shelf package
• Top surface mostly metal (grounded)
• Low resistance of rf and ground paths

(massively parallel vias, routing on outer layers)

S3400 10.0kV 37.9mm x13 SE 11/1/2018

QSCOUT
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18 Ion heating at cryogenic temperatures

• While ion heating rates at room temperature are good
• Heating rates do not go down as expected when cooling to cryogenic temperatures
• Possible sources of this excess heating

• Silicon substrate (ground plane always is the return path for rf currents)
• Vias
• Trench capacitors

• Scientific approach: investigate influence of silicon substrate
• Use simple single-metal-layer trap on different substrates:

• Standard silicon 2-200.cm
• High resistivity silicon >5k0.cm
• Float-zone silicon >20k0.cm

•
•
•
• •
• •
•
•
•
•
•
• •

•

•
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1 9 Sandia traps in operation
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Calculating voltage solutions 0

• Boundary element simulation for surface electrode geometry

/ '" 
00 00  \ • Symmetric curvature tensor

OxOx OxOy OxOz ' • 6 degrees of freedom
00 00 00 
Owr •Oyay ayOz • Determines trap frequencies and principal axes rotations

oc5 0 (i) , • Traceless for static fields
\ OzOx OzOy Ozaz / • Trace is generated by rf pseudopotential

• Calculate voltage solutions to independently control curvature tensor elements and fields at ion locations
• Use pseudo-inverse to get well-defined solution using nearby electrodes with minimal voltages
• Generate solution for any trap configuration from these basis-solutions

Advantages of parametric trapping solutions:
• Primitives are in terms of curvature tensor elements and can be applied

at any location in the trap.
• Shuttling primitives can be easily combined

Example:
• Rotating ion crystal while translating through the trap

4 P



22 Principal axes rotation
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The simulations accurately describe the fields and curvatures generated by the trap

• Do we understand the
trapping fields?

• Principal axes rotation
realized as in
simulation

• No change in trap
frequencies

-Roolow v„,poimmol"---.0000'w
-••••°-viiamow
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23 I Rotation of ion chains

To be characterized as function of swapping
time
• Swapping fidelity
• Accumulated motion

QSCOUT



24 Measuring swap fidelity
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25 I Separation and merging of ions
3x106

2.5x106

2x106

1.5x106

1x106

500000

142kHz

0

I I I I 

50 100 150 200

separation [um]

250 300 350 400

10

QSCOUT

0 50 100 150 200

separation [um]

250 300 350 400
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The Ytterbium Qubit

2P1/2

369 nm

1 2.1 GHz

Doppler Cooling

1-)251/2  12.6 GHz

Ci)

clock state qubit, magnetic field insensitive.

QSCOUT

S. Olmschenk et al. , PRA 76, 052314 (2007)



state initialization

2P1/2

369 nri

o

2.1 GHz

)251/2 1 12.6 GHz

i(J)

clock state qubit, magnetic field insensitive.

QSCOUT

S. Olmschenk et al. , PRA 76, 052314 (2007)



171 Y1)± state detection

2P1/2

251 / 2

0

1)

0)

1 2.1 GHz v. 16

14';

4 12
=
4 10

i 8
-C
;6

0.
43 4

1b

9illi j 1.. _ r10 15
. ir

1 12.6 GHz i 
0;Lal

Number ofcleteoted pho tons
20
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S. Olmschenk et al., PRA 76, 052314 (2007)



30 Gate Set Tomography (GST)

Developed at Sandia by
QCVV team

• No calibration required
• Detailed debug information
• Efficiently measures

performance characterizing
fault-tolerance (diamond
norm)

• Detects non-Markovian noise

Uses structured sequences to amplify all possible errors

Gi G2
11.1

Prepare

G2 - GZ G, - G2- a - G2Irt#

germ germ germ germ

G,
Measure

QSCOUT



31  GST sequences

Single qubit BB1 compensated microwave gates on 171Yb+

G1P- G2— 1 — 2

Prepare germ

G2 -G-G2-G1-G2
germ germ

Desired "target" gates:
Gi Idle (Identity)
G x 7/2 rotation about x-axis
Gy 7/2 rotation about y-axis

Fiducials: {}
Gx

Gy

Gx • Gx

Gx • Gx • Gx

Gy • Gy • Gy

Approximately prepare 6 points on Bloch

germ Measu re

Y(-t/2)

Gx

Gy

Germs: Gi

Gx • Gy

Gx • Gy • Gi

Gx • Gi • Gy

Gx • Gi • Gi

Gy • Gi • Gi

Gx • Gx • Gi • Gy
sphere Gx•Gy • Gy • Gi

Gx • Gx • Gy • Gx • Gy • Gy

X(n/2)

QSCOUT



32 GST: debugging microwave gates

Gate Rotn. axis Angle

Gi

0.5252
—0.009
0.8506
—0.0244

0.0016997r

Gx

—3 x 10-6
—1

—3 x 10-5
—0.009

0.5013087r

GY
—0.2474
0.0001
0.9689
—0.0001

0.5013667

10-1

10-2

io-3

io-4
17-Apr 2-Dec 9-Feb 2-Mar 30-Mar

Experimental run

QSCOUT
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33 I GST: debugging microwave gates

Gate Rotn. axis Angle

Gi-

0.5252

-0.009
0.8506
-0.0244

0.0016997r

Gx

-3 x 10-6
-1

-3 x 10-5

-0.009

0
'5013087

Gy

-0.2474

0.0001

0.9689
-0.0001

0.5013667r

Gate Rotn. axis Angle

GI-

-0.0035
0.014

-0.9999

0.0006

0.0017697r

Gx

—3 x 10-5
—1

1 x 10-4

0.0006

0.5000077r

Gy

0.1104

4 x 10-5

0.9939
0.0005

0.500017

10-1

10-2

io-3

io-4
17-Apr 2-Dec 9-Feb 2-Mar 30-Mar

Experimental run

QSCOUT
ril



34 I Context and time dependency of gates

Assumptions:
• Qubits in a box
• Pressing a button always executes the

exactly same operation
• Independent from context (gates

executed before)
• Independent from when a gate is

executed

GST uses a large (over-complete) number of
sequences.

We can look whether the assumptions are
satisfied

Ongoing work to improve and distinguish
detection of context and time dependence
of classical control

QSCOUT
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35 I GST model violation

The\2 values from the fits are expected to follow a N2 distribution with
mean k and standard deviation \/2k

2
X

30

\/21,. 25

20

15

10

5

Mi c rowave
off during
identity
gate, next
gate is
affected

0   
1

wait
BB1 wait
BB1 )0(

BB1 XYXY
first data o 

Constant microwave
duty cycle

10 100 1000 10000

sequence length

BB1 decoupled gates with decoupled identity have very small
non-Markovian noise

QSCOUT



36 GST model violation

GxGxGyGxGyGy

GxGyGyGi
N

GxGxGiGy N.m ■

GyGiGi •-
.

ExEiGi

-
GxGiGy

GxGyGi

GxGy

Gy

Gx

Gi

=

-

Em ET

M% I. 1

-

-

! 

_Mm. M i
= i -
- 

M

--

: E. 3 2 E. 7 0 25E. 512

• Identifying problems due to context dependency and drift

• Red boxes show sequences which violate
the Markovian model

• For a Markovian realization with 95%
probability there are no red boxes

• These sequences show context
dependency of gates

• X- and Y- gates behave differently if
applied after an I gate



37 I GST: Microwave results

Best results for microwave single qubit gates:

• BB1 dynamically compensated pulse sequences
• Decoupling sequence for identity gate
• Drift control for a-time and qubit frequency

95% confidence intervals

Gate Process Infidelity 1/2 o-Norm

Gi- 6.9(6) x 10-5 7.9(7) x 10-5

Gx 6.1(7) x 10-5 7.0(15) x 10-5

Gy 7.2(7) x 10-5 8.1(15) x 10-5

All gates are better than the fault tolerance threshold of 9.7 x 10-5
P. Aliferis and A. W. Cross, Phys. Rev. Lett. 98, 220502 (2007).

QSCOUT
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38 I Challenge: Model violation in GST

Assumptions are that gate actions are
• Independent of surrounding gates (context dependency)
• Independent of time (drift)

■

111111111111M1111111HI 

•

Experiments: Single-qubit microwave gates in trap with
integrated microwave antenna

G)2,GyGxG,

G)<GN1

GG Gy

Gyq2

G„GF
(1)

,K GxGiGy

GxGyGi

GxGy
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Approximate Circuit Length (L)

Model violation for time-independent GST estimate.
(Log-likelihood ratio) global significance 5%



39 I Is there drift?

• Time-resolved GST characterization
• Ramsey experiments show significant drift
• These sequences are candidates for further

investigation

()(i)
Gx

cf12) Gy. 

Gx2

G x3

Q. G3
2

Germ = G1, L = 1024 Germ = G1, L = 2048

2.0

2.8

2.6

2,5

2.8 3.3 2.0

6.2 15 2.9

6.2 5.7 2.3

4,0 2.4 2.1

2.4 2.7

8.5

13 4.5

3,9 2,6

3.3 
Trir 

2 2 5.2

2.0 10 2.1 11 5.9

{} G X Gy GF( GX G3

2.3 2.7 2.6 3.0 2.5 2.5

2.9 16 2.8 2,3 16 3.8

2.6 4.5 16 2.1 2.5 16

3,0 1.8 3.1 2,7 2,6 2,8

2.2 16 3.9 2.5 16 2.8

4.1 2.5 16 3.5 6.4 16

Gx Gy G,2( G( Gy

Preparation Sequence

Gx2GyGxG

GxGy2G,

GG1Gy

Gyq

GxGr
o-
a)

G,GiGy

G G0 x yG.

GxGy

Gy

Gx

Gi

1 2 4 8 16 32 64 128 256 512 1024 2048

Approximate Circuit Length (L)

= - log10(p) where p is the p-value of the

largest power in the spectrum for that circuit



40 I Can we measure the drift?

Rastered Time-Series Data r 
Example Circuit Suite

.6.1 C1 0 0 1 0 0 
u c2 11_ . 0 1 0 1 CI 10) Gx - Waituti, 

Y

0 . ........ ........ ........ ...
..... 

\....

CC ri 1 1 1 1 . 0
Time 

QSCOUT

Frequency (Hz) 10-2

OP-

lo- 1

1

1



41 I Can the drifting parameter be reconstructed?

1.0
1 = 32 I = 128 1 = 512 = 2048 - 8192

2 Time (hours)

Time (hours)

6

6

Te
rn

pe
ra

tu
re

 (
C
)
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42 Experimental Improvements

1.8

0.6
10-5

Expected shot noise

• Experiment 1

• Experiment 2

10-4 10-3
Frequency (Hz)

10-

• Spectral power averaged over all sequences
• Small residual drift, cannot be assigned to specific

sequences
• Reconstruction of individual sequences is below

statistical significance
Di

am
on

d 
Di
st
an
ce
 E
rr

or
 

0.004

0.003

0.002

0.001

0

QSCOUT
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•Ii ir
• •

•••• • a a

. . Exp. 1, Gi
• • • • Exp. 1, Gx

  Exp. 1, Gy

Exp. 2, G1

Exp. 2, Gx

Exp. 2, Gy

Improvements: 

• Stabilized room temperature
• Incorporated drift control — feedback on

transition frequency and



355 Raman transitions: 171Yb+
f 

ubit f,_____,,L,-ep
,

• I • I I 1
1 I •

Requirement:

fqubit nf-ep ± f AOM

0 ion

At

2 p3/2

QSCOUT

329 nm T 67 THz
7k r 33 THz

2 P1/2

369 nm

2S1/2

355 nm

‘tli_L

1 0),$ 12.6 GHz



44 Two-qubit gate implementation

• Molmer-Sorensen gates [1] using 355nm pulsed laser
• All two-qubit gates implemented using Walsh compensation pulses

[2]

4

3

2

1

o

"Vertical" "Horizontal"

Tilt CO/vt Ti lt COM

\

\) I

2 2 2 2 4 2 6 2 8

RamanSingleDetuning (MHz)

[1] K. Wilmer, A. Sorensen, PRL 82, 1835 (1999)
[2] D. Hayes et al. Phys. Rev. Lett. 109, 020503 (2012)

01)

n+1
00) n

n-1

00) 100) + 11)

Heating rates

f.,--,, 60 quanta/s

< 8 quantais

n+1
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45 I GST on symmetric subspace

p a- G2- a-
Prepare

G2.
ImmiG, G2

1-.1G, a - G, - G2,
germ germ germ germ

Basic gates: G/

Gxx = Gx 0 Gx
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Gms
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46 I Two-qubit gate characterization

Gate Process infidelity 1 Diamond norm2

G 1 1.6 x 10-3 ± 1.6 x 10-3 28 x 10-3 ± 7 x 10-3

Gxx 0.4 x 10-3 ± 1.0 x 10-3 27 x 10-3 ± 5 x 10-3

GYY 0.1 -3 ± 0.9 x 10-3 26 x 10-3 ± 4 x 10-3

Gms 4.2 x 10-3 + 0.6 x 10-3 38 x 10-3 ± 5 x 10-3

95% confidence intervals

Process fidelity of two-qubit
Sorensen gate > 99.5%

The best characterized two qubit gate

By the way: It's in a scalable surface trap
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47 I Outline

t A

QSCOUT

Trap fabrication capabilities

Classical control

Quantum operations

T Quantum testbed

QSCOUT System engineering

QSCOUT



48 QSCOUT DOE Quantum Testbed Laboratory QSCOUT

el • 9. a -• • .- e ... • .1 . el - e a. 9 • A .- mi • el en IA ...1 il iii NI. -11 • AI dt 0 01. Ir s a 7. MN + MI

Testbed systems designed for open access to support scientific applications
• High-fidelity operations #gates a (#qubits)2
• Gate-level access
• Open system with fully specified operations and hardware
• Low-level access for optimal control down to gate pulses
• Open for comparison and characterization of gate pulses
• Open for vertical integration by users



49 I QSCOUT Systems engineering

•

"NA4 Reducing background collisions

Vacuum technology

Individual addressing

Optical and mechanical engineering

'>1>_I L Coherent Pulse control_
°A_;>, u -1-4i Electrical engineering> 

QSCOUT



50 QSCOUT:Vacuum system engineering

Bare copper wires with A1203 spacers 3 Yb ovens (loading slot, Peregrine
loading hole, HOA loading hole)

Trap installed for final bake

QSCOUT

Trap platform in chamber, both re-
entrants visible

Features (hydrogen and organic mitigation):

• 316L stainless steel subjected to high-temp bake process for UHV performance

• Ceramics: MACOR fuzz button spacer Et Micro-D, AlN -> A1203 circuit board, A1203 wire spacers

• Changing circuit board to A1203 allows for direct soldering of wires to board

• Bare copper wires for RF and DC voltages

• 50 L/s ion pump (previous chambers of similar form factors have used 25 L/s pumps)



51 Qubit Laser — Apparatus Test

Status - Alignment Complete 
• Adjacent beams are clearly separated, and about

5 lim apart.
• The beam waists are nearly the designed values.
• The apparent optical crosstalk is small, but we

need to measure using an ion.
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I Flexture mounts for active alignment



55 RFSoC for coherent pulse generation

• Two tones per channel
• Coherent output synchronized between all channels
• Pulse envelopes and frequency- phase- modulation defined

by splines
• Compact representation of gates for efficient streaming of

circuits
• AOM Cross-talk compensation

Radio-Frequency System on a Chip
Processing System
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56 Microwave Coherence Time Measurement

• Completed FPGA logic design and server software
• 8 channels, 818 MHz data rate, up-sampled to 6.5GHz
• Integrated beat-note lock for pulsed laser

First test:

• Coherence time comparison
between RFSoC system and legacy
DDS based system

• Measured on legacy ion system

• Measured coherence time of 1.19s
slightly better than legacy system

• Limited by experimental setup
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Coherence Time = 1.19(2) seconds
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57 I QSCOUT system currently being assembled

• Trapped ions

• Vacuum pressure seems very promising
(will measure background collisions using W-
potential)

• State preparation and detection established

• Coherence time (single echo pulse) >8s
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T2 Coherence

11/19/2019 less cooling

— T, = 11.34 + 0.98 s

11/19-20/2019 more cooling

- T2 = 8.81 ± 0.82 s

QSCOUT

2 6
Time (s)

10



58 Outlook:Trap design fabrication and integration

• lon heating @ cryogenic temperatures

• lon transport and quantum register reconfiguration

• Junction design and operation

• Charging of traps leading to ion shifts

• Simplification of trap fabrication

• Integration of optics and electronics

QSCOUT
P



59 I Outlook: Scaling

• Photonic interconnect to scale beyond a single trap chip
• Integration of an optical cavity with microfabricated traps

• For UV light, cavity finesse much lower than in infrared
• Dielectric mirrors of cavities subject to charging
• Possibility: Use infrared transitions to meta-stable states

for entanglement and transfer quantum state to hyperfine
qubit

New gate technologies:
• Ultra-fast gates

• Use short pulse train from pulsed laser

• Rydberg gates
• Use Rydberg states as demonstrated in neutral atoms and

recently in trapped ions

QSCOUT

Distributed quantum networks
with ions as memories

N trapped ion quantum registers crosscormect switch
P1/2 beam spEtters

CCD Camera

Monroe, Maunz et al., Physical Review A 89,

022317 (2014).



60 I Outlook: Systems engineering

• Vacuum Technology

• Mechanical Engineering

• Electrical Engineering

QSCOUT

I
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