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Questions about ion transport in polymers

• what is the nanoscale structure/morphology?

• how is ion motion affected by the morphology?

• is ion motion coupled to polymer segmental motion?

• what controls the rates of ion diffusion and mobility?

MD simulations coupled with experiment can answer these questions
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Scope of MD simulations

atomistic simulations

box sizes: up to eg 20 nm on a side

time scales: max a few microseconds

example: 400K atoms, 20 GPUs with 180 cores = 70 ns/day

coarse-grained simulations

can reach Fickian regime for ion diffusion

simulation times up to 106-107T

large sizes if desired

DPD simulations: eg 43 nm on a side
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What is the nanoscale morphology?
SDAPP: proton conducting membrane when hydrated
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What is the nanoscale morphology?

precise polyethylene ionomers
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precise polyethylene phenyl ionomers

• Los Alamos
NATIONAL LABORATORY

~
Y
i
9
C
i
H
~
~
/
 

o3 -

102 -

101 -

100-

=Experiments (160°C)
—Simulations (160°C) ,

p5PhSA-Li

p5PhSA-Na

p5PhSA-Cs-

0 2 4 6 8 10 12 14 16 18 20

q(nm-1)

A.L. Frischknecht and K.I. Winey, J Chem Phys 150, 064901 (2019)

Paren et al, in preparation, 2019 6



Quantification of ionic aggregate morphology
Example: local shape anisotropy
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How is ion motion affected by morphology?
Example: atomistic MD of precise PE ionomers

isolated aggregates:

need to merge and break up

percolated aggregates:

ions can move along the aggregate
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Is ion motion coupled to polymer segmental
motion? If so, how?
polyesters

(.)
cr)

10-4

(b)

3a

10-5
........ 

..............
2a 1 a

1 b

106  •

6 7 8 9
1000/( Tg ) (K)

10

lithium ion solvation sites
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Li' moves best in PEO because
it has the highest connectivity of solvation sites
it allows more intrachain "hopping"

M.A. Webb, et al., ACS Cent. Sci. 1, 198 (2015) 9



What controls the rate of ion diffusion?
in percolated ionic aggregate morphologies

calculate ion-pair lifetime Ts

M_

if
ER
MI
II
II
IT
IT
:=
15
11
1;
Th
li
N 10°

10-1

10-2

S(At) exp { —(At/ )fl }

10° 101 102 103 104 105
lag time At

• Los Alamos
NATIONAL LABORATORY

Bollinger et al, in preparation, 2019 10



What controls the rate of ion diffusion?
in percolated ionic aggregate morphologies

diffusion cc 1/Ts
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What controls the rate of ion diffusion?
in percolated ionic aggregate morphologies

diffusion cc 1/Ts
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• Los Alamos
NATIONAL LABORATORY

  E, 1943  

(b) P Ad=306

%Ot=2TS

(c) (d) (e) (f) /(o)

'<3 (3)

"ri 
AP) 
(2)

N 
ss."' 4 (4)
4 (2)
31)

2 (2)
3 (0)

3 (3)
—3 (2)

—4 (4)

—5 (5)

— 4 (4)

S. Mogurampelly, J.R. Keith, and V.
Ganesan, J Am Chem Soc 139, 9511 (2017)

Bollinger et al, in preparation, 2019

12



What is next in simulations of ionic polymers?

High-throughput MD for screening?

examine how properties change with changes to
• polymer architecture
• ionic groups
• temperature
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evolutionary strategies
• genetic algorithms
• + enhanced sampling techniques
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Why Does the lonomer Peak Disappear?
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does this mean the water and sulfonic acids
are no longer phase segregated?
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in hydrocarbon PEMs, loss of scattering contrast leads to Ioss of ionomer peak

still have nanoscale phase separation!
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What is the nanoscale morphology?
SDAPP: proton conducting membrane when hydrated
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Scope of MD simulations

atomistic simulations

box sizes: up to eg 20 nm on a side

time scales: max a few microseconds

example: 400K atoms, 20 GPUs with 180 cores = 70 ns/day

coarse-grained simulations

less chemical specifity

can reach Fickian regime for ion diffusion

larger sizes if desired

• Los Alamos
NATIONAL LABORATORY

comparisons to experiment

• scattering

• static structure factors

• time-dependent structure factors

• NMR spectroscopy

• local coordination numbers

• diffusion constants (PFG)

• domain sizes (spin diffusion)

• impedance spectroscopy

• ion mobility, conductivity

• other characterization

• density, Tg,
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