SAND2019- 15190PE

PRESENTED BY
Clay Hughes

SST Development Team, Sandia National Laboratories

Sandia National Laboratories is a multimission
laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of
Energy’s National Nuclear Security
Administration under contract DE-NA0003525.

» | References |

> Websites
o http://www.sst-simulator.org/
o https://github.com/sstsimulator

> Configuration File Format:
o http://sst-simulator.org/SSTPages/SSTUserPythonFileFormat/

> Doxygen Documentation:
o http://sst-simulator.org/SSTDoxygen/9.1.0 docs/html/

> Developer FAQ:
o http://sst-simulator.org/SSTPages/SSTTopDocDeveloperinfo/

° Building SST
o http://sst-simulator.org/SSTPages/SSTBuildAndInstall9dot | dotOSeriesQuickStart/
o http://sst-simulator.org/SSTPages/SSTBuildAndInstall9dot | dotOSeriesDetailedBuildInstructions/

3 | So many simulators, so little interoperability

° Already a rich selection of open-source simulators

> But not a solid ecosystem for modeling systems ‘
> Tightly-entangled components make modifications complex
> E.g.,assumptions about caching or address mapping pervasive
> Most simulator integrations are ad-hoc, not lasting

o Significant performance problems with tying many simulators together

.

> Wants:
> Enable “mix-and-match” of existing models to create custom systems
> Encourage disentangled models with clean interfaces for swapping functionality |
> Bricks not buildings
> Low effort, high performance parallel simulation

> Continuous path from low-fidelity/fast modeling to high-fidelity/slow models

The Structural Simulation Toolkit -

Goals Status
e Create a standard architectural simulation * Parallel framework (SST Core)
framework for HPC* * Integrated libraries of components (Elements)
* Ability to evaluate future systems on DOE/DOD e Current Release (9.1.0)
workloads * https://sst-simulator.org
 Use supercomputers to design supercomputers * https://github/sstsimulator

Technical Approach Cmmmmtieas L
* Parallel Discrete Event core IL

* With conservative optimization over MPl/Threads

* Interoperability
* Node and system-scale models @

* Multi-scale

* Detailed (~cycle) and simple models that interoperate
* Open

* Open Core, non-viral, modular

SNIVERSITY ow
= W YELAARE |
Or

OAK
RII){ I -l

NM (PO MCI‘OI‘I' (|@ ;D

TECEHNOLOENIENR

BOSTON
UNIVERSITY

E @ IDIA.

WM (J'\.a[*«.

HHHHHH

s | The SST Approach

° Parallel Discrete-Event Simulator Framework (SST Core)
> Flexible framework enables multitude of custom ‘“simulators” ‘

> Demonstrated scaling to over 512 processors running a million+ components

> Comes with many built-in simulation models (SST Elements)
> Processors, memories, networks

> Open API

> Easily extensible with new models
> Modular framework
> Open-source core

> Time-scale independent core
o Handles Micro-, Meso-, Macro-scale simulations

o C++, Python

6 I SST Architecture

o SST framework
> The backbone of simulation
° Provides utilities and interfaces for simulation components (models)

> Clocks, event exchange, statistics and parameter management, parallelism support, etc.

o SST libraries
° Libraries of components that perform the actual simulation
> Elements include processors, memory, network, etc.
° Includes many existing simulators: DRAMSim?2, Spike, HMCSim, Ramulator, etc.

omponent
omponent

C
C
<Component

-+
=
()
=
o
Q
£
o

_/

SST Core

MPI and C++ Threads

SST Elements: A Tour

s I SST Element Libraries

o Elements are libraries of related components
> Elements must be registered with the SST core
o Tells SST where to find this set of components
° Includes information on parameters and statistics for each component

o SST provides a set of element libraries
> Processor, network, memory, etc.

o Tested for interoperability within and across libraries
> Many are compatible with external “components” such as Ramulator and Spike

> See www.sst-simulator.org for more information

° You can also register your own elements

9 I SST 9.1 Elements

> Processors > Networks/NoCs
> Ariel — PIN-based ° Merlin — flexible network modeling
° Juno — simple ISA processor ° Kingsley — mesh NoC
° Miranda — pattern generator > Shogun — crossbar NoC

- Prospero — trace execution + Network drivers

(0]

GeNSA — spiking temporal processing unit - Ember — communication patterns

> Memory Subsystem > Firefly — communication protocols
° cacheTracer — cache tracing > Hermes — MPI-like driver interface
o Cassini — cache prefetchers > Zodiac — trace based driver
> CramSim — DDR, HBM > Thornhill = memory models for Ember sims

> MemHierarchy — caches, directory, memory
> Messier - NVM

Samba —TLB
VaultSimC — vaulted stacked memory

o QOthers
o sst-macro — network drivers/network

(0]
(e]

scheduler — job scheduling

o
(o]

simpleSimulation —“car wash” example

(e]

simpleElementExample — many examples

(e]

sst-external-element — example element
balar — GPU model

o

w0 | Ariel: PIN-based processor

> Lightweight processor core model

> Uses Intel’s PIN tools and XED decoders
to analyze binaries Ariel PIN| Tool

> Runs x86, x86-64, SSE/AV X, etc. binaries

o Supports fixed thread count parallelism
(OpenMP, Qthreads, etc.)

Usen Application

> Passes instructions to virtual core in SST Binary

J

1 perth

GPGPU-5im Integration ot usrsoary

(s your standard| compiler efe))

(Processor r T ((1

{Qiﬂ#ﬁ:‘fmﬁm foeam)

v

S8BT Avigll Component!
D

J‘Mﬁ’maﬂ “Rriell”’ Core:

1 Viktuall “Arel” Processon

rrrrrr

ke o

1 1 Ariel: Details

° Pintool communicates with Ariel via shared memory IPC
° Per-thread FIFO of instructions from pintool to Ariel’s virtual cores

> Backpressure on FIFO halts the binary’s execution

o Ariel’s virtual cores
o Memory instruction oriented: execute memory instructions; other ins. single cycle no-ops
o Clocked: Reads instruction stream in chunks but processes on clock
> Does not maintain dependence order or register locations
> Can map virtual-to-physical addresses internally or use external component

> Key parameters
> Ops issued/cycle
° Load/store queue size

o Uses SST simpleMem interface
> Generates SimpleMemRequests

> Compatible with memHierarchy

(Processor T (([1

2 1 Ariel: The Tradeoff

> Pros:
> Faster than more complex/pipeline models
> Reasonable approximation for studies on memory system performance
> Especially for heavily memory-bound applications
> Reasonable model of thread interactions

> Cons
> Non-deterministic results
° Interactions between pintool, threads, etc.
° Variation is low (O(1%))
> Not compatible with non-x86 binaries
> Reliant on Pin 2.14
> Currently working towards enabling Ariel to be used with other drivers

(Processor r (([|

3 | Juno: Simple instruction processor

> Executes a program written in simple “assembly”
o 32-bit wide instructions with 8 bit op codes
° 64-bit integer operations
> ADD, SUB, DIV, MUL,
> AND, OR, XOR, NOT
° Jump by register value (JGT-Zero, JLZ-Zero, J-Zero)
° Jump up tol 6 bits in either direction from current PC
> Up to 253 user registers
> r0=PC
> r| = data start register

(Processor r | T | s [

//’ Juno

[Load/Store Unit J

Instruction Manager

g

A

Register File

I L | 5

4 | Miranda: Pattern-based processor

> Extremely light-weight processor model
> Generates memory address patterns
> Supports request dependencies

° Library patterns
o Strided accesses (single stream)
° Forward and reverse strides
> Random accesses
> GUPS
> STREAM benchmark
° In-order & out-of-order CPU
> 3D stencil
° Sparse matrix vector multiply (SpMV)

> Copy (~array copy)
o Stake interface to the Spike RiscV simulator

(Processor r ((

5 1 Miranda: The tradeoffs

° Pros
> Very lightweight — no binary, no trace
> Good for applications whose address patterns are predictable
° e.g., not much pointer-chasing

> Models instruction dependences

> Cons
> Need a generator for the memory pattern of interest
> Requires a good understanding of the pattern

(Processor r (([1

i« | Prospero: Trace-based processor

> Trace-based processor model
> Like Ariel, memory instruction oriented
> Reads memory ops from a file and passes to the simulated memory system
> “Single core” but can use multiple trace files to emulate threaded or MPI applications
o Supports arbitrary length reads to account for variable vector widths
o Performs “first touch” virtual to physical mapping

> Comes with Prospero Trace Tool to generate traces
> Or can generate your own and translate to Prospero’s format

(Processor r (([

7 | Prospero: The Tradeoff

° Pros
° Faster than Ariel*
° Provided you can get a trace

> Cons
° Traces can be very large
> Requires good I/O system to store and read the trace
> Traces are less flexible than actual execution
> Capture a single execution stream using a single application input

(Processor r (([

s I MemMHierarchy: Memory system

> Collection of interoperable memory system elements
> Caches
> Directories
> Memory controllers
° Interfaces to memory models (DDR, HBM, HMC, NVM, etc.)
° Scratchpads
> NoC (network-on-chip) interfaces
> Buses

> Components are cycle-accurate/cycle-level

> Capable of modeling modern cache and memory subsystems

o Memoy | (e

v I MemHierarchy: Cache modeling

° Highly configurable
> Arbitrary hierarchy depth, flexible topologies
> Cache inclusivity, coherence, private/shared, etc. configurable
> Single- and multi-socket configurations
> Prefetch via Cassini element library

> Data movement
> Components support direct, bus, and on-chip network (NoC) communication

> Event types: read/write, atomics, LLSC, noncacheable, custom memory, etc.

o Memoy | (e

20 I MemHierarchy: Memory modeling

° Interface to memory is the MemController

> MemControllers implement backends
> Timing model for memory controller with a link to memory
> Timing model for memory controller and memory
° Interface to another component(s) that does the memory controller/memory timing
° In this case just translates request formats

> Wrapper for an external/non-native-SST component
> Ramulator, DRAMSim?2, etc.

> Support custom memory instructions
° Including ability to do cache shootdowns for coherence maintenance

[(Memory r (|

MemHierarchy: Memory modeling

> Memory controller
> Manages data values if needed (backing store)
> Facilitates custom memory commands

: : Memory Controller
° Including cache shootdowns for coherence maintenance Y
> Passes events to memory backend subcomponent —@- , Backing
store
> Backend: the “real” memory controller and/or memory Custom
: command
° Implementations handler
> Memory controller and model itself l
s v
> Memory controller with interface to a memory component
° Interface to another memory controller/memory component
> Wrapper to an external simulator To memory
component (optional) |

o Memoy | (e |

2 | MemHierarchy: SST 9.1 backends

> Memory (external) ° Messier (NVRAM)
> CramSim (DDR, HBM) o Ramulator (DDR, HBM, HMC)
o DRAMSim2 (DDR) > SimpleDRAM (DDR)
> PagedMulti — 2-level memory variant o SimpleMem (constant latency)
o FlashDIMMSim (FLASH) > TimingDRAM (DDR)
o HMCSim/GoblinHMC (HMC) ° VaultSimC (HMC-like)

o HBMDRAMSim2 (HBM)
> HBMPagedMulti — 2-level memory variant

> Plus a few that can be used with other backends to reorder requests, add latency, etc.

o Memoy | (-

.3 | Merlin: Network simulator

> Low-level networking components that can be used to simulate high-speed networks
(machine level) or on-chip networks

> Capabilities
> High radix router model (hr_router)
> Topologies — mesh, n-dim tori, fat-tree, dragonfly

> Many ways to drive a network
o Simple traffic generation models
> Nearest neighbor, uniform, uniform w/ hotspot, normal, binomial
> MemHlierarchy
o Lightweight network endpoint models (Ember — coming up next)
> Or, make your own

[| { Network/NoC [

24 | Kingsley: Mesh simulator

> Network-on-chip model; mesh
configuration

> Similar to Merlin but:
> No input queuing at routers
> Mesh topology only
> Not all ports need to be populated

> Possible to instantiate multiple unconnected
networks

o Multiple physical networks for coherence (e.g.,
request/response/ack/forward)

> Kingsley NoC + Merlin/Kingsley system
network

It
It

b
[

.'«D qﬁ

@
@:

b
[

@
@

0IC

%

L
[

Beeb

[T { Network/NoC }

u

Interconnect

s | Scheduler: Job scheduling

> Models HPC system-wide job scheduling

> Three components
> Sched: schedules and allocates resources for a stream of jobs

> Node: runs scheduled jobs on their allocated resources
> Faultlnjection: injects failures onto the resources

> The scheduler can be a stand-alone element library
> The schedComponent and nodeComponent must be used together

> The faultlnjectionComponent is optional

> Can be used with Ember/Firefly/Merlin stack
> Examine topology aware scheduling and allocation

[[((‘ Other ‘

2 | balar: GPGPU Model
> Derived from GPGPU-Sim (https://github.com/gpgpu-sim/gpgpu-sim_distribution)

Kernel Launch

SIMT Core) <: = SST
SIMT Core =T
SIMT Core QT)

SIMT Core SIMT
Stacks

Thread Block
Thread Block

Q
%

° keep the SIMT units and replace everything else
o CPU -> SST execution component (Ariel, Juno, etc.)
° Interconnect = SST networking component (Shogun, Merlin, Kingsley, etc.)

> Memory Partition & Caches—> SST memHierarchy component for caches and various other
backends for the backing store (DRAMSim, SimpleMem, Cramsim, etc.)

[T T (f | ‘ Other \

Memory
Port(s)

27 | balar: GPGPU Model

> GPGPU-Sim Integration

Ariel Command Link GPGPUSIm
‘ ' SM | IR

pald Link i]

L1

|

Memary Network /NaC Jetwark driver ‘ Other \
[Processol T Memory T Network/NoC [Network driver

8 | Other Libraries

> More information on these and other element libraries and external components is
available on the wiki

o www.sst-simulator.org

Getting help and extending SST

3 | Extending SST

> SST was designed for extensibility
> Components/subcomponents can be added without touching SST Elements
> Example: write a new prefetcher and have memH caches use it = no changes to memHierarchy
> SST-Core APIs are stable = one year deprecation period
> Element APls may be less so but generally try to keep them consistent
> Many users start with SST Elements and then build their own customized libraries
° Partially or completely replacing SST Element functionality

> Many approaches to using SST
> Core only:Write your own components from scratch
o Start from existing Elements and replace components/subcomponents to meet your needs
> Wrap existing simulators and insert as components or subcomponents

3n I Extending SST: Resources

> Example element library
> Components demonstrating links, ports, clocks, event handling, etc.
> sst-elements/src/sst/elements/simpleElementExample/

o simpleSimulation
o Simulates a car wash (a little more complex than example elements)

> Example external element library
> Demonstrates building and registering a new element library

o https://github.com/sstsimulator/sst-external-element

> Website
o Getting Started Extending SST (a little out of date)
° Building Element Libraries outside SST source tree
° Past tutorial material (under Downloads)
o sst-simulator.org/SST-website APl documentation

» | Finally: Getting help

> SST wiki contains lots of information (www.sst-simulator.org)
> Downloading, installing, and running SST
> Element libraries and external components
> Guides for extending SST
° Information on APls
° Information about current development efforts
> Past tutorial slides and exercises

o SST Github
> Current development
> |ssues track user questions as well as development plans, bugs, etc.

3 I Wrap-up

> SST is a parallel, flexible simulation framework
> Can simulate many systems at many granularities

> Capable of simulating modern architectures

> Modular design for extensibility

> Please keep us posted on your uses of SST as well as any capabilities you've added or

would like to see added

The SST team wants to help you!

- Documentation?
- Examples?
o Kittens?

SOWE PROBLENS : CREATE PROBLEMS
L= ! - =

—8 .- - *—
TOOLS THAT TOOLS THAT TOOLS THAT NEED TOOLS WHOSE MANUAL
DONT NEED NEED A A MANVAL BUT STARTS WITH ‘HOW TO
A MANUAL MANUAL DONT HAVE ONE READ THIS MANVAL

Running a simulation and code
orientation

————_——4_—_—_—_—
High-Level View

35 | Getting and Installing SST

o http://www.sst-simulator.org
o Current release source download

> Detailed build instructions including dependencies for Linux & Mac ‘
> Archived tutorial materials |

o https://github.com/sstsimulator
> Source code checkout

> Master branch — has passed testing ; - :
> Devel branch — has passed basic testing - S ..

equests Issues Marketplace Explore

:'@ Structural Simulation Toolkit

L] Repositories 20 People 37 Teams 9 Projects 0
The Structural Simulation Toolkit | |
Using the supercomputers of today to build the supercomputers of to ow Pinned repositories Customize pinned rep
i | Downloads | Documentation Support sst-elements sst-core sst-macro
H Home \ hitectural Simulation Components and <\—\“ Toolkit Parallel Discrete SST Macro Element Librar
Downloads Introduction to SST gy AH ¥ e w3 wore %a 3
Documentation
sst-sqge

Evrmiarmm moouvel rermew for ouchorr Hoc

36 | Building Blocks

> SST simulations are comprised of
> Every link has a minimum (non-zero) latency

> Components define

connected by

which are valid connection points for a link

> Components communicate by sending

> Components can use

Component
Core

and

/ Link \

\Latency: 1ns

Component
Cache

Event
Load

Event
Data

nt

Component
Core

/ Link \

\ Latency: 1ns /

Component
Cache

over the links

for customizable functionality

Link
Latency: 2ns

Component
NoC Router

Link
Latency: 4ns

Component
NoC Router

Element Library
A collection of components,
subcomponents, and/or modules

37 I SST Code Structure

- re and ents are compiled separately
> Element libraries register with the core

> External elements (not part of SST Elements) can also be registered with the core
> Example at github.com/sstsimulator/sst-external-element

> Core maintains a database of registered libraries
> Can query database with sst-info utility

Component
Component

- -
c =
0] 9]
c =
o o
o o
5 £
o o
O O

o Source code for core:
o sst-core/src/sst/core/

MPI and C++ Threads

o Source code for elements

°c sst-elements/src /sst/elements/
> Most elements have a tests/ directory

> Often a good starting point for example configurations

¢ I Simulating with SST

> We'll walk through how to configure a simulation and then run it
o Available at: https://github.com/sstsimulator/sst-tutorials/tree/master/gt2019
o (github = sstsimulator > sst-tutorials = gt2019)

> Element libraries in our example simulation
o Miranda - Simple core model that runs generated instruction streams
> Generators produce memory access patterns (SubComponents)
> memMHierarchy — Various cache/memory system related subcomponents and modules
> Cache (Component) with coherence protocol SubComponent
> Memory Controller (Component) that loads a memory timing model (SubComponent)

©Core < >[L1 Cache J< >[MemCtrl@

2.4GHz, issue 2 accesses/cycle 2KB, 4-way set associative 50ns constant access latency
Stream triad generator 2.4GHz, 2 cycle access 1GB capacity

Three 1K element arrays A,B,C 64B cache lines

Compute C[i] = A[i] + 2*B[i] LRU replacement

- 2K reads & 1K writes MESI coherence protocol

9 I Configuration File: Global SST parameters

> Set any global simulation parameters

o|sst.setProgramOption(“stopAtCycle”, “100ms”)

> End simulation at 100ms if it hasn’t ended already SST Python API
. User-defined string
> Other options SST argument

> Most are also available as command line arguments to SST

debug-file File to print debug output to

heartbeat-period If set, SST will print a heartbeat message at the specified period
timebase Units of simulation. Default is picoseconds which enables 2/3 of a year.
partitioner Partitioner to use for parallel execution

output-partition File to print partition to

w0 I Configuration File: Declare components and links

- Components: sst.Component(“name”, “type”)

core = sst.Component(“core”, “miranda.BaseCPU”)
cache = sst.Component(“L1”, “memHierarchy.Cache”)
mctrl = sst.Component(“memcer”, “memHierarchy.MemController®)

X i
Component nhame Component library.type | Core
° Links: sst.Link(“name”) Cache
1link® = sst.Link(“core_to cache”) o N
linkl = sst.Link(”cache_to_memory”) SST Python API MemCtrl

\ User-defined string W

Link name SST argument

s I Configuration File: Configure the components

> Parameters: addParams({ “parameter” : “value”, .. })

core.addParams({ “clock” : “2.4GHz” })

Y ¢¢

> SubComponents: setSubComponent(“slotname”, “type”)
> Recall: SubComponent is a swappable piece of functionality

gen = core.setSubComponent(“generator”, “miranda.STREAMBenchGenerator”)
memory = mctrl.setSubComponent(“backend”, “memHierarchy.simpleMem”)

SST Python API
User-defined string

' SST argument

How do | know what the options are?
Or even what elements | can pick from?

42 | SSTInfo: Getting component info

> sst-info: utility to query element libraries

Optionally filter for a specific library and/or component

$ sst-info miranda.BaseCPU «—

PROCESSED 1 .so (SST ELEMENT) FILES FOUND IN DIRECTORY(s) /home/sst/build/sst-elements/1lib/..
Filtering output on Element = “miranda.BaseCPU”

ELEMENT © = miranda ()

Num Components = 1
Component @: BaseCPU
CATEGORY: PROCESSOR COMPONENT
NUM STATISTICS = 17

Port name Definition
NUM PORTS = 2 / /

PORT @ = cache_link (Link to Memory Controller)

Definits SubComponent API
NUM SUBCOMPONENT SLOTS = 2 erinition

SUB COMPONENT SLOT © = generator (What address generator to load) [SST::Miranda::RequestGenerator]

NUM PARAMETERS = 12 Slot name

PARAMETER © = clock (Clock for the base CPU) [2GHz]
A = “REQUIRED” or

Definition default value

Parameter

s I Configuration File: Connecting the components

> Declared links and components a couple slides ago...

link® = sst.Link(“core_to cache”)
linkl = sst.Link(“cache_to_memory”)

o Connect components: connect(endpointl, endpoint2)

core = ..
cache = ..
mctrl = ..

> Where endpoint is: (component, port, latency)

1ink@.connect(

(core, “cache_link”, “100ps”);

link1.connect(

(mctrl, “direct_link”, “100ps™)

(cache, “high_network_ 0%, “100ps”)

(cache, “low_network_0”, “100ps”),

)

Endpoint 1

)

Endpoint 2

44

Running SST

Usage:sst [options] configFile.py

Common options:

-v | --verbose

--debug-file <filename>

--partitioner <zoltan | self | simple |
rrobin | linear | lib.partitioner.name>

-n | --num_threads <num>

--model-options “<args>”

--output-partition <filename>

--output-dot <filename>
--output-xml <filename>
--output-json <filename>

Print information about core runtime

Send debugging output to specified file (default: sst_output)

Specify the partitioning mechanism for parallel runs

Specify number of threads per rank

Command line arguments to send to the Python configuration file

Write partitioning information to <filename>

Output the configuration graph in various formats to <filename>

s I Running a simulation

o Launch simulation

$ sst demo_1.py

> Qutput

Simulation is complete, simulated time: 6.66491 us

> We probably want more information about what happened though
> Enable statistics!

s I Enabling statistics

> Most Components and SubComponents define statistics

$ sst-info memHierarchy.Cache

NUM STATISTICS = 51

STATISTIC © = CacheHits [Total number of cache hits] (count) Enable Level =1
STATISTIC 1 = latency GetS hit [Latency for read hits] (cycles) Enable level =1

> Enable statistics in the configuration file
> enableAllStatisticsForAllComponents()
> enableAllStatisticsForComponentType(type)
° enableAllStatisticsForComponentName(name)
o setStatisticlLoadlLevel(level)

> Configure output
o setStatisticOutput(“sst.output type”)
o setStatisticOutputOptions({“option”

o enableStatisticForComponentName(name, stat)
° enableStatisticForComponentType(type, stat)

“value”, })

«# I Running with statistics enabled

> Let’s enable statistics for all components
> Caches have A LOT of statistics so send the output to a CSV file

> Other options: sst.statoutputX where X=

° console o txt
° json > hdf5

sst.

sst.

sst.

sst.

setStatisticOutput(“sst.statoutputcsv”)

setStatisticOutputOptions({ “filepath” :

setStatisticlLoadLevel(5)

enableAllStatisticsForAllComponents()

“stats.csv” })

s I Running a Simulation — Add Statistics

> Copy configuration

$ cp demo_1.py demo_2.py

> Add statistics to new configuration

What should you add?

o Launch simulation

$ sst demo_2.py

> Take a minute to look at the statistics
> Can you calculate the LI memory bandwidth?

o I SST in parallel

> SST was designed from the ground up to enable
scalable, parallel simulations

> Components distributed among MPI ranks/threads
> Link latency controls synchronization rate

MPI Rank O

Same configuration file

Two ranks
$ mpirun -np 2 sst demol.py

Two threads
sst -n 2 demol.py

A H

Two ranks with two threads each Compf
This will give a warning since we only

have 3 components across 4 ranks/threads
$ mpirun -np 2 sst -n 2 demol.py

MPI Rank O MPI Rank 1

51 | Merlin: Organization

Router

NIC

TrafficGen
TestNIC
User Logic

LC = LinkControl

Topology

PC = PortControl

[f (Network/NoC r T 1

52 1 Ember: Network Traffic Generator

> Light-weight endpoint for modeling network traffic

> Enables large-scale simulation of networks where detailed modeling of endpoints would be
expensive

> Packages patterns as motifs
> Can encode a high level of complexity in the patterns
> Generic method for users to extend SST with additional communication patterns

° Intended to be a driver for the Hermes, Firefly,and Merlin communication modeling
stack

> Uses Hermes message API to create communications
> Abstracted from low-level, allowing modular reuse of additional hardware models

[(Network driver t

53 1 Ember: Overview

High Level Communication Pattern and Logic
Generates communication events

Event to Message Call, Motif Management
Handles the tracking of the motif

Message Passing Semantics
Collectives, Matching, etc.

Packetization and Byte Movement Engine
Generates packets and coordinates with network

Flit Level Movement, Routing, Delivery
Moves flits across network, timing, etc.

(Network driver r Othsr 1

s« | Ember: Motifs

° Motifs are lightweight patterns of communication
> Tend to have very small state
> Extracted from parent applications

> Models as an MPI program (serial flow of control)
> Many motifs acting in the simulation create the parallel behavior

> Example motifs
> Halo exchanges (1,2, and 3D)

> MPI collections — reductions, all-reduce, gather, barrier
> Communication sweeping (Sweep3D, LU, etc.)

[[((Network driver r

s | Ember: Motifs (continued)

> The EmberEngine creates and manages the motif
> Creates an event queue which the motif adds events to when probed

> The Engine executes the queued events in order, converting them to message semantic calls
as needed

> When the queue is empty, the motif is probed again for events

> Events correspond to a specific action
> E.g., send, recy, allreduce, compute-for-a-period, wait, etc.

[[((Network driver r 1

s« | Firefly: Network traffic

> Purpose: Create network traffic, based on application communication patterns, at large
scale

> Enables testing the impact of network topologies and technologies on application
communication at very large scale

o Scales to | million nodes

> Supports multiple “cores” per Node
° Interaction between cores limited to message passing

> Supports space sharing of the network
> Multiple “apps” running simultaneously

[[((Network driver r 1

s7 | Firefly: Simulating large networks

o A network node consists of

> Driver (the “application”)
> NIC
> Router

Ember
(driver)

Firefly Hades

> Nodes are connected together via routers to form a network

> Fat tree, torus, etc.
Firefly NIC

° Firefly is the interface between the driver and the router

> Message passing library = Firefly Hades .
- NIC > Firefly NIC | e

!

[{ ((Network driver r 1

58

