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2 MELCOR Applications - Severe Accident Analysis & Mechanistic Source Term

NRC ACRS position letter on advanced reactor computer code evaluations with reference to source term calculations:
cco ...the staff will rely on their own code MELCOR"

o "Staff identified...MELCOR, that can perform reactor severe accident progression and source term analysis"

NRC Non-LWR Vision and Strategy, Volume 3 (Computer Code Development Plans for Severe Accident Progression,
Source Term, and Consequence Analysis)
o SNL, ORNL, and NRC collaborated to build evaluation models (EM) for each non-LWR technology

o Regulatory Guide 1.203, "Transient and Accident Analysis Methods", an EM is:

"the calculational frameivork for evaluating the behavior of the reactor system during a postulated transient or design-basis accident. As such, the EM
may include one or more computer programs, .rpecial models, and all other information needed to apply the calculational framezvork to a .0ecffic event."

o Leverage SCALE (ORNL), MELCOR (SNL), and MACCS (SNL)

. SCALE for reactor physics,

. MELCOR for integral plant response including radionuclide transport, and

. MACCS for off-site consequences

MELCOR transient/accident analyses must be informed with initial conditions, boundary conditions, and model inputs

A SCALE/MELCOR interface is required, but there is precedent (LWR and spent fuel pool analyses)



3 I MELCOR History
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• Accident Tolerant Fue/s
• Advanced non-LWR Reactors
• Accident Management

•
• Began in 1982 shortly after TMI-2

• Replaced Source Term Code Package

• Systems-level approach to modeling

• Emphasis on "best-estimate"

• Repository of knowledge

• Global standard (used by 31+ nations)

• Users' groups (AMUG & EMUG)

• Annual CSARP/MCAP meetings

1.9% 1.0%
937 Licensed MELCOR Users

0.7%

• South America

• Europe

Middle East

• Asia

u us

• North America (non-US)

• Used by USNRC, USDOE & US industry

• Used for naval reactors (US/UK)

• Evolves to meet regulatory needs



4 MELCOR Application Areas

Nuclear Reactor System Applications
Accident Analysis Regulatory Commercial
• LWR sustainability

(accidents, ATF)

• Accident forensics
(Fukushima, TMI)

• Probabilistic risk
as ses sment

• Experimental, naval,
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• Design
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• Analysis and
design scoping
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• Training
simulators
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Non-Reactor Applications
Spent Fuel

• Risk studies
• Multi-unit accidents
• Dry storage

•

Non-nuclear
Facilities

• Leak path factor
calculations

• DOE safety toolbox
code

• DOE nuclear facilities
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Alamos, Savannah
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5 MELCOR Capabilities and Validation

Extensive Validation Basis
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Integral plant response accident analysis code

Multi-physics modeling
o Thermal-hydraulic response
o Core heat-up, degradation, and relocation

• Core-concrete interactions

Hydrogen production, transport, combustion

• Fission product release and transport

Extensively validated
o Separate effects tests

• Integral tests

• International Standard Problems

• Actual reactor accidents

Facilitates uncertainty assessment
o Fast-running

• Reliable and robust

o User access to modeling parameters'

Non-LWR development since 2005



6 MELCOR as a Generalized Modeling Tool for Non-LWR Technology
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7 MELCOR High Temperature Gas-Cooled Reactor Modeling Capabilities

HTGR modeling capabilities added over the past decade or more
Prismatic type

Pebble bed type

Current efforts focused on integral plant response analyses:
o Point kinetics for ATWS-type analyses

o Thermal hydraulic assessment of PLOFC/DLOFC scenarios

o Fission product diffusion/transport/release and graphite dust transport

Fission product transport/release and graphite dust transport:
o Accelerated steady-state to calculate a thermal steady-state

o Steady-state diffusion calculation

o Steady-state fission product and graphite dust transport calculation

o Transient accident calculation

Requisite capabilities for accident analyses and MST generation installed
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8 MELCOR Sodium Fast Reactor Modeling Capabilities

SFR modeling capabilities focused on containment phenomena

o Sodium as a working fluid

o Sodium and water in same calculation

o Spray fires

o Pool fires

o Atmospheric chemistry

o Benchmarking activity

• Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments

• Investigated nuclear aerosol behavior for LMFBRs

ABCOVE tests

o AB1 — Sodium pool fire ; sodium aerosols in dry containment vessel

o AB5 — Sodium spray ; sodium aerosols

o AB6 — Sodium spray fire ; sodium aerosols ; NaI aerosols for fission products

Initial focus on sodium fires due to role in challenging containment integrity
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9 MELCOR Molten Salt Reactor Modeling Capabilities

SRI-4, model based on available ORNL-TM-0728

o Currently available MELCOR version

o Could be used as demonstration of the MSR EM

System represented using generic MELCOR elements
o 1D core for now with 2D extension straightforward
• 8 control volumes

o No traditional solid core structures represented

o Graphite blocks (heat structures)

o Diversion and drain tanks connected to primary loop

• Core bypass (leakage flow)

o Primary loop (with heat structures for pipe walls)

o Fuel pump and pump bowl

• Overflow tank

o Pump spray with helium gas purge for salt clean-up

o Horizontal u-tube heat exchanger

He purge Spray

Pump &
Pump Bowl

U-Tube Heat
Exchanqer

Vessel

Cooling

water in

Cooling

water out

MSRE Nodalization

Over-flow tank Drain Tank



10 In MELCOR Molten Salt Reactor Modeling Capabilities

Successful benchmarking against MSRE

• Model achieves a steady-state

• Results compare well to nominal MSRE operating points (10 MWth, Tin/Tout = 1175/1225 °F)

Initial efforts for FHR-type non-LWR underway

o Sample analysis based on PBMR-400 (HTGR) with FLiBe as the working fluid

o Error-free execution and physically sensible plant response

MSRE Steady-State

Energy Balance

15

E

x▪ 5

100

— Q Vessel

— Q_HXtube

— Q_HXshell

Target

200 300 400 500

Thee (sec)

1250  

1240 I

1230 -1-.

1220

Core inlet and Outlet Temperatures

i I
-1 -1--

II
2 1210 --).-

1 I
ri i I
0-1200  _j__  

1- 1 

i
ii 

i

i
1190 -4- --1--

I I
I i

1180 — -4 i
I i

1160
0

—Core Inlet

— HotLegA 200

Target

 - Target

400 600 800 1000

Tine (sec)



11 MELCOR Heat Pipe Reactor Modeling Capabilities

MELCOR HP modeling approach:

o Captures heat transfer, fuel to secondary coolant

• Heat flux from fuel to HP evaporator region

O HP condenser region an energy source to secondary

o Several HPR designs & geometric configurations

• Introduces modeling challenges for MELCOR

O Generically consider range of HPR configurations

ELCOR HP model

O HP geometry (wick diameter, wall radii)

O Evaporator, adiabatic, condenser regions

O Ability to track transient HP behavior

• Temperatures of fuel, HP fluid, HP wall segments

• Power input (from fuel) and output (to secondary)

• Can predict failure, e.g. due to overloading

o Under active development

O Compatible with other MELCOR models
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