MELCOR for Non-LWRs: _

Severe Accident Analysis,
Mechanistic Source Term Generation,
and Risked-Informed Decision Making
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2 | MELCOR Applications - Severe Accident Analysis & Mechanistic Source Term _ I

NRC ACRS position letter on advanced reactor computer code evaluations with reference to source term calculations: I
“...the staff will rely on their own code MELCOR?”

“Statf identified...MELCOR, that can perform reactor severe accident progression and source term analysis”

NRC Non-LWR Vision and Strategy, Volume 3 (Computer Code Development Plans for Severe Accident Progression,
Source Term, and Consequence Analysis)

SNL, ORNL, and NRC collaborated to build evaluation models (EM) for each non-LWR technology
Regulatory Guide 1.203, ““Iransient and Accident Analysis Methods”, an EM is:

“the calcnlational framework for evaluating the behavior of the reactor system during a postulated transient or design-basis accident. As such, the EM
may include one or more computer programs, special models, and all other information needed to apply the caleulational framework to a specific event.”

Leverage SCALE (ORNL), MELCOR (SNL), and MACCS (SNL)
SCALE for reactor physics,
MELCOR for integral plant response including radionuclide transport, and I
MACCS for off-site consequences

MELCOR transient/accident analyses must be informed with initial conditions, boundary conditions, and model inputs

A SCALE/MELCOR intetface is required, but there is precedent (LWR and spent fuel pool analyses) I
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Began in 1982 shortly after TMI-2
Replaced Source Term Code Package
Systems-level approach to modeling
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Nuclear Reactor System Applications

Accident Analysis

LWR sustainability
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Non-Reactor Applications
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Extensive Validation Basis
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MELCOR as a Generalized Modeling Tool for Non-LWR Technology
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HTGR modeling capabilities added over the past decade or more
Prismatic type

Pebble bed type

Current efforts focused on integral plant response analyses:
Point kinetics for ATWS-type analyses

Thermal hydraulic assessment of PLOFC/DLOFC scenarios

Fission product diffusion/transport/release and graphite dust transport

Fission product transport/release and graphite dust transport:
Accelerated steady-state to calculate a thermal steady-state
Steady-state diffusion calculation
Steady-state fission product and graphite dust transport calculation

Transient accident calculation

Requisite capabilities for accident analyses and MST generation installed
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SFR modeling capabilities focused on containment phenomena
Sodium as a working fluid

Sodium and water in same calculation
Spray fires
Pool fires
Atmospheric chemistry
Benchmarking activity
Aerosol Behavior Code Validation and Evaluation (ABCOVE) experiments

Investigated nuclear aerosol behavior for LMFBRs

ABCOVE tests
AB1 — Sodium pool fire ; sodium aerosols in dry containment vessel
AB5 — Sodium spray ; sodium aerosols

ABG6 — Sodium spray fire ; sodium aerosols ; Nal aerosols for fission products

Initial focus on sodium fires due to role in challenging containment integrity
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MSRE model based on available ORNL-TM-0728

He purge

Spray
Currently available MELCOR version Cooling
: " ... water in
Could be used as demonstration of the MSR EM Pump & imEE —
Pump Bowl ‘.-! =
HER Cooling
. . U-Tube Heat waterout
System represented using generic MELCOR elements Exchanger
1D core for now with 2D extension straightforward ——|
]

8 control volumes

No traditional solid core structures represented
Vessel

Graphite blocks (heat structures)

Diversion and drain tanks connected to primary loop MSRE Nodalization

Core bypass (leakage flow)

Primary loop (with heat structures for pipe walls)

Fuel pump and pump bowl

Overflow tank

-.—I

I Over-flow tank Drain Tank

Pump spray with helium gas purge for salt clean-up

Horizontal u-tube heat exchanger
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Successful benchmarking against MSRE I
Model achieves a steady-state

Results compare well to nominal MSRE operating points (10 MW, T,./T, . = 1175/1225 °F)

Initial efforts for FHR-type non-LLWR underway
Sample analysis based on PBMR-400 (HT'GR) with FLiBe as the working fluid

Error-free execution and physically sensible plant response
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MELCOR HP modeling approach:

1300
Captures heat transfer, fuel to secondary coolant , M

Heat flux from fuel to HP evaporator region o0 Eveporatorwall

-
i

! working fluid

HP condenser region an encergy source to secondary

1100 k condenser wall
i —

Introduces modeling challenges for MELCOR ! e " HX Coolant

Generically consider range of HPR configurations

Condenser
Temperature [K]

Several HPR designs & geometric configurations
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MEILCOR HP model

HP geometry (wick diameter, wall radii)
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Evaporator, adiabatic, condenser regions
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Ability to track transient HP behavior
Temperatures of fuel, HP fluid, HP wall segments

Power input (from fuel) and output (to secondary)

| —COR-HP-QHP_IN.1
—COR-HP-QHP_OUT.1 L
200 400 600 1000
time [sec]

Can predict failure, e.g. due to overloading

Evaporator region cells

Under active development

Compatible with other MELLCOR models | I Ulustrative output (temperatures and in/out power)
HP wall from a slow transient of a simple HP test problem




