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Background

• Context
• Total installed capacity of PV is growing fast

• Large growth expected in distribution systems

• Problem
• Grid is slow to evolve, we encounter technical challenges with

voltage/frequency regulation, protection, etc.

• Unless mitigated, these challenges will make it increasingly difficult
and costly to continue integrating renewable energy

• Solution: advanced inverters
.

.

.

Actively support voltage and frequency by modulating output

Have high tolerance to grid disturbances

Interact with the system via communications

• Research questions
.

.

What is the best technique for providing voltage regulation?

How can the methods be evaluated with physical devices prior to
field implementation?
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...More powerful than a rotating
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...Able to leap deep voltage sags in a
single bound
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Distribution Voltage Regulation
LTC
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Voltage regulation on a feeder Voltage regulation on a feeder
without distributed generation. with distributed generation.

Solution: Use DER grid-support functions with reactive power capabilities.
- Cost-effective: no additional equipment required
- Logical: employs devices which are causing voltage rise to mitigate the problem

Images: B. Palmintier, et al., On the Path to SunShot: Emerging Issues and Challenges in Integrating Solar with the Distribution System, NREL/TP-5D00-65331, May 2016.



ENERGISE ProDROMOS Project

Programmable Distribution Resource Open IVlanagement
Optimization System (ProDROMOS)1

The project created an Advanced Distribution Management System
(ADMS) that captures distribution circuit telemetry, performed state
estimation, and issued optimal DER setpoints based on PV
production forecasts.

Team used PHIL experiments to gain confidence in control
algorithms, verify communication interfaces, and predict performance
prior to deploying the ADMS on a live feeder in Massachusetts.

1Prodromos is Greek for "forerunner and the prodromoi were a light
cavalry army unit in ancient Greece used for scouting missions.
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Options for Voltage Regulation using Grid-Support Functions

Distributed Autonomous Control Volt-Var Mode

• Function: volt-var or volt-watt

• Pros: simple, requires little or no communications, DER locations not needed -->v

• Cons: does not reach global optimum

Extremum Seeking Control (ESC)

• Function: power factor or a new grid-support function

• Pros: can achieve global optimum

• Cons: requires fitness function broadcast or PF calculation by central

Optimal Power Factor Control

• Function: power factor or reactive power commands

• Pros: direct influence over DER equipment to achieve objective

• Cons: requires telemetry, knowledge of DER locations, and state
estimator/feeder model

entity

ESC

a cos cot COS CO t

Optimal Power Factor

t
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Extremum Seeking Control

Extremum Seeking Control (ESC) was used as a
comparison to the PF optimization technique

Steps in ESC:

A. Centralized control center
collects data from the power system

B. Control center calculates the objective
function, e.g., j= 1/n*E[(Vi — VO/Vid2

C. Control center broadcasts objective function to all inverters.
D. Individual inverters extract their frequency-specific effect

on the objective function and adjust output to trend toward
the global optimum.

Substation

Utility Control Center B

Bus 33

Bus 34
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• D. B. Arnold, M. Negrete-Pincetic, M. D. Sankur, D. M. Auslander and D. S. Callaway, "Model-Free Optimal Control of VAR Resources in Distribution Systems: An

Extremum Seeking Approach," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3583-3593, Sept. 2016.
• J. Johnson, R. Darbali, J. Hernandez-Alvidrez, A. Summers, J. Quiroz, D. Arnold, J. Anandan, "Distribution Voltage Regulation using Extremum Seeking Control with

Power Hardware-in-the-Loop," IEEE Journal of Photovoltaics, vol. 8, no. 6, pp. 1824-1832, 2018.
• J. Johnson, S. Gonzalez, and D.B. Arnold, "Experimental Distribution Circuit Voltage Regulation using DER Power Factor, Volt-Var, and Extremum Seeking Control

Methods," IEEE PVSC, Washington, DC, 25-30 June, 2017.
• D. B. Arnold, M. D. Sankur, M. Negrete-Pincetic and D. Callaway, "Model-Free Optimal Coordination of Distributed Energy Resources for Provisioning Transmission-

Level Services," in IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 817-828, 2017.
• Code: https://github.com/sunspec/prodromos/blob/master/optimization/extemum seeking control.py



Particle Swarm Optimization (PSO) Optimal Power Flow (OPF)

In the PSO OPF method, time-series OpenDSS simulations were wrapped in an optimization to calculate the PF

values for each PV inverter.

• RT power data for each of the buses and the PV forecasts were used to generate a time-series simulation by

setting the active and reactive power levels of dynamic loads in the OpenDSS model.

• The OpenDSS load data was populated by a Georgia Tech Integrated Grounding System Analysis program for

Windows (WinIGS) state estimation solution.
• Active and reactive loads were assumed static. Connected Energy Software, Cloud Application

• Future PV production estimations were

populated by PV persistence forecasts.

Objective Function:

min wo6violation (17)+ 14)10 (V — Vbase) + 1412C (PF)
PF

8violation (V) = 1 if any IV >

a (V — Vbase ) is standard deviation of V — Vb„e

c(PF) = 11-113F

Cost minimized when voltage = Vnom and PF=1

WnIGS State Estimator

-Pheee C

* Substell,on

PV PCC

Cep.,

Relay

258 kW

Reduced-order
model
representing:
- 30 Loads
- 2 Capacitor Banks
- 6 Switches
- 20 Transformers
- 190 Lines
- 3 PV Systems
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Creating Realistic Power Simulations

• Feeder models, based on existing

distribution systems were reduced

to smaller equivalent distribution

systems using the OpenDSS.

• These models were migrated into

MATLAB/Simulink and simulated in

RT with a simulated PV inverter.

• The OPAL-RT platform was used to

demonstrate the capabilities of RT-

PHIL.
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Distributed Energy Technology Laboratory at SNL

• The Distributed Energy Technologies
Laboratory (DETL), located at Sandia

National Laboratories in Albuquerque, NM,

provides power systems and power

electronics testing capabilities.

• DETL includes a 480 V, 3-phase microgrid,
with interconnections to the utility grid and

several DER devices (PV inverters,

microturbines, fuel cells, reciprocating

engine-generators, and energy storage

systems).

• The laboratory also has an OPAL-RT real-

time simulator used to perform RT-PHIL

tests with 1•1) or 3•1) PV inverters, a 100

microinverter testbed, and other DER.

• DETL researchers have extensive expertise
in DER grid-integration.

Real-Time Simulator

(0P5600 Opal-RT)

Programable DC Power Supply

(PV Simulator)

1.1
 I AC Power Amplifier

11 (Grid Simulator)

Single Phase

PV Inverter
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PSO OPF Real-Time Power Hardware-in-the-Loop Setup

OPAL-RT Communication Interfaces

• PMU C37.118 to state estimator

• OPAL-RT DataBus Interface receives P/Q values for

EPRI DER simulators and transmits bus voltages

and frequency

Information Flow

• The State Estimator ingests PMU data to produce

current/voltage estimates for the distribution

system

• State estimation data and PV generation forecasts

populate an OpenDSS model.

• PSO wraps the OpenDSS model to calculate the

optimal PF setpoints for each of the DER devices.

• DER PF settings were issued through Modbus and

IEEE 1815 (DNP3) commands.

RT-PHIL allows for an affordable and repeatable

alternative to testing physical devices under real

operating conditions before they are connected to an

actual system.
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Connected Energy Software, Cloud Application
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PNM RT Simulation Results

There is only a small improvement in bus voltage when

implementing Volt-Var with a relatively passive curve.

ESC and PSO improve voltage regulation at the PCC of PV

inverter 2 and globally.

The average bus voltage is close to nominal (good)

The maximum voltage is reduced substantially (good)

The minimum voltage is reduced (bad)

1
score = —

T

where:

V bl

Vnom

V reg

T

b

t

tend N

t=o

OVOI Vnoml keg — Vnoml) dt
=1

Baseline Voltage

Target Voltage

Voltage with control applied

Time Period

bus

time

1.02

1.01

CL 1.00

B 0.99

0.98

0.97

PNM Feeder Score

Phase A Phase B Phase C Average Improvement (%)

VV 0.024 0.024 0.024 0.071 12.9%

ESC 0.140 0.140 0.132 0.412 74.5%

PSO 0.139 0.139 0.130 0.408 73.7%

Best Score 0.186 0.188 0.179 0.553
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High irradiance variability produced voltage deviations.

Baseline, Phase A —VVC, Phase A —ESC, Phase A —PSO, Phase A
Baseline, Phase B —VVC. Phase B
Baseline. Phase C VVC, Phase C

ESC. Phase B —PSC), Phase B
ESC. Phase C PSO. Phase

fl

1.02

1.01

a 1.00
U)

2 0.99

0.98

0.97

2500 5000 7500

Time (s)
10000 12500 15000

_ Comparison of Voltage Regulation Approaches for
averaged System Buses.

Baseline VVC ESC PSO

0 2500 5000 7500 10000 12500 15000

Time (s) 11



NG Simulations with 3st, inverters at Old Upton Road

• The National Grid system was highly unbalanced.

• None of the voltage regulation techniques were
capable of correcting the voltage deviations
using the 3•1) inverters at Old Upton Rd.

Comparison of Min, Max, and Average Voltages for All Buses
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• Question: if all the PV systems on this feeder were
used for voltage regulation (not just Old Upton Rd)
would there be a big improvement?
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NG Simulations with All Inverters

• PV size, location, and rating of the PV inverters are important

for the control.

• Controlling all PV generated larger excursions, but in general

kept the voltages closer to nominal.

• The improvement is clear in the feeder scoring results.
tend N

score = 1:(Ivbt - Vnoml Vreg vnom) dt

t=0 b=1

NG Feeder Score Controlling a Single PV Site

Phase A Phase B Phase C Average Improvement (%)

VV 0.000 0.000 0.000 -0.001 0.0%

ESC 0.012 0.000 0.031 0.043 3.2%

PSO -0.001 0.000 0.004 0.002 0.2%

Best Score 0.194 0.635 0.507 1.336

NG Feeder Score Controlling All PV System (including 14, devices)

Phase A Phase B Phase C Average Improvement (%)

VV -0.004 0.122 0.085 0.203 15.2%

ESC -0.023 0.328 0.202 0.508 38.0%

PSO -0.023 0.124 0.137 0.238 17.8%

Best Score 0.194 0.635 0.507 1.336

Sandia
National
Laboratories
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Legend
Phase A
Phase B
Phase C
Phase BA

Phase AC
Phase BC

Substation •

PV Site CI

National Grid PV System
The team ran Volt-Var, ESC, and PSO OPF control techniques

on the live National Grid feeder in Grafton, MA.

• 28 PV inverters were controlled at the 672 kVA PV site

• A feeder monitor located at a separate location on the

feeder was be used to collect feeder voltages

• Data was collected for multiple days for each control

technique to compare the techniques

Massachusetts Tpke

Sandia
National
Laboratories

684 kWdC/672 kWac Old Upton Rd PV Installation
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Digital Twin Concept for PSO

Problem 

• Not enough Intelligent Electronic Devices (IEDs, i.e.,
PMUs, DERs, meters, etc.) to make state estimation
observable for the field demonstration feeder

• Short-term load forecasts or historical data is often used
as "pseudo-measurements" to get a solution, but the
team didn't have access to this data

Implementation

• Use a real-time digital twin of the feeder to estimate the
system operations

• If general behavior of digital twin is similar to the physical
feeder, the "optimal" PF settings should support feeder
voltages

• PV power was mapped from physical system to
simulated DER device using the curtailment function.

• PV PF setpoints are sent to the physical and virtual PV
system.

• This does not account for the current load (only pre-
recorded versions).

Connected Energy Software, Cloud Application
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PSO on NG Feeder

• Forecast matched PV production

• Line drop compensation should be
disabled so that voltage regulation
is completed with a single
controller

• PSO operated near unity and
could do little to help the voltage
imbalance of the feeder-just like
the other methods.

• Since Old Upton Rd only included
three-phase inverters it was not
possible to help the phase
imbalance but did attempt to
move the feeder voltages toward
nominal.

• Digital twin method appears to
work well!

Inverter Active Power (pu) at PCC
1.2

-PSO Digital Twin Inverter, Active Power

-PSO Field Inverter, Active Power
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When PV output is high, there is low voltage because
there is a voltage regulator with line drop compensation
on this feeder.



NG Field Demonstration

• All the voltage regulation
methods were deployed on the
live feeder by programming the
volt-var or power factor setpoints
in the 28 PV inverters at Old
Upton Rd.

• Difficult (impossible?) to compare
voltage regulation methods in the
field because of different
irradiance profiles and other
voltage regulation equipment on
the feeder.
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• Demonstrated Incremental development approach was effective (simulation to real time to PHIL to field)
• Communications between measurement equipment, ADMS controllers, and DER devices can be verified.
• Build confidence in controls before field deployment.

• Digital twin was necessary during development to overcome sparse measurements for state estimation

• Observations about control options
• Volt-var functionality provides some DER voltage regulation without communications.
• In low communication environments, extremum seeking control is a viable means to control a fleet of DER

devices to track toward optimal PF setpoints, but it is relatively slow and the system must be tolerant of
probing signal ripple.

• State estimation-fed, model-based DER optimization is a viable control strategy with sufficient telemetry.
• None of the methods were capable of solving the phase imbalance issue with three-phase inverters.

• Open question and observations:
• How well could negative and zero sequence current from inverters regulate voltage on unbalanced feeders?
• Available telemetry and communications will rarely supply what is assumed during ADMS development.
• Software interoperability continues to be challenging.

ProDROMOS GitHub Repository, URL: https://github.com/sunspec/prodromos/
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