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EAB Charter

The hxternal Advisory Board (hAB) to the Science and  hngineering of
cybersecuriO by Uncertain0 quantOcation and Rigorous Hxperimentation
(S HCURE) LDRD Grand Challenge (GC) will serve in an advisory capaci0 
to assess and provide external, independent review and guidance to the GC team
and management at Sandia National Laboratories on the prject's Strategy,
Relevance/ Impact, QualiO, Capabilities, and Partnerships. (See next slide)

The EAB will provide feedback on these five elements of Research Assessment
throughout the three:year course of the prject. Focus questions highlighting
particular elements of interest will be provided at each meeting, but the FAB is
encouraged to comment on any or all elements, and to provide additional advice
to the prject team as desired.
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Five Elements of Research Assessment

Strategy

Mission Relevance & impact

Quality

Capabilities

Partnerships & Technology Transitions

ELEMENT

Execute a research strategy that is clear, aligns

discretionary investments (e.g., LDRD) with the
research strategy, and supports DOE/NNSA priorities.

Ensure that research is relevant, enables the national

security missions, and benefits DOE/NNSA and the
nation.

Ensure that research is transformative, innovative,

leading edge, high quality, and advances the frontiers
of science and engineering.

Maintain a healthy and vibrant research environment

that enhances technical workforce competencies and
research capabilities.

Research and develop high-impact technologies

through effective partnerships and technology transfer
mechanisms that support the laboratory's strategy,

DOE/NNSA priorities, and impact the public good.

External reviews are linked to

SNL Performance Objective: Science, Technology and Engineering Mission
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SECURE AB #2 F uestio

II- (Strategy) At its first meeting in March 2019, the EAB recommended that SECURE should map out a
single project architecture, clearly define what comprises success for individual tasks and the
project as a whole, and stake out integration activities to be accomplished throughout the project.

Please provide feedback on how effectively we communicate (a) the rationale ("story") of the project and
(b) the research plan — is it sound, comprehensive, executable? What adjustments to the overall plan or
individual thrust areas should we consider?II What are the biggest technical / programmatic risks in Year 2 of the project, and what changes would you
recommend to address them?

The exemplar for Year 2 is focused on placement of malware on a SCADA network and subsequent
consequences to the power grid. Is this an appropriate exemplar; what enhancements would you
suggest? Specifically:

What degree of progress, if any, do you see with respect to optimization, UQ, scalability, and validation?

How effectively does the exemplar demonstrate the propagation of these attacks in a probabilistic manner
and how they can be optimally mitigated? How well does it illustrate an effective connection between the
thrusts?

(Quality) Is the research demonstrated to date of high quality and at the leading edge of the cyber
experimentation community? What, if anything, needs to be sharpened / improved?

(Partnerships & Technology Transition) Please comment on the team's plans for engagement with
external communities and "Life after LDRD" (e.g. identification of sponsors who will adopt key
accomplishments / support further development.)
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'AGENDA

Day 1: October 29, 2019

Director Champion Welcome, Comments, and Charge to the Board - 8:15-8:45

Project Rationale and Overview - 8:45-9:45, Break - 9:45-10:00

Emulytics - 10:00-11:30

Break and Pick up Food for Working Lunch 11:30-12:00

Uncertainty Quantification - 12:00-1:30, Break: 1:30-1:45

Optimization - 1:45-3:15

Thrust integration and longer term technical vision 3:15— 3:45

Break - 3:45-4:00, EAB Closed Session - 4:00-5:00, Quick questions / feedback 5:00 — 5:15

Dinner for EAB Members, PI, PM, Director Champion, and LDRD Office 6:30 — 8:00

Day 2: October 30, 2019

Address questions from the previous day - 8:30-8:45

Programmatic Vision / Life after LDRD discussion — 8:45-9:45

Charge Review/Concluding Questions - 9:45-10:00

Break 10:00-10:15

EAB Closed Session - 10:15-11:30

EAB Outbrief to Team - 11:30-12:30

Adjourn at 12:30; some EAB members remain for other discussions in the afternoon



Al114 LDRDLaboratory Directed Research and Development

SECURE Overview

Ali Pinar, PI

Zach Benz, PM

U.S. DEPARTMENT OF AI .V

ENERGY
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security
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What is the return on investment for cyber security? 4TO

Credit: Staff Sergeant Jason Gamble, United States Air Force

$$$
... .......

. ?„__

Weapons Avionics Maintenance

..........

Cybersecurity



Who else cares about return on investment?

Adison the Engineer, IT decision maker
"Will deploying this cybersecurity solution have meaningful impact?"

Captain Howard, DOD, high-consequence systems
"Can we credibly assess system performance under various threat
scenarios?"

Alice the Architect, Grid resilience planning
"How do we take into account cyber vulnerabilities in grid operations?"
"How do we take into account consequences in cyber system design? "

Leon the PM and Dr. Turing the PI, capability stewards
"What are the gaps in our capability roadmap to focus on to
maximize impact? "

Olivia G. Arcane, Government systems analyst
"Which part(s) of our system is most fragile?"



evidence
Without  data,
you are just another person
with an opinion.

W. Edwards Deming

- •

►

t‘111
Image Source: census.gov



Why do we need to quantify?

Adison the Engineer, IT decision maker

"Will deploying this cybersecurity solution have meaningful impact?"

1 • Her team offers different opinions about the potential benefits of the
proposed solution and its impact on productivity

•  She needs a thorough cost/benefit analysis to base her decision on 

Captain Howard, DoD, high-consequence systems

"Can we credible assess system performance under various threat

scenarios?"

- He is in charge of a high-consequence system

• He trusts his red team, but the stakes are too high; the system is too
complex; and time is too short

Leon the PM, capability steward

"What are the gaps in our capability roadmap to focus on to

maximize impact? " 
He controls a budget that is too small; needs to prioritize

- Many conflicting expert opinions; system is too complex for the
answers to be simple



Bringing Rigor into Cyber Experimentation:
The Plan in a Nutshell

SECURE: Science and Engineering of Cyber security through
Uncertainty quantification and Rigorous Experimentation " "

The Goal: Bring rigor into cyber experimentation

The Idea: Follow the principles of Computational
Science and Engineering (CSE)

The Challenge:  Cyber systems are different than
those in traditional CSE applications.

The Plan: 

• Build on our current strengths in core capabilities

o Emulytics, Uncertainty Quantification (UQ), Optimization

• Advance the state of the art in core capabilities

• Integrate core capabilities over a power grid exemplar

it-4(

• • 4 •
• • C • • • • • •

P • • •

11. 4

EMULYTICS

DAKO iA
,.
PYOMO

The Product: Algorithmic expertise to support the full workflow of

rigorous cyber experimentation and software tool SECUREtk
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Cyber experimentation approaches
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Challenge is bringing together disparate strengths

What we need Three Thrusts of SECURE 

• Predict Answer "What if questions"
at scale, with confidence.

• Emulytics

• Assess confidence  in predictions;
characterize and propagate uncertainties

• Uncertainty Quantification

DAKO IA
• Make robust decisions  under uncertainty

and under advanced threat conditions

EMULYTICS

• Adversarial Stochastic Optimization PYOIV1O



Three Research Elements and One Motivating Ar---IN
Application to Tie Them All

• The Electric power grid is a cyber-physical
system that is becoming increasingly
information dependent.

• The 2015 Ukranian power grid attack
showed the potential effects
of a cyber attack on a critical infrastructure.

• This motivating application helps us better
understand how pieces fit together.

US-CERT
UNITCD STATES COMPUTCR EMERGENCY READINESS TEAM

HOME ABOUT US CAREERS PUBLICATIONS ALERTS AND TIPS RELATED RESOURCES C. VP

Alert (TA17-163A)
CrashOverride Malware

Original raluasa date' Jun. 12, 2017 I revised' July 27, 2017

Print -*Tweet  I 11 Send (la Share

Systems Affected

Industrial Control Systems

Overview

CRASHOVERRIDE
Analysis of the Threat
to Electric Grid Operations

011/IGOSIIIK f WWw OPAGAS COM

More Alerts

The National Cybersecurity and Communications Integration Center (NCCIC) is aware of public reports from ESET and Dragos outlining a new, highly capable
Industrial Controls Systems (ICS) attack platform that was reportedly used in 2010 against critical infrastructure in Ukraine. As reported by ESETI'? and Dragos,..
the Crashovorrido malwaro is an extensible platform that could be used to target critical infrastructure sectors. NCCIC is working with its partners to validate the
ESET and Dragos analysis, and develop a better understanding of the risk this new matware poses to U.S. critical infrastructure_

DRAGO
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What is the SECURE Product?

• A cohesive experimental workflow and set of
tools and techniques...

• ...that rigorously quantifies the effectiveness of
actions in the cyber domain

• We will develop foundational capabilities such as
o UQ for discontinuous, high dimensional systems
o Scalable solvers for optimization
o Scalable Emulytics

• .., and produce
o Experts
o Publications
o Algorithms
o Tools to share

(SECUREtk, DAKOTA, Pyomo, minimega)

Additional
designs
needed?

Identify the
experimental question
and system of interest

Identify input
parameters for the

study

Characterize the input
parameters

(distributions or levels)

1
Identify parameter
regions of interest

Generate the la
experimental design

(structured or sampled)

1
Perform the runs for
the experimental

design

1
Postprocess the results

for each run

Analyze the results
across all the runs



'111<r
Overview of the Exemplar Study/Workflow elk

Threat
Model

• Crashoverride on
a single ICS

• Focus on part of
the attack
Reconnaissance

• Attacker needs to act
quickly

• Attacker tries to locate
RTUs using nmap

• Defender tries to detect
such searches using snort

• Parameter ranges set for
a fast strike attack

Attack Effect on
Resources

• A representation of the
a region of the Texas
Grid

• Flat cyber network
• Controls 8 RTUs
• Build an emulation

model of the system
• Run the emulation

many times to cover
the parameter space

• Build models for impact
on cyber

• Validate models using
emulation

Consequence
Prediction

• Quantify impact on
the power grid based
on loss of load

• Investigate how a
sophisticate
adversary can use this
attack in an optimal
way

• Provide feedback to
previous steps about
sensitive parameters
regions

11



Research Plan (Overview)

Year 1: Integration and Algorithmic Exploration
• Surveys; apply present capabilities; integration (tools and ideas);

initial results for new ideas; fine-tuned problem definitions
• Exemplar 1: Single operating authority; flat SCADA/RTU network;

• Products: Prototype implementations; papers on early results;
integrated experimental environment

Year 2: Algorithm Development
Deep dive into algorithmic research; testing at scale/complexity;

research software; initial demonstration of new, joint capabilities

Exemplar 2: Regional; SCADA/RTU network; multiple ICS networks

Products: SECUREtk 0.1 (internal use); Algorithm publications

7
Year 3: Demonstrate Capability

Pushing the boundaries of tools; Reporting results; demonstration of

capabilities; research software to tools;

Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services

Products: SECUREtk 1.0 (sharable with research partners); Integration
publications

12



Overview of Year 1 Progress

• Initial results that tie security to scientific foundations

• Detailed plan for the power grid exemplar

• Demonstration of integration of the exemplar

• Invited talks and publications

• IAB Review

• EAB Review

• Initial External Engagements with a wide customer space and
research partners

• On schedule with all milestones

• Communications:
o Started SECURE Seminar Series: 4 talks so far

o Started Quarterly Newsletter: 1st issue out, 2nd issue in progress

o Domains name: securegc.sandia.gov; sandia.gov/securegc

1

1 3



Integration has been the primary goal

• Goal: SECURE should be an interdisciplinary team that will create
foundational technologies for rigorous cyber-experimentation.

• Our plan: Start with the integration and let the research grow out
of the common roots
o Conference room reserved for a full day for SECURE activities

o Initiated flow of information between research elements in the first year

o Developed common language

o Avoided integration only through team leads; encourage individuals to
understand other fields; build a network

At the end of the year, we are a team that can
• develop interdisciplinary solutions
• ask questions we could not have asked before
• better understand the limits of current methods and

fundamental challenges behind practical problems 1

14



Many Promising Early Results
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Research Plan (Overview)

Year 1: Integration and Algorithmic Exploration
• Surveys; apply present capabilities; integration (tools and ideas);

initial results for new ideas; fine-tuned problem definitions
• Exemplar 1: Single operating authority; flat SCADA/RTU network;
• Products: Prototype implementations; papers on early results;

integrated experimental environment

Year 2: Algorithm Development
• Deep dive into algorithmic research; testing at scale/complexity;

research software; initial demonstration of new, joint capabilities

• Exemplar 2: Regional; SCADA/RTU network; multiple ICS networks

• Products: SECUREtk 0.1 (internal use); Algorithm publications

Year 3: Demonstrate Capability
• Pushing the boundaries of tools; Reporting results; demonstration of

capabilities; research software to tools;
• Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services
• Products: SECUREtk 1.0 (sharable with research partners); Integration

publications

1 6



FY20 Plan: Integrated Overview

• Scaling up the Exemplar
o More complex SCADA networks; Multiple ICS networks;
o More complicated questions; restructuring the network; tailored defenses

o Regional attacks: attacks on multiple ICS
O Detailed models for higher dimensions

• Leveraging Exemplars to Showcase Use Cases of SECUREtk
. Risk management through stochastic adversarial optimization
o Design of Emulytics experiments with analytical methods

o Constructing confidence intervals under high response variability

O Hypothesis testing to guide experimental design

• Quantifying \My as part of the Cyber Experimental Process
O Conducting \/&\/ in the context of problem

O Requirements analysis to assess well-posedness of cyber models

o Extending methods to address boundary conditions and estimating tail probabilities

• Integration of Threat Characterization to Experiment Ensembles
O Pruning meaningless and low-consequence attack spaces prior to running Emulytics

experiments

O Identifying optimal mitigation strategies that deter or evolve the threat space

1 7



EAB Feedback from March 2019 1
• Overall positive impressions

o SECURE proposes to address a long-overdue research challenge  

O ... proposed a sound approach ...

O ... assembled a talented team that demonstrated ability to leverage
experience gained form prev. projects

o The overall plan for the research and the progress to date were
impressive ...

O ...quickly built strong cross-disciplinary collaborative relationships...

• with constructive feedback on

o what was missing in the presentation

• Publication list; CVs - new web page

• Sponsorship targets - Zach's presentation on Day 2

• Project architecture - end of the day presentation
• Threat characterization - Tom's presentation today

o what was missing in the project plan
•

18



EAB Feedback

• Community awareness

o Worked with Perspectives to explore the space broadly

o Collaborations with Academia
• GTech, Texas A&M, UC Davis, RPI, UC Berkeley

o Talks/sessions in conferences

o Workshop in the works

o SECURE Speakers

• Power systems domain expertise

MIK

o NE ISO visit; GTech and Texas A&M collaborations; on-team and local experts

• People development

o New hires, new Team members, new roles for team members

o Graduate students

• Risks identification
o Next slide

19



Risk Mitigation

• (Un)Realistic and (not) representative exemplar
o Working with domain experts; avoid real data for classification; focus
on research

• Cascading effects of a delayed task
o If there is a delay, proceed with synthetic data
o Defined our interfaces to ensure that an output can be rigorously
computable.

o So even if there is a delay, we are confident that integration is feasible

• Miscommunication issues in integration
o This was the first task; we will integrate early and often

• Difficulty of validation
o Start with small problems
o Focus on methodology, so that we are ready when we have the data

• Uncertainty margins too large to be practical
o Identify the source and improve if we can
o If not, proving wide margins is useful.

20



March EAB feedback items

CA

RI ,

' TC

ST ,

DE

i Community awareness
o "Futyre presentations should

explicitly acknowledge related
research and articulate how
SECURE is going beyond it. "

• Risks identification
. "qxplicitly identify risks associated

with the project and develop
strategies to mitigate them "

• Threat characterization
. "it was not clear to the board

how the threat characterization
work contributed to the overall
goals of the project "

• SECUREtk

• Domain expertise
. "given thgt the exemplar is the

power grid, the EAB did not see
sufficient evidence that the team
has the required domaip .
expertise to create realistic
scenarios that willanswer
meaningful questions "

( PA

CE #

PD., ,

• Project architecture

O "The board suggests that the
team map out a project
"architecture" that shows how
tasks are connected ...
[and]the team needs to clearly
define what comprises success
and stake out integration
activities to be accomplished
throughout each year of the
project"

• Customer engagement

O "it was not apparent either who
the specific customers will be
for SECURE's output or that the
research plan is appropriately
addressing medium- to long-
term customer challenges "

• People development

O "The EAB was unclear on SNL's
development / promotion of
talent and expertise in
cybersecurity"

21
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LDRD
Laboratory Directed Research and Development

Simulated Case Study:
Scenario Description

Presenter: Eric Vugrin
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ENERGY ALIFA.L.
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525.



Simulated Grid Case Study: March EAB

Attack RTUs

TAM
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• RTU Layout:
O 1 RTU per substation (8 total)
o Small subset of substations
o Nominal operations:

• 320.81 MW Load

Load Shed (Mw)

RTU Number

•

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 2



Simulated Grid Case Study: March EAB

• Key Simplifications
o Analyzed 1 step of kill chain (action on objective)

o Considered relatively small system
• Focused on control network
• 8 RTUs total

o Assumed attacker has prior knowledge of RTUs

o Considered "a lot of grid" and "limited cyber"
• Single metric of interest: load shed

This presentation describes how we have expanded upon our initial
case study to consider additional complexities.
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Updated Case Study: Multi-Step Kill Chain All

Achieve
Initial Command Command loss of

infection and control and control load

Pivot to ID Run
engineering vulnerable CRASH
workstation RTUs

l. Start
2. Deliver email
3. Follow link
4. Execute
5. Obtain IP of engineering

workstation
6. Command/control
7. Pivot to engineering

workstation
8. Scan for RTUs
\ 9. Ready for attack

Generation sonnet Load sonnet

IMMEI 0 MEI

Control subnot

ICCP to other
 substatztrts - 4
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Scenario - Cyber
Notional SCADA/ICS Network

Historian

Control Centeii

OPC Sarver

Engineering Workstation
(Compromised)

• Attacker scans
network to find
potential
vulnerabilities

• Causes disruptions
via RTU payloads

8 substations, 24 remote terminal units (RTUs)

substatlon

Vulnerable

substatlon

substation substation

Vulnerable

substation substation

Field
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Scenario Physical
2000 Bus Synthetic Model of Texas Power Grid
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*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 6
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Simulated Grid Case Study: Extensions

System Analyzed

Steps in Kill Chain

How much cyber and
how much grid?

Attacker Knowledge

Metrics of Interest

Scale

Only control network

Single step

Lots grid, little cyber

Knows all vulnerable
RTUs

Load shed

8 RTUs

Enterprise + control
networks

Multiple steps

Added a lot more cyber

Has to find vulnerable
RTUs

Load shed + many
cyber-focused metrics

24 RTUs (and just started
on 240 RTUs)

1 Many of the following presentations will include models, results,
analysis, and capability development for portions of this case study
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Al114 LDRDLaboratory Directed Research and Development

1k,

Team members:
• Jerry Cruz
• Sasha Outkin
• Christian Reedy
• Tom Tarman
• Vince Urias
• Eric Vugrin

SECURE Predictive Cyber Emulation
(Emulytics) Task

Tom Torman

e`7•••,. U.S. DEPARTMENT OF AI .V irgict$4

ENERGY /11.114.12:1. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security

Administration under contract DE-NA0003525. UNCLASSIFIED UNLIMITED
RELEASE



March EAB feedback items covered in this talk

CA

RI 

, TC

ST

Community awareness
O "Future presentations should explicitly acknowledge related
research and articulate how SECURE is going beyond it. "

Risks identification

O "explicitly identify risks associated with the project and develop
strategies to mitigate them "

Threat characterization

O "it was not clear to the board how the threat characterization work
contributed to the overall goals of the project "

SECUREtk

Domain expertise

O "given that the exemplar is the power grid, the EAB did not see
sufficient evidence that the team has the required domain
expertise to create realistic scenarios that will answer meaningful
questions "

2



Predictive Cyber Emulation - Outline

• Task overviews and accomplishments (Tom)

O E.1: Emulytics platform and modeling
• Demo overview

O E.2: Modeling uncertain threats

O E.3: Model confidence/V&V

• FY20 plans

• Mathematical modeling and validation for network
scanning vs. intrusion detection (Eric)

3



Emulytics task organization

I

E: Emulytics
task

AV

.1: Platforms E.2: Threats

E.1.1:
Exemplar

 I

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation



E: Emulytics
task

E.1: Platforms

E.1.1:
Exemplar

E.2: Threats

E.1.2:
Efficiency

E.3: V&V

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation

E.1 : Emulytics platform and modeling
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Research Task E.1: Emulytics platform
Task overview
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Question: Are there engineering hurdles associated with automated
design of experiments and computational efficiency at scale?

• E.1.1: Develop exemplar questions and models
• TAMU collaboration will provide tools for topology generation

• E.1.2: Cyber-experimental efficiency and usability
I• nterfaces to allow external control (e.g. Dakota) over parameters and execution

• Mathematical modeling

o Experiment platform - (experimental variability, efficiency)

o SECUREtk (SCORCH) 6



E.1 : Emulytics platform
Accomplishments since March

• Defined experimental scenarios
o Exemplar
o Optimization and UQ scenarios

• Created and validated
mathematical model of
network scanning/IDS

• Publications
o UTSA invited talk
o CSET
o INFORMS

CA

• External engagements
o UTSA
o USC/ISI
o GA Tech
o ISO/NE

o TAMU

DDEE 1

Minna,

Control Conte r

OPC Paw

iloonnemp wsteniallon
tesopluentodl

Demo
topology

Real world
exp. results

Question •

ST

Validation/
calibration

Experiment
specification
and design

SECUREtk
architecture

i
substation

lc)

substation substation arrbct.itinn

FIELD

sz)

substation

Vulnerable

Model config/
parameters

Experiments

Threat
representation

Model exp.
results

nulD,Iation

Predictable
results with
confidence
intervals

Analysis/risk  ►
assessment

= Rac, at, a,' 6v )
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E.1.1: Exemplar - what is the expected loss of load
that results from user receiving a malicious email?

ME Initial infection
and pivot

Scanning Action on
objective

Action

Questions

Team questions

Uncertainties

Emulytics/multi-
fidelity

User opens malicious
email

Malware scans for
RTUs

How quickly can the How quickly can IDS
threat successfully detect the scan?
pivot to the control What fraction of
center network? RTUs is detected?

GPLADD: What is
the pivot probability
/ timing to control
center network?

Scanning: What are
the scanning
time/detection
tradeoffs?

Location of initial Identified RTUs
infection

Malicious emails Scanners

Malware uploads
map and maintains
channel for control

How quickly can IDS
detect persistent load?
comms?

Crash override

Optimization: What
is the optimal sensor
placement to
detect C2?

What is the loss of

Optimization: What
is the optimal
selection of RTUs?

Background traffic Timing of attack
mix

C2 channels

Alice the Architect, Grid resilience planning
"How do we take into account cyber vulnerabilities in grid operations?"
"How do we take into account consequences in cyber system design?"

GPLADD: Graph-based Probabilistic Learning Attacker and Dynamic Defender
IDS: Intrusion detection system
RTU: Remote terminal unit

Crash

Load loss is only
one possible metric

8



E.1 .1 : Our approach uses theory and
experiment to answer the demo question

Initial
infection

Pivot to
engineering
workstation

Command
and control

•
ID

vulnerable
RTUs

Command
and control

Run
CRASH

Game theory/Markov
analysis to assess probability
of success and timing

Not assessed at this time

Mathematical and
Emulytics modeling to
assess number of
discovered RTUs and loss of
load

Achieve
loss of
load

Zrol
DMZ subnet Me 

mr#

VPN Seralf

2'##
24

/AL

Control bbbbbb

Aseve------- =7:0

contrOl SelVef

Generation subnet Load whack

eia0 "CEWO eia-0 ema0 e■20

!CCP to other

 substations — -OP
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E.1 .2: Cyber experimentation
efficiency/usability

• Mathematical modeling of network
scanning and intrusion detection
o Topic for today's deep dive

• SCORCH (SCenario ORCHestration)
o Described in today's deep dive

• Experiment variability
o Variability due to virtual network interface

• Inconsistent delays seen in el000 interface
• Mitigated by switching to virtio
• Described in Gianluca's talk

o Experimental randomness
• Statistically significant differences between serial
and parallel runs

• Isolated to induced experimental randomness
(e.g. packet loss)

• Described in Laura's talk

• SecureTK
o Described in Ali's talk this afternoon

Additional
designs
needed?

Identify the
experimental question
and system of interest

Identify input
parameters for the

study

Characterize the input
parameters

(distributions or levels)

Identify parameter
regions of interest

Generate the
experimental design

(structured or sampled)

Perform the runs for
the experimental

design

Postprocess the results
for each run

1
Analyze the results
across all the runs



• E.1.1: Exemplar demo
o Propagate Emulytics modeling into the enterprise network

o Scale up (-100 field devices, control center network, enterprise network)

o Leverage topologies from TAMU/Kate Davis

o v&v experiments to support exemplar demo

• E.1.2: Emulytics platform

o SECUREtk architecture definition

o Mathematical modeling (e.g. command and control channel)

o Topology import from Texas A&M models/tools

o Background traffic

• Publications
o FY20 - Network scanning/intrusion detection
o FY20 - Experimental workflow, SECUREtk (or components), case study

11



E: Emulytics
task

E.1: Platforms

E.1.1:
Exemplar

E.2: Threats

E.1.2:
Efficiency

E.3: V&V

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation

E.2: Modeling uncertain threats

1 2



Research task E.2: Modeling uncertain threats
Task overview

Recon

• Network
scanner

• Tool,
intensity,
targeted
nodes

• OPC server

Weapon-
ization

Delivery

• Internal file
share

• VNC

• SSH

Exploitation

• Privilege
escalation via
CVE

Installation

• CrashOverride
files

• Other
malware files

Command
and control

• Internal
timers

• Timer
values

• Internal C2
channel

• Method,
bandwidth,
endpoints

• External C2
channel

• Method,
bandwidth,
endpoints

Actions on
objectives

• Cycle relays

• Frequency,
state

Adapted from: Hutchins, Eric, Michael Cloppert, and Rohan Amin. "Intelligence-Driven Computer Network Defense Informed by Analysis of

Adversary Campaigns and Intrusion Kill Chains." The Proceedings of the 6th international Conference on information Warfare and Security. 2011.

Question: What are the research hurdles associated with modeling
sophisticated (and often unknown) threats with uncertainty?
• Specific threats evolve, so adopt frameworks that can be updated as threats
change
• E.g. Lockheed Martin Cyber Kill Chain

• Game theoretic framework - Graph-based Probabilistic Learning Attacker and Dynamic
Defender (GPLADD)

• Extensible threat modeling tools for emulation-based cyber experimentation

• Use GPLADD within CKC framework to inform threat/defense distributions and
narrow parameter space for emulation-based experiments (initially developed for
PRESTIGE hardware trust LDRD) 1 3



E.2: Modeling uncertain threats
Accomplishments since March

• Developed Markov threat model for enterprise portion of demo
scenario

• Publications (primarily under PRESTIGE LDRD, leveraged by SECURE)
• Alexander V. Outkin, et.al. GPLADD: Quantifying Trust in Government and Commercial

Systems: A Game-Theoretic Approach. ACM Trans. Priv. Secur. 22, 3, Article 18 (June 2019)

• Yu-Cheng Chen, Dustin Campbell, Vincent Mooney, Santiago Grijalva, Brandon K. Eames,
Alexander V. Outkin, Eric D. Vugrin. 2019. "Power Grid Bad Data Injection Attack Modeling
in PRESTIGE". Proceedings of 2019 Government Micrcircuit Applications & Critical
Technology Conference (GOMACTech)

• Cynthia Phillips, Alexander Outkin. 2018 "Probabilistic-Learning Attacker, Dynamic Defender:
A Cybersecurity Game of Deterrence and Resource Allocation". Workshop on Competitive
Economics of Cybersecurity. Albuquerque, NM. November 16, 2018.

• External engagements

o GA Tech

• Reviewed Dr. Tamer Baar (UIUC) publications
o Attacker/defender modeling in IDS

o Advances in sensor data aggregation

o Would complement time-based Attacker/Defender modeling, e.g. to
support attack progression inference

CA

1 4



E.2: Why pursue game-theoretic threat
modeling?

Initial
infection

Pivot to
engineering
workstation

Command
and control

ID
vulnerable

RTUs

Command
and control

• Game theoretic modeling
(GPLADD)
o End-to-end threat framework
o Leverages results from in-scope

activities (emulation) and out-of-
scope data from literature (human
factors)

o Many attacker-defender moves (e.g
moving target defense)

o Attack/defense evolution over time
o "First look" at sensitivities that require

high fidelity investigation

• Optimization
o Exact solutions tor well-formulated
and parameterized problems

o Identify worst-case threat

•

Run
CRASH

Achieve
loss of
load

TC

Captain Howard, DoD, high-consequence systems
"Can we credibility assess system performance under various threat

scenarios?"

"Morph", i.e., move target:
control + remove attacker

learning benefit
"Take":
control

4
Attack
initiated

Time-to
no pr
know

control:
vious
edge

Control
gained

Time-to-
with pi
know

control:
evious
edge

Time-to
no pr
know

control:
vious
edge

15



E.2: Markov model is a framework for reasoning ,t,y
about end-to-end threat chain f4rW

Initial
infection

Pivot to
engineering
workstation

Command
and control

ID
vulnerable

RTUs

Command
and control

. Start
2. Deliver email
3. Follow link
4. Execute
5. Obtain IP of engr wkstn
6. Command/control
7. Pivot to engr wkstn
8. Scan
9. Ready for attack 

Key:
Informed by literature

Informed by expert udgment

Run
CRASH

Achieve
loss of
load 

0.28

0.75

0.1CL3

0.90 ✓

0.99

4.50.050 0/2  Exec

.25

0.13
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E.2: Preliminary Defender Options Analysis

Attack Stage vs.Time
Attack Stage

8

6

4

2

8

•  Time (hr)
100 200 300 400 500

Long run Ready residence time

1.0

0.8

0.6

0.4

0.2

100 200 300 400 500

Long run Ready residence time vs. Ready detection probability

Adison the Engineer, IT decision maker
"Will deploying this cybersecurity solution have meaningful impact?"

0.02 0.04 0.06 0.08 0.10
Ready detection probability

17



E.2 Implications to Defender Optimization

• If the cost the defender has to pay per incremental detection
improvement on all nodes is the same, then:
o The defender would get the best return on additional investments in
detection improvements on RTUs ("Ready" node 9)

o Detection improvement on "Ready" node 9 has the least marginal cost

o The current sensor placement or analytics is locally suboptimal, unless it
is a corner solution

o Next: solve the problem with arbitrary cost functions

Long run Ready residence time

0.66

0.64

0.62

0.60

0.58

0.56

Olivia G. Arcane, Government systems analyst
"Which part(s) of our system is most fragile?"

Long run Ready residence time vs.Detection probability increase

0.02 0.04 0.06 0.08 0.10
Detect prob. incr.

Long run Ready residence time vs. detection prob. incr.
Long run Ready residence time

0.5

0.4

0.3

0.2

0.1

0.02 0.04 0.06 0.08 0.10
Detection prob. incr.

1 8



E.2: Comp. of 15 sec vs. 60 sec RTU scans

Scanning Long-term attack Expected load loss, Attack expected load Expected load loss, Attack expected load
strategy (sec) Ready (5) scanning stage (%) loss (%) scanning stage (MW) loss (MW)

15 0.82 18.41 15.10 84.686 69.44252

60 0.52 32.81 17.18 150.926 9.0480962

[io~•aaiTi

Attack Stage vs.Time step
Attack Stage

15 sec. => 75 sec.

100 200 300 400 500
Time step

Captain Howard, DoD, high-consequence systems

"Can we credibility assess system performance under various threat

scenarios?"

Attack Stage vs.Ti me step
Attack Stage

100 200 300 400

1 timestep = 1 hour

Time step



• E.2: Modeling uncertain threats

o Represent a set of attacks
o Handle uncertainty in threat parameters
o Add threat models to Emulytics experiment platforms

• Publications
o FY20 - Markov/GPLADD modeling for power grid threats

20



E: Emulytics
task

E.1: Platforms

E.1.1:
Exemplar

E.2: Threats

E.1.2:
Efficiency

E.3: V&V

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation

E.3: Model confidence/V&V

21



Research task E.3: Model confidence
Task overview

Attacker

Sw

Victim

tch

Atta ck Rate

ServerLinkCapacity

ResponseRate

DNS server

ServerCores

ServerRAM

ServerLogging

ft

1111111111

Figure 1: Generic industrial Control System Network Architecture - DCS

From: Hieb, J., J. H Graham, and B. Luyster, A Prototype Security
Hardened Field Device for industrial Control Systems. 2019.

Question: How do we confidently make a v&v case at scale?

• E.3.1: Dimensionality reduction - understand which uncertainties
most affect model V&V
o Kasimir Gabert's research

o Physical experimentation - collaboration with Kate Davis at Texas A&M
• RESLab experiments on larger scale ICS systems

• Funded through LDRD Campus Executive program (Chrisma Jackson, TAMU C.E.)

• E.3.2: Extrapolation - understand how V&V experiments
extrapolate to V&V statements about larger system

22



E.3: Model confidence
Accomplishments since March

• Worked with Texas A&M to understand their capabilities and
identify possible V&V experiments
o DoS on field devices
o Protection mechanisms

• Identify sensitive regions using graph dimensionality reduction
o Kasimir Gabert dissertation at GA Tech

• What do small V&V experiments say about validity of larger
systems?

o UQ team

• Validating mathematical models

• Publications

• External engagements
o Texas A&M DE ,

23



E.3: We are developing a Verification and
Validation framework for Emulytics.

• Overall Question: "Is our Emulytics model acceptable for a
particular application?"

• Verification: Is the Emulytics experiment set up so that all VMs
operate as if they are running on their own?

o Is each VM getting all the resources it is requesting? How does
host configuration and capacity affect VM behavior?

o What sanity checks are needed to verify that the VM
outcomes are not (or minimally) affected by the run
environment?

• Validation: Given verification, does the VM produce the same
results as a standalone physical node would?

o What is the impact of behavioral differences in buffer
management, network drivers, etc. between virtual
environment and physical systems?

o For which quantities of interests can we make meaningful
comparisons using which validation metrics?

24



E.3: V&V process

Dimensionality reduction
Generation subnet

Extrapolation

Captain Howard, DoD, high-consequence systems
GI

"Can we credibility assess system performance under various threat
scenarios?"

GI 

ri

https://electricgrids.engr.tamu.edu/
electric-grid-test-cases/activsg2000/

• E.3.1: Kasimir's research - dimensionality reduction
• Identify repeating subgraphs
• Summarize large graph with smaller graph

• E.3.1: TAMU/SNL - physical \/&\/ experimentation
• Protection schemes
• Response to DoS attack

• E.3.2: UQ team research - extrapolation
o Small V&V —> Large system

[ Physical V&V

https://upload.wikimedia.org/wikipedia/
commons/d/dO/Remote_Terminal_Unit_
Modular.jpg

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 25



E.3: Ongoing and FY20 Planned V&V Activities:

• Verification
o Examples:

• Ensure that equivalent network paths have similar routing statistics
• Comparison of statistics from serial and parallel runs

o Goals:
• Develop a set of necessary conditions for verified Emulytics
• Incorporate tools for assessing these conditions in SECUREtk
• Apply these tools to SECURE exemplars

• Validation:
o Examples:

• Compare analytic scanning model to Minimega
• Compare Bilevel optimization to Powerworld
• Compare Emulytics models to physical testbeds (TAMU)

o Goals:
• Set up physical testbeds
• Develop appropriate metrics: e.g. Qol distributions or sensitivities
• Develop .approach for validating Jamer scale systems built from smaller

scale validated components: Koisimirs dissertation work

• Publications
o FY21 - v8N (dimension reduction and extrapolation)

26



E: Emulytics
task

E.1: Platforms

E.1.1:
Exemplar

E.2: Threats

E.1.2:
Efficiency

E.3: V&V

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation

FY20 plans
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FY20 plan

• E.1.1: Exemplar demo
o Propagate Emulytics modeling

into the enterprise network

o Scale up (-100 field devices,
control center network,
enterprise network)

o Leverage topologies from
TAMU/Kate Davis

o \/&\/ experiments to support
exemplar demo

• E.1.2: Emulytics platform

o SECUREtk architecture definition

o Mathematical modeling (e.g.
command and control
channel)

o Topology import from Texas
A&M models/tools

o Background traffic

• E.2: Modeling uncertain threats
o Represent a set of attacks

o Handle uncertainty in threat
parameters

o Add threat models to Emulytics
experiment platforms

• E.3: Model confidence
o V&V experiments with Texas A&M

o Graph theoretical network
dimensionality reduction for V&V

• Publications
o FY20 - Network scanning/intrusion

detection
o FY20 - Experimental workflow,
SECUREtk (or components), case
study

o FY20 - Markov/GPLADD modeling
for power grid threats

o FY21 - V&V (dimension reduction
and extrapolation)

28



Risks RI , 1
I

Exemplar demo

Emulytics platform

Threat uncertainty

Model confidence

Unrealistic topologies

Experimental variation

Are GPLADD/Markov
models valid?

Invalid extrapolation

TAMU collaboration

Understand variability
and possible
mitigations

Start integrating threat
tools into models

Understand conditions
for valid extrapolation



E: Emulytics
task

E.1: Platforms

E.1.1:
Exemplar

E.2: Threats

E.1.2:
Efficiency

E.3: V&V

E.3.1:
Dimensionality

reduction

E.3.2:
Extrapolation

Scanning - mathematical modeling,
emulation, and validation

Eric Vugrin
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• Scenario: investigated use of scanning & detection tools during the
reconnaissance phase of an attack on the power grid

• Method:
o Developed Emulytics model of attack
o Developed mathematical, "glass box" model of attack

• Results:
o Validated glass box model against Emulytics experiments

o Glass box model and enhancements to Emulytics infrastructure have
resulted in computational and analytical efficiencies for studying
relevant uncertainties

2



Outline

• Introduce scenario

• Specify analysis and research questions

• Describe methodology

• Provide results

• Discuss insights and future directions

This presentation aims to show some progress towards Emulytics
research goals in the context of a specific scenario.

3



Scenario - Cyber
Notional SCADA/ICS Network

Historian

Control Centeii

OPC Sarver

Engineering Workstation
(Compromised)

• Attacker scans
network to find
potential
vulnerabilities

• Causes disruptions
via RTU payloads

8 substations, 24 remote terminal units (RTUs)

substatlon

Vulnerable

substatlon

substation substation

Vulnerable

substation substation

Field

tZ QJ

intrusion D

111
Instrusion Det

Defend(
monitor!
network
to detec

I
. attacks

substation substation

Vulnerable RTUs not firewalled for maintenance

tectloil

action

r

traffic



Scenario - Physical
2000 Bus Synthetic Model of Texas Power Grid

DALL'A 

RTU 1
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> >- > ) > > ) >

> > > > > > > > > >
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<
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DALLAS 3

> 
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- )14->->- > >

> > >

-

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 5



Assumptions

Attacker

• Goal:
o Find vulnerable RTUs
quickly & stealthily

o Cause loss of load

• Tool: NMap Network
Mapper

ViEn

Defender

• Goal:
o Detect attack before
attacker can exploit
vulnerabilities

• Tool: Snort



Assumptions: Tools - NMap

• Half-open SYN scan (Bou-Harb et al. (2014))

OPEN CLOSED

• S yN port 22

5 1̀1 t\C1\

Ps

►
•

• SyN
'oft 22

s\(‘\iiiRs'

►
•

• Key parameters
o Host Group Size - The number of hosts to scan in parallel
o Delay - The delay time between sequential probes

• Assumption: Which hosts are up is known
o Accomplished via initial ping scan (ICMP echo requests) in the
emulation

FILTERED

• SYN port 22

TC

Ph-

61E60

Bou-Harb et al. (2014). "Cyber Scanning: A Comprehensive Survey," IEEE Communications Surveys & Tutorials, 16(3): 1496-1519.

nmap -PE -sS -n -p 22 --min-hostgroup 4 --max-hostgroup 4 --scan-delay lOs --min-rtt-timeout .5s --max-rtt-timeout .5s --max-retries 1 --randomize-hosts 10-10.0-0.1-1.1-24



Assumptions: Tools - SNORT

• sfportscan module (Roelker et al. 2004)

z
>-
cfp

1T

First Detection Window

• Detection

60 s

Second Detection Window

120 s

Time(s)

• If snort observes 5 or more TCP SYN/RSTs (during initial 3-way
handshake) within a 60 second window, it creates an alert (i.e.
detection)
o An NMap probe to a closed port generates this kind of reset

o Medium and high sensitivity are similar but with different thresholds and
they also count number of new TCP connections

• Assumption: normal traffic does not result in TCP SYN/RSTs

8



Assumptions: Tools- Effects of Key Parameters

NMap (Attacker)

Host
Group
Size

Delay

At Speed
scan

At Prob of
Detection

Snort (Defender)

Detection
Sensitivity

1110

Prob of
Detection

At False Alarms

9



Adison the
Engineer

• Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU identification?

ally the
o Probability that the attacker is detected over time? A 

W
ttacker

o At which point during the scan should the attacker attack RTUs
to maximize loss of load?

• Validation: can we validate results from emulation
experiments through comparison with glass box model
estimates? And vice versa?

Leon the PM

Dr. Turing the PI

• Practical consideration: how can we implement
experiments in organized, efficient manner to capture
potential uncertainties?



Experimental Workflow

• Fixed ICS network topology
g.

Parameter I Cyber

configuration Experimentation

--
VS

Attacker
Strategy
if t>t_go,

then ...

4
„000

44"•......................'"

• Fixed RTU-grid interconnection

1=* 
Cyber  

VEffects 1 

Results

• Parameters set

• (Thousands) of Cyber experiments are run

• Cyber results saved

• Cyber results are translated to inputs to optimal power flow tools

• OPF tools generate physical effects results

topology

• Decouples cyber and grid
experimentation

• Cannot capture feedback
effects

-.--.......____.
Physical
Effects
Results
._.._ 

1 1



irUncertainty within the Analysis law 
oft

• Sources of uncertainty:
o Order of scanning RTUs
• Time out of scanning probes
o RTUs discovered

• Treatment within Experiments
o Emulation experiment repeated 1000 times
o Each experiment run for -200 seconds

• Outputs
o Vulnerable RTUs discovered vs time
o Probability attacker is detected vs time

• Loss of load estimation
o Attacker strategy specifies when to attack RTUs
o Post-process cyber effects to determine if RTU
attack starts before detection

o If so, determine which RTUs were identified and
use look up table to determine load loss

* Likely due to Braess's Paradox, i.e., Braess et al. "On a Paradox of Traffic Planning," Transp Science,
2005, 39(4): 446-450.

RTUs
Attacked

Load Loss
(relative to

 max=460MW

1

2

3

0.00

0.48

0.17

4 0.52

1,2 0.48

1,3 0.00*

1,4 0.52

2,3 0.48

2,4 1 .00

3,4 0.52

1,2,3 0.48

1,2,4 1.00

1,3,4 0.52

2,3,4 1.00

1,2,3,4 1 .00



Glass Box Model: Illustrative Description

T=0

rTo Scan -\
• • • • • •
• • • •
_c_o 

Scanned j

Step 1: set initial conditions

= Filtered
= Closed

• = Open
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Glass Box Model: Illustrative Description

T=0

( To Scan
• • • • • •

• • • •

• • 

Scanned

(- To Scan
• • • • •
• • •
• • 

•

Scanned j

r ' To Scan
• • • • •
• • • •
•

•

Scanned }

r To Scan
• • • • • •
• • •
• 
• •

'Scanned 

r
Step 2: select RTUs
to scan
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Glass Box Model: Illustrative Description

T=0

r To Scan
• • • • • • To Scan
• • • 0

0 • • • •
• 9

r To Scan 1
•****,
• • •
• * 
• •

Scanned

Scanned} \
Scanned.i

r To Scan
• • • • • •
• • •
• 
• •

can necLi

P(0,0,01 1 , I ,0)

o can
• • • •

• •

•

• •
Scanned 

To Scan •
• • • • •
• • •
• 
•
•

Scanned}

To Scan
• • • • •
• • •
• * 

•
Scanned }

can
• • • • •

• • •

• •
• •

Scanned/

Step 3: determine if
scan succeeds or
times out
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Glass Box Model: Illustrative Description

T=0

i To Scan
• •••• •
• •••
• •

Scanned_.)

To Scan
• • • • •
• • •
• •
• •

Scanned

i To Scan
• • • • •
• • • •---___________,
•
• •

Scanned

To Scan
• • • • • •
• • •
! 

• •

Scanned

/ To Scan 'N

• • •

0 •

• •
Scanned .,

To Scan
• • • • •
• • •
• • 
.

Scanned_i

o can

• • •

• •
•

•
Scanned

Step 4: determine if TCP
SYN/RSTs occurred
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Glass Box Model: Illustrative Description

T=0

To Scan
• •••• •
• •••
• •

Scanned j

To Scan
• • • • •
• • •

• • 
• •

Scanned  -I

To Scan
• • • • •
• • • •
•
• •

Scanned.}

\ To Scan
• • • • • •
• • •
•
• •

Scanned 

I reset

0 resets

c To Scan

• • •

• •

• •
\. Scanned j

To Scan
• • • • •
• • •
• • 
.
.

Scanned

To Scan

• • •
• * 
.
.

Scanned

Scanned

T=O+delay
To Scan -N
• • • • •
• • •
• . 
•
.

Scanned j

To Scan

Scanned

Step 5: if time outs
occurred, repeat
steps 2-4 for timed
out RTUs
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Glass Box Model: Illustrative Description

T=0

rTo Scan
• • • • • •
• • • •

• • 

Scanned j

o can
• • • • •
• • •
• •

• •

Scanned

To Scan
• • • • •
• • • •
•

Scanned

\

To Scan
• • • • • •
• • •

• •

• •

Scanned 

/ To Scan 1

• • •
• • 

• •
\,Scanned j

To Scan

• • •

T=O+delay
To Scan
• • • • •
• • •
• • 
•
.

Scanned 

To Scan '1
• • • • •
• • •
• •
• •

Scanned}

1" To Scan
• • • • •
• • •

To Scan
• • • • •
• • •

• •

• •
Scanned

o Scan
• • • • •

• • •

•
• • • • •

MI • • Scanned
Ocanned 

To Scan "N
• • • • •
• • •

• • A •
Scanned ,2

T=O+2*delay

Model keeps track of
• Futures (branches in tree)
• Occurrences of

vulnerability ID and resets
for each future

• Associated probabilities
•
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Glass Box Model: Implementation

Inputs

Parameter
Configuration

Analytical Solution
(Not estimated via
Monte Carlo Sims)

r=o

, To Scon—̀

St—mned 

rTo Scan 

•

Scanned j

1
Probability Distributions at

Discrete Times

•
•
•

07

66

0

OJ

02

•
•
•

T= 0+delay

T= 0+4*delay

T= 0+N*delay
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Example Results

• System settings
o 4 open (aka vulnerable) RTUs

o 8 closed RTUs

o 12 filtered RTUs

o Probability of probe time out = 0.1

• NMap settings
o Host group: 4
o Scan delay: lOs

o Max # of retries: 1

• Snort setting:
o Low sensitivity

• Strategy:
o a priori, attacker decides to wait for T seconds, and then attacks RTUs
that have been identified by t=T.

o If attacker detected before T seconds, attack fails and no load loss.
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Questions

Adison the
Engineer

• Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU identification?

o Probability that the attacker is detected over time?
Wally the
Attacker

o At which point during the scan should the attacker attack RTUs
to maximize loss of load?

• Validation: can we validate results from emulation
experiments through comparison with glass box model
estimates? And vice versa?

i ti p

MIS
Dr. Turing the PI /

Leon the PM

• Practical consideration: how can we implement
experiments in organized, efficient manner to capture
potential uncertainties?
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Results: Vulnerability Identification

a • •

• • • •

• • •
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 Emulytics: 95% CI
* Glass Box Model Mean
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I

150 200
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Results: Detection of Attacker

••••••Nt

o44-
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Results: Load Loss

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model

50 100 150

Attack Start Time (s)
200
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Results: Load Loss III

Optimal strategy: wait until scan is
done, then attack RTUs

-

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model
1

50 100 150

Attack Start Time (s)
200
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Results: Load Loss

-

mom

—

; ;

If we change NMap settings,
is "finish the scan" strategy still optimal.

it .311 -NE •

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model
1

0 50 100 150

Attack Start Time (s)
200
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Example Results

• System setting
o Probability of Qrobe time out = 0.1

r-- -)
• NMap settings

o Host group: 6

0 Scan delay: 5s  _Jh Faster scan, higher
chance of detection

• Snort setting:
o Low sensitivity

• Strategy:
o a priori, attacker decides to wait for T seconds, and then attacks RTUs
that have been identified by t=T.
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Results: Vulnerability Identification

Emulytics: Mean
 Emulytics: 95% CI
* Glass Box Model Mean

. .

50 100

Time (s)

1

150 200
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Results: Detection of Attacker

•••••%.4_1

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model
. .

50 100

Time (s)

[

150 200
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Results: Load Loss

"Finish the scan" is worst strategy!
Attacker gets detected before

attacking RTUs.

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model

0 50 100 150

Attack Start Time (s)
200
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Results: Load Loss

sa

o

x 0.8
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13 0.2
O

its 
a) 0
2 0

Optimal strategy: attack after —15s

Emulytics: Mean

— Emulytics: 95% CI

Glass Box Model

50 100 150

Attack Start Time (s)
200
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Example Results

• System setting
, Probability of probe time out = 0.1

• NMap settings
o Host group: 4
. Scan delay: 1 Os

• Snort setting:
. Low sensitivity

c—
• Strategy: attacker uses feedback from scans to determine when to
attack

o Attack RTUs after finding N vulnerabilities
 J
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Results: Load Loss vs. Strategy 1
.
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Results: Load Loss vs. Strategy
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Results: Load Loss vs. Strategy
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Results: Load Loss vs. Strategy
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Questions

Adison the
Engineer

• Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU identification?

Wally the
o Probability that the attacker is detected over time? Attacker

o At which point during the scan should the attacker attack RTUs
to maximize loss of load?

• Validation: can we validate results from emulation
experiments through comparison with glass box model
estimates? And vice versa?

Dr. Turing the PI

• Practical consideration: how can we implement
experiments in organized, efficient manner to capture
potential uncertainties?

on the PM J
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Experimental Set Up: SCORCH

• SCORCH: SCenario ORCHestration tool for minimega
root@en189:4 scorch -h
usage: scorch [-h] [--run_name RUN_NAME] [--namespace NAMESPACE] configuration

Securetk.emulytics scenario orchestration tool

positional arguments:
configuration Name of scenario configuration to run

optional arguments:
-h, --help show this help message and exit
--run_name RUN_NAME Name of scenario run
--namespace NAMESPACE

Name of nanes.ace to run a.ainst

ST

• Implements a simple "scenarios" scripting language

• Facilitates experimental data I/0 to and from the emulated
network environment
o Inspired by Distributed Experiment Workflows (DEW)1

• Enables rapid development of repeatable scenarios

• Modular scenario "components" promote reuse

,Jelena Mirkovic, Genevieve Bartlett, and Jim Blythe. 2018. DEW: distributed experiment workflows. In Proceedings of the l lth USENIX
Conference on Cyber Security Experimentation and Test (CSET'18). USENIX Association, Berkeley, CA, USA, 4-4.
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Experimental Set Up: SCORCH

• Projects that use/considering using SCORCH:
o Advanced C2 threat modeling

o Behavioral analytics for ICS

o Resilience analysis for energy systems

• Project needs:
o Running large numbers of repeatable scenarios in emulated
environments

o Data collection from emulation experiments
• Validation

• Training data

• Exploratory analysis
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Experimental Set Up: SCORCH

Scenario
Definition

Head node

SCORCH

lt
14.41"os NE 00 lasd

44441104 womom.au000"...°
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o

C
o
m
m
a
n
d
 a
n
d
 C
on
tr
ol
 

> scorch —run-name RUN-1 SCAN_SCENARIO

Compute cluster

Emulation Experiment

 4
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Experimental Set Up: SCORCH

Script

. .

Replace script if needed

call scorch N times. N is large

> scorch —run-name RUN-n SCAN SCENARIO

Scenario
Definition

Head node

-- A SCORCH
I 1 

1.,.. .../
l'aIN' RUN-1

RUN-2
144411%ftwommorio'd

\̀ ..
,,,„ .00., RUN-1000

DAKOTA)

Post Process
 .
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Insights and Progress

• Improved Emulytics infrastructure for repeating large # of
experiments
o Efficient data extraction and analysis

Perform Emulytics Runs

Process Data

Initially
manual/serial

Currently
arallel

-10 days

days

days

3 hrs

hrs - mins

far fewer

o Improved consistency for repetition of Emulytics experiment
o Modular design ought to work well with other studies

• Threat model considered both technology and strategic elements
o COTS technologies: NMap, Snort
o Strategy tradeoffs: benefits/drawbacks for attack strategies

• Study catalyzed collaboration with UQ team
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Insights and Progress

• Benefits from co-development of Emulytics and glass box models
o Emulytics experiments helped identify undocumented NMap behaviors
to include in the glass box model

o Glass box model was used to explore space of parameters before
performing Emulytics runs

o Cross-validation and verification

• Glass box model provides efficiencies under some conditions
4 o  • e , c ose • , 12 filtere •  omi, am zjacm.

Scanning (normalized)

detection: 1 delay/threshold
settin

detection: additional
dela /threshold

-4s <1 S <1 s

-12 hrs -4.5 hrs -0.5 hrs

- 6 hrs -0.8 hrs -0.1 hrs

THE DELL LATITUDE 14
E1450 ULTRABOOK.

• Glass box model differs from scanning-/security-related efforts e.g.
o Toutonji et al. 2012; Chen & Ji 2005 (many others): using epidemic
propagation models to model spread of internet worms and malware

o Turner & Joseph 2017; Huang et al. 2012: analyzing/improving Snort
o Alpcan & Basar 2005: game theory/optimal control analysis of IDS
o Wang et al. 2012 : attack-defense stochastic game net 43



Unexpected Results and Next Steps

• Expected "simple" example showed
surprising complexity

• Challenges comparing "discrete time"
model with "continuous time results"

• Next step: draft manuscript for publication

• Possible next steps
o Scaling up

o Add "background traffic"

o Test/validate on non-emulated network

o Explore strategy evaluations for this problem
• Have some ideas using partially observable Markov

decision process models

• Good opportunity for further collaboration with
optimization team

o Consider modeling and analysis for other
portions of the kill-chain, e.g. command and
control

Scaling Up: 10x Expt.

40
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Total RTUs =240
Open = 40
Closed = 80
Filtered =120



Feedback

• Feedback on all aspects of the effort is appreciated

• Feedback on following topics would be especially appreciated
o Suggested publication forums

o Ideas on next steps

o Further developments to SCORCH
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Questions?
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SECURE: Science and Engineering of Cybersecurity by i%
Uncertainty quantification and Rigorous ExperimentatiolIF

The Goal: Bring rigor into cyber experimentation

UQ Team: Develop and deliver approaches which
allow uncertainty quantification to be performed on
Emulytics efficiently.

Forward UQ: propagate uncertainties on inputs to uncertainty on predictions

rUncertainty in input variables u

probability densities

  r
Emulytics

Model
f(u)

Statistics on

output s(f(u))



What does success look like?

STEPS Year 1

Demonstrate that we can sample Emulytics models reproducibly acr7s
platforms

o Establish interface to Emulytics models for running ensembles

o Sampling strategies

o Characterization of input distributions

2. Validate a specific Emulytics problem (e.g. a particular network and
threat)

3. Develop methods that can perform the forward UQ problem
more efficiently

o Sampling of discrete variables, experimental design

o Dimension reduction

o Multi-fidelity approaches

4. Demonstrate a full UQ workflow that is generalized over multiple
threats and networks at scale.
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• Analysis of the Exemplar
o Sensitivity with respect to host group size/delay

o Uncertainty with respect to the attacker strategy

o Reproducibility of emulation runs across platforms and in parallel runs

• Research Thrusts
o Multifidelity Uncertainty Quantification

o Discrete uncertainties

o Dimension Reduction

• FY2020 Plans

• Deep dive into Multifidelity

4



Uncertainty Analysis of Exemplar

Alice, Designer Attacker

1

Captain Howard, Defender
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Analysis of Exemplar Uncertainties

Initial infection

Malicious
Email

Pivot to engineering
workstation

Deployed
on one
machine

) 

Not dep o

Attack
pivots

Malware
Not

Deployed

ID vulnerable RTUs

Network
Scanning: two
RTU found

Network
Scanning:
one RTU
found

Network
Zero RTUs fou

•nning:

Run CRASH

III

Two RTU
have
CRASH

Achieve loss of
load

1TU1 +2

RTU1 +4

-----÷ RTU3+4

RTU1 4 Load
Loss

RTU2 4 Load
Loss

'----> RTU34Load
Loss

Which IP is
attacked

I
No RTUs
have
CRASH

RTU44 Load
Loss

Calculate Ex•ected Value of Loss of Load •iven possibilit of initial infection
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Treatment of uncertainty in scanning

• Each set of experiments in minimega involved 1000 samples at a
particular setting (number of probes, delay between probes sent).

• Each of the 1000 samples was run for 200 seconds. At each
second, the number of successful probes on open, closed, and
filtered ports was recorded.

• These results were then post-processed using a number of attack
strategies
o One class of strategies involved the attacker just waiting to identify M
open ports (M = 1, 2, 3, or 4). As soon as M ports are achieved, CRASH is
deployed

o The other class of strategies involved the attacker waiting for some time
(e.g. 10, 20, 30 sec.) to deploy CRASH.

o Each strategy then had a particular load loss, depending on the
attacker/defender time race and which RTUs were hit.

Why 1000 samples? There is a large coefficient of variation (std. dev./mean)
of the number of open ports found per attack strategy. For example, the T15
strategy had a CoV of 1.08, the T75 had a CoV of 0.5.



Treatment of uncertainty in scanning

Host Group
Size

Delay 4 Minimega
Nmap/Snort 1000 runs

Various
Attack
Strat
SOme
on time,

hers on
number of
open ports
discovered

Prob of
Detection

Loss of
Load

Now we can address questions such as what are the statistical
differences between loss of load at 80 seconds across attack strategies?
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Results: Comparing two versions of attacks
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6 probes, Delay 5 sec

Host Group:6 Scan Delay:5

,_ 

 /
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 / 
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• Detection occurs much earlier when attacker runs 6 probes every
5 seconds.

• Attacker has significant probability of NOT being detected in the
4 probe, 10 second delay case.

— 1 open

— 2 open

3 open

— 4 open

— 5 open



Results: Comparing two versions of attacks

4 probes, Delay 10 sec
Wait for a specified time

Host Group:4 Scan Delay:10

- 15s

 30s

- 45s

- 60s

 75s

- NoDetection

Next page will compare these strategies at 80 seconds.
T15 strategy: mean load loss of 18.4%
T60 strategy: mean load loss of 32.8%



Results: Zoom in on 4 probes, delay 10

Comparing a T15 strategy vs. a T60 strategy at 80 seconds

-

500-

400-

zu 300

200 -

100 - 1 11

T15 strategy

T60 strategy

40 60

% load loss

T15 strategy: mean
load loss of 18.4%

T60 strategy: mean
load loss of 32.8%

• T-test comparison for equality of mean load loss at 80 seconds using these
two strategies shows that they are statistically significantly different.

• lf you only look at the mean, you don't see the differences in the distribution



Visualization of probabilistic results over time
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Reproducibility and Randomness



Comparison of scanning results across platforms
and parallel vs. serial runs of minimega

Sceptre Serial vs Carnac Serial 

T-test Results @ each time step
Sceptre 1000 Serial Runs
vs Carnac 1000 Serial Runs

1.0 - 1.0

0.8 -

L_J
0.8 -

0.4 - 0.4 -

0.2 -

0.0

— open

— closed

— inconclusive

t score = 0.2093

0 1 150 75 1025 0
Time Step

125 150 175

0.2 -

0.0

Carnac Serial vs Carnac Parallel 

T-test Results @ each time step
Carnac 20 Parallel Runs of 50
vs Carnac 1000 Serial Runs

— open

— closed

— inconclusive

t score = 0.0239

0 25 50 75 100
Time Step

125 150 175

We expected more similarities in the means (higher T
Score values) when comparing results across platforms

or with parallel/serial implementation.
This led us to investigate randomness.

1 PA I

1 4



What if we remove some of the randomness?

Baseline Comparisons: remove the random aspects of the Emulytics that we
control (probability of dropping a packet and random port scanning order)

No Probability of 
Dropping a Packet 

T-test Results @ each time step
Carnac 1000 Serial: no drop only

vs Carnac 20 Parallel Runs of 50: no drop only
1 0 -

0 8 -

a) 0.6 -
o
u

- 0.4 -

0.2 -

0 0

I r-/

open

— closed

— inconclusive

t score = 0.1456

1.0

Time Step

40 50

Fixed Port Order for
Scanning 

T-test Results @ each time step
Carnac 1000 Serial: fixed port sequence only

vs Carnac 20 Parallel Runs of 50: fixed port sequence only
1.0 -

0.8 -

E 0.6 -
0
u

0.2 -

0.0

— open

— closed

inconclusive

t score = nan

/

10 2'0 30

Time Step

40 50
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Deeper dive into randomness issues

We did verify that we get the SAME exact results across all 1000 realizations
for both serial and parallel when we have no probability of dropping a
packet and a fixed port order for scanning.

5

42 4

0
a 3
c
a)
o_
2 2
0
a)
-1:1 - 1
E

Open

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Time (sec)

parallel_norand_nodrop • • • • serial_norand_nodrop

These are consistent with our
understanding of the protocol
and the fastest the topology
can be scanned.
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Deeper dive into randomness issues

 /
/

Now look at effects one at a time:

Open

 /
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Time (sec)
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Without dropped packets, ports are found earlier.
Port order has a larger effect than dropped packets.

serial_nora nd_nodrop

serial_nodrop

PA

[  

Interaction between Emulytics team and UQ team resulted in
greater understanding of randomness in the emulations.
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Research Thrust: Discreteness in UQ

• Polynomial Chaos Expansions (PCEs)
o Stochastic expansions approximate the functional dependence of
the output response on uncertain model parameters by expansion in
a polynomial basis.

o The polynomials used are tailored to the characterization of the
uncertain variables.

o These approaches have become very popular in the computational
science community over the past two decades

o Majority of the research is based on continuous random variables

• PCEs based on discrete polynomials:
o Better suited to accurately represent discreteness in input
variables (compared to continuous basis PCEs)
• Expect better accuracy with fewer samples compared to continuous

basis PCEs

o Can represent full output distribution (compared to just summary
statistics with MC sampling)

,
CA

1 9



Research Thrust: Discreteness in UQ

• Pilot tests to assess feasibility and potential benefits
o Comparing discrete and continuous PCE representations of
canonical functions in terms of accuracy and number of required
samples

o Analyzing cost (number of samples) as a function of
• Number of uncertain variables
• Number of levels for each discrete variable
• Nonlinearity of the approximated function

o In collaboration with John Jakeman and Cosmin Safta through
the FASTMath SciDAC institute

• On next slide, the discrete PCE is calculated in terms of custom
polynomials with coefficients obtained through regression on Leja
samples

• On the next slide, the continuous Legendre-Uniform PCE is obtained
through regression on points randomly sampled in discrete input
space ‘CA
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Discrete PCE outperforms continuous, espej
when some dimensions have few masses.

PCE Convergence for # Masses: [8, 8, 6, 10]

0 250 500 750 1000 1250 1500 1750

# points

Input space of size x 6 x10=384

100

10-1

Ln
10-3

cc

o - 4

o - 5

PCE Convergence for # Masses: [8, 2, 4, 2]

— Discrete
Continuous

40 50 60 70

# points

• Approximation of Genz Gauss Peak Function

• 4D discrete variables with uniform probability masses
o Number of masses in each dimension randomly picked

o Locations randomly picked in each dimension

80 90 100

2 1



Research Thrust: Multifidelity Modeling

• Gianluca Geraci will present slides on this topic

• Minimega emulator is used as the high-fidelity model, NS-3 network
simulator as the low-fidelity model

• Showing progression of multifidelity methods with a series of case
studies of increasing complexity:

o Qol is the response (requests/second) for http traffic
o 1 client/1 server

o 1 source/1 destination but four routers in between. The routing is fixed.

o Same as above but the routing paths are given different costs to
demonstrate the effects of changing routes (e.g. changing topology)

o Bandwidth rates, delays, and number and size of packets are input
variables.
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Dimension Reduction

o Two approaches:
• Explicit aggregation of nodes (100 nodes
aggregated to one which has a similar
behavior as the 100 in terms of traffic, loads)

• Formal mathematical approaches
o We are starting to get large, rich data sets (e.g. the

closed/open/filtered states over time, or all the
power states over time).

- Determine a reduced or compressed representation
of the Emulytic model's inputs and/or outputs.

- Reduced space techniques involve a linear or
nonlinear mapping between the full space to a
reduced space of meta variables. Example:
Principal components analysis (XPCA), active
subspace

- Efficiency for UQ
I ►

1

XPCA: eXtending PCA for Combinations of Discrete and Continuous Data, Kincher-Winoto, Kolda, and Anderson-Bergman,
SAND2018-8213C. Also at: arXiv:1808.07510 23



FY20 Plan: Scalability and Tail Estimation

• Research Thrusts
o Multifidelity UQ:

• Can we scale from 6 nodes, 14 uncertainties to a hundred nodes, hundreds of
uncertainties?

• Can we include discrete choices (e.g. topology routing) within MF UQ at scale?
• Develop multifidelity approaches for tail estimation.

o Discrete polynomials:
• What is the limit for this a_p_p
compared with plain MC?

CA

What are advantages and disadvantages

o Dimension reduction: Take rich state information from the
scanning/detection/power systems state output and start with PCA.

o Continue to support exemplar uncertainty and sensitivity analysis studies

o Validation studies

o SECUREtk development
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Publication Plan Nit

Publication Milestone Date

International Conference on Uncertainty
Quantification in Computational Sciences and
Engineering

19Q3

12th USENIX Workshop on Cyber Security
Experimentation and Test (CSET)

19Q4

INFORMS 2019 Annual Meeting 20Q1

Multifidelity approaches for Emulytics models:
SIAM/ASA Journal on Uncertainty Quantification

20Q4

13th USENIX Workshop on Cyber Security
Experimentation and Test (CSET)

20Q4

SIAM Computational Science and Engineering 21 Q2

14th USENIX Workshop on Cyber Security
Experimentation and Test (CSET)

21Q4

Experimental Design/Dimension reduction for
Emulytics models: Journal of Network and Computer
Applications

21Q4
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IMW 

LDRD
Laboratory Ei Research and Development

Multifidelity UQfor network applications:

Lessons learned and perspectives
Gianiuca Geraci, Jonathan Brussel!, Laura Swiler, Bert Debusschere and Erin Acquesta

SECURE LDRD Grand Challenge
External Advisory Board

October 29th, 2019

t'Sk Nv,, Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions ofENERGY L_ Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's Nalional Nuclear Security
Administration under contract DE-NA0003525.



Multifidelity Uncertainty Quantification

(a recap from the previous EAB)



UNCERTAINTY QUANTIFICATION
FORWARD PROPAGATION — WHY SAMPLING METHODS?

(Forward) Uncertainty Quantification: propagate the uncertainty parameters through the
computer codes in order to quantify their effects on the Quantity of Interest (Qols)

UQ context for SECURE at a glance:

N. High-dimensionality, non-linearity and bifurcations/discontinuities

P. Large set of modeling choices available (network topology, operative conditions, etc.)

Natural candidate for UQ:

I. Sampling-based (MC-like) approaches because they are non-intrusive, robust and flexible...

► Drawback: Slow convergence C9(N-1/2) many realizations to build reliable statistics

Goal of Multifidelity UQ:

Reducing the computational cost of obtaining MC reliable statistics by combining several models

Pivotal idea:

11. Simplified (low-fidelity) models are inaccurate but computationally inexpensive
low-variance estimates

► High-fidelity models are costly, but accurate
low-bias estimates

,<> Sampling methods are complementary with respect to the (discrete) surrogates approaches
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MONTE CARLO
GENERALITIES

How does a sampling method work?
Let consider a random variable Q, we want to compute its expected value E [Q] (or high-order
moments):

1 N(gc =
N
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MONTE CARLO
INTRODUCING THE NOTION OF FIDELITY

Numerical problems cannot be resolved with infinite accuracy (discretization error), the MC
estimator for a specific fidelity Mth level

1 Ndef om (i)

N N

#Hit
Let's use MC to compute the value ir
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MONTE CARLO
OVERALL ESTIMATOR ERROR

Two sources of error in the Mean Square Error:

E [(0/7N E [Cli)21 = varN(Q) (E [QM — QD2

Pivotal idea:

IP: High-fidelity models are costly, but accurate
► low-bias estimates

N. Simplified (low-fidelity) models are inaccurate but cheap
► low-variance estimates

0.5

Single Fidelity

0.5

Hit •
Mrss •

Multi Fidelity
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Multifidelity Estimator: How does it work?



OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?

▪ HF model, i.e. the model for which you want to compute the statistics
► (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

4/27



OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?

HF model, i.e. the model for which you want to compute the statistics

10. (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?

1 We take a MC estimator for the HF model,

2 We add a weighted sum of unbiased terms, En, c, (4i - Ai) where jai is an approximation to the
expected value of the ith LF model
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What do we need?

HF model, i.e. the model for which you want to compute the statistics

10. (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?
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expected value of the ith LF model

3 We consider N, LF evaluations: N, = (r,N1 for each model

4/27



OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE
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HF model, i.e. the model for which you want to compute the statistics

10. (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?

1 We take a MC estimator for the HF model,

2 We add a weighted sum of unbiased terms, En, c, (4i - Ai) where jai is an approximation to the
expected value of the ith LF model

3 We consider N, LF evaluations: N, = ri,N1 for each model

4 We solve for the optimal weights ai (and the optimal number of LF evaluations N,)
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OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?

▪ HF model, i.e. the model for which you want to compute the statistics
► (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?

1 We take a MC estimator for the HF model,

2 We add a weighted sum of unbiased terms, c, (4, — Ai) where jai is an approximation to the
expected value of the ith LF model

3 We consider N, LF evaluations: Ni = FriN1 for each model

4 We solve for the optimal weights oei (and the optimal number of LF evaluations N,)

What do we obtain?

OCT = Q + E ai (et, — Ai)

V¢r1 = var (4) R2„,v) .

How does the variance reduction term look like?

▪ For a single low-fidelity model: Ric = rrl 4 where ri =

11. (Pearson's) correlation coefficient: pl

CHF

LF
Computational cost ratio: w =

CHF PI 
CLF 1 — pi

4/ 27



MULTIFIDELITY ESTIMATOR
How DOES IT COMPARE WITH MC?
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FIGURE: MF normalized total cost w.r.t. to a MC with same estimator variance.
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MULTIFIDELITY ESTIMATOR
HOW DOES IT COMPARE WITH MC?
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MULTIFIDELITY ESTIMATOR
How DOES IT COMPARE WITH MC?
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MULTIFIDELITY ESTIMATOR
How DOES IT COMPARE WITH MC?
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Numerical Experiments



EMULATION TOOL
minimega

minimega

► Tool to launch, manage and instrument virtual machines and networks

► It can run on your laptop or distributed across a cluster

► Scriptable API for automated experimentation

► Open source GNU GPLv3-licensed, publicly available and active project

► Integrate real hardware or humans with virtual experiments

Network emulation

► Experiments run in real time on virtualized hardware

► Initialization phase to launch VMs (OSes, applications, etc.)

► Virtual hardware introduces artifacts (i.e. stochasticity) from shared resources and nested
functionalities

► Running real software captures real system behaviors

► Allows for heterogeneous OSes

► Flexible with respect to unknown software (does not require source code)
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SIMULATION TOOL
ns-3 ft

ns-3

II. ns-3 is a discrete event simulator for IP and non-IP addresses

IP' Software written in C++ with bindings available for Python

II. GNU GPLv2-licensed

II. Possible to construct simulations from reusable components to configure nodes, topologies
and applications

Discrete-event simulation

II. Time evolves from event to event

II. A single-threaded event list is executed

lo. Events are scheduled to occur at specific virtual/simulation time

0. Events can generate additional events

II. Simulation ends when a specific time is reached or there are no more events
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MULTIFIDELITY FOR NETWORK APPLICATIONS
A VERY RECENT STORY

Few comments on the State-of-the-art:

► Uncertainty Quantification is a relatively new concept in network applications

► Multifidelity UQ is a new concept in the UQ realm

► MF UQ for Emulytics is going to unveil challenges that cannot be entirely anticipated

Progression of test cases with increasing complexity:

► 1 Client - 1 Server example

► Is the concept of low-fidelity applicable in computer network applications?

► Is ns-3 a viable way of constructing such low-fidelity models?

► How much difficult is it to obtain a correlated low-fidelity model?

► 4 routers case with fixed costs

► Can we still apply MF UQ for a more complex (fixed) topology?
► How much difficult is it to obtain a correlated low-fidelity model for a more

realistic scenario, i.e. higher number of uncertainty parameters?

► 4 routers case with varying costs (i.e. varying topology)

► How good is ns-3 in capturing the response if the topology changes?

What can UQ provide today?

► Our experience with a variety of applications in Computational Science suggests to us that
performing UQ studies can help obtaining beneficial information starting from the
verification process throughout the entire system validation
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CE

Test #1: 1 Client - 1 Server (minimega-ns-3)



FIRST minimega—NS-3 DEMONSTRATION
NETWORK CONFIGURATION: 1 CLIENT - 1 SERVER

Network Configuration

► 1 client - 1 server (possible to extend to multiple clients)
P. 100 Requests

Uncertain Parameters

► Datallate U(5, 500)Mbps

► Responsesize 1n14(500, 16 x 106)B

Fidelity definition

► Quantity of interest: Number of requests/s
► minimega - HF: 100 Requests (average over 10 repetitions)
► ns-3 - LF: 10 Requests (Delay 50ms)
► ns-3 - LF*: 1 Requests (Delay 5ms)

HF
LF
LF"

1
0.016
0.002

TABLE: Normalized Cost

We assume serial execution for the
LF model, however we might easily
increase the efficiency of LF (ns-3) by
running multiple concurrent evaluations

Host Userland

Guest Userlancl

EITTP
Server

Guest OS

Guest Userlancl

HTTP
Client

Guest OS

ovs Bridge

Host OS

FIGURE: Network Configu ration / 27



FIRST minimega—ns-3 DEMONSTRATION
ESTIMATOR STANDARD DEVIATION
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More than 70% of variance reduction is obtained by adding only an equivalent cost of 11 HF runs
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Test #2: 4 routers case with fixed costs (minimega-ns-3)

If



HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION

Network Configuration

N. Source and Destination separated by 4 (non-aligned) routers

N. 2000 Requests

Uncertain Parameters (7 parameters)

P. DataRate /4(5, 500)Mbps

P. Delay fixed to 2ms

Fidelity definition

► Quantity of interest: Number of Requests/s

► HF (minimega): Responsesize 100KB (average over 5 iterations)

► LF (ns-3): ResponseSize 50B and 10 Requests

HF
LF

1
2.45E-4

lenb AV21
11•10-t11.110 

/IraSRC A \ 

a 
TABLE: Normalized Cost c D DST

FIGURE: Network Configuration
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HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — (qINIMEGA—Ns-3) RESULTS
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17, 80
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FIGURE: Estimated means and Cls.

Notes:

IP. 30% variance reduction

► Correlation 0.56 and r = 43

100
Equivalent HF cost

FIGURE: Standard deviation.

1000
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Test 113: 4 routers case with uncertain costs
(Can we use Ugprinciples to understand better rninimega's response?)



HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — MINIMEGA'S RESPONSE

Network Configuration

► Source and Destination separated by 4 (non-aligned) routers — This case has 5 edges

► 2000 Requests

Uncertain Parameters (14 parameters: 8 rates and 6 costs)

IP' DataRate U(5,500)Mbps

P. Cost U(1,4) (cost for A—D is U(3,6))

Fidelity definition

► Quantity of interest: Number of Responses/s

► HF: Responsesize 100KB (average over 10 iterations)

SRC

C D

FIGURE: Network Configuration

01'94

DST
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HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — MIN IMEGA'S RESPONSE

Requests/s — Network device: el000

Response (Mean Value)
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HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — MIN IMEGA'S RESPONSE

Requests/s — Network device: el000

Req/s conditioned on Paths (Minirnega)
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tWhy is the response over the paths A-B-D and A-C-D different? They should be consistent..
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1114 ROUTERS CONFIGURATION — MIN IMEGA'S RESPONSE CONDITIONED ON THE SELECTED PATH 1

Requests/s — Network device: el000 virtio

Req/s conditioned on Paths (Minimega) -- All vars
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tWe looked at the network interface and replaced el000 with virtio
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HIGH-DIMENSIONAL TEST
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HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — HOW DOES THE COST (PATH) AFFECT THE RESPONSE?

Requests/s — Network device: el000 virtio

Req/s conditioned on Paths (Minirnega) -- Fixed rates CoV condifloned on Paths (Minimega) -- Fixed rates
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tThis further demonstrate the consistence of results over different paths
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How difficult it is to select a low-fidelity model?
Can we use the flexibility in selecting the LF at our advantage?



4 ROUTERS CONFIGURATION
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM)

How do we select the 'best' low-fidelity model?

Il. The LF model does not need to be predictive (i.e. the BIAS w.r.t. the HF can be very
large), but we need it to be correlated and inexpensive to run

IP. Therefore, designing a priori a LF model might not always be the best solution (for MF)

lo. Very often a mismatch in parameterization exists between HF and LF —r- we can use the
'free' parameters as tuning parameters to increase the correlation (given a finite set of HF
data)
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4 ROUTERS CONFIGURATION
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM) 4
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Il. Several LF models can be obtained for different combinations of Number of requests and
Payload Size

Il. Each LF combination has a different correlation (with minimega) and cost

IP. The cost of a MF estimator depends on the properties of the LF model

tThe LF can be optimized to obtain the maximum accuracy for a MF estimator beforehand,
i.e. without requiring additional HF runs

10-2

22 / 27



4 ROUTERS CONFIGURATION
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM)
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How can we use this technology to support our customers?



A REALISTIC (HYPOTHETICAL) SCENARIO
SUPPORTING OUR CUSTOMERS

Customer X: I have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response's statistics?
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model (no physical experiments)
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CONCLUSIONS
PRELIMINARY RESULTS: MULTIFIDELITY UQ FOR NETWORK APPLICATIONS

State-of-the-art

► Multifidelity Uncertainty Quantification proved to be effective for many different applications

► Encouraging results have been obtained for simplified network configurations and scenarios

Lessons learned from the Emulytics standpoint

► Configuration of the network devices (and potentially other parameters) has an impact on
the system response —r Validation

► Routing protocols used in the minimega and ns-3 models break ties in path costs differently

Future Directions

► Extension to additional statistics (Tails, risk measures, etc.)

► Multifidelity Sensitivity Analysis

► Exploration of data-driven approaches for LF modelling (ROMs, active directions, etc.)
► How to fully parameterize models? Scripts with 20+ arguments begins to get unruly.

Topology generator —r Dakota annotated graph minimega/ns-3?

► How to pivot these experiments to more security-relevant quantities of interest? Study denial
of service? Simulation and emulation may not be the best models for real-world DoS.
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Approximate Control Variates
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OPTIMAL CONTROL VARIATE

M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

QCV =Q+~,ai(Qi-/li)
i=i

IP. eh MC estimator for the ith low-fidelity model

► kt, known expected value for the ith low-fidelity model

► a = [cs , . . , ce Af]r set of weights (to be determined)

Let's define

► The covariance matrix among all the low-fidelity models: C E RMXM

fo' The vector of covariances between the high-fidelity Q and each low-fidelity Q c E RM

11. c= c/Var(Q), where p i is the correlation coefficient (Q, Qi)

The variance of the OCV estimator (optimal weights a* = —C-1c)

Var(QCV) = Var(4)(1 — Ittcv) = var(4) (1 — eTC-1e), 0 < RPc,v < 1.

NOTES:

1 For a single low-fidelity model: R6,_1 = pl
2 For all estimators in literature (MLMC, MFMC, etc.): R2 < pi < R6CV
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Optimization Thrust Overview

Problem: Decision-makers need to protect power grids against
informed, adaptive, malicious adversaries attacking their cyber
networks

Decision-makers need to:

o Account for likely adversarial behaviors/responses

o Plan response strategies

o Discover effective investment options

Challenge. There are exponentially
many adversarial behaviors, response
strategies, and investment options

2



Cyber Risk Modeling in Grid Systems

Threats
It 

I

Assessment I * 
Uncertainty 

*Analysis
* Consequence

Emulytics

Uncertainty Quantification

•
••
•.

•
••••

••
••

••
••

••
a•

••••

••
••

••
••

• Optimization Goal: Identify investment options that most effectively
protect critical systems from cyber-physical threats
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Motivating Concerns

System Design is the focus of the optimization thrust

• How do we model system-level consequences?

• Where should we place cyber detectors in our networks?

• How can we partition our network to enhance security?

Key Challenges

• System models can have many parameters, but we will have
limited data from Emulytics and UQ

• The optimization space accounts for threats and system options
o The threat space is very large

o Even small systems can have very large design spaces!
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Interdiction - A Different Approach

C7 ? 7 ? ? ? ? ?

? • 7 7 ? ? ?
? ? 7 • • 7

• 7 7 • ?
-\ ,• • ,2 

... and our plan needs to
account for all of their

choices!
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What's New?

Linear Programs
• Easily solved
• Widely used commercial and academic solvers

minx,o CT

s.t. Ax < b

71c
a kw .4

NOTE: These
methods are
not cyber or
grid specific

Linear Bilevel Programs
• Hard problems (NP-hard)
• No general-purpose commercial solvers for discrete lower level decisions

minx>0 cr + cify

s.t. Alx + Thy b1

minvo
,IT

(.2 -r

A2 + B2y < b2

Upper Level Problem

Lower Level Problem
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What's New?

Enumerate and
Evaluate All

Defender/Attacker
Options

Easy
Problems

Stochastic
Programming

Few Many

# of Options to Defend and Attack

i



How Do We Solve These Problems?

Bilevel Solvers (Python)

Opt Modeling (Python)

Opt Solvers (Python)

Opt Modeling (C++)

Bilevel Solvers (C/C++)

LP/IP/NLP Solvers (C/C++)

Fischetti

PAO

Pyomo

Zeng



2016

WINNER

kPYOMO

An Optimization Modeling Tool
Built in Python
Diverse modeling capabilities

Stochastic programs, disjunctive
programs, etc

Can express modular, hierarchical
model structure

Automatic model transformations

—.41 1,40
16. ./ 7grop

..10
VAN;

rff.1

Informs
INFORMS Computing
ociety Prize - 2019}

> 130,000 software
downloads in 2019

> 90,000 chapter
downloads of
the Pyomo book

Pyomo —
Optimization
Modeling
in Python
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Technical Focus Areas

Defender-
Attacker Game
Models

FY19

Bi-Level
(Attacker-Defender)

FY20 FY21

Multi-Level Generalization of
(Defender-Attacker- Formulation Approach
Defender)

Knowledge and
Data
Uncertainty

Models of Cyber
Components

Stochastic Distributionally Robust
Interdiction

Tailored
Optimization
Algorithms

Algorithms for
Nonconvex
Subproblems j

Algorithms for Global Methods for
Discrete Subproblems Nonconvex, Discrete

Subproblems

( Cyber Application in FY19: Worst-case scenario analysis )
Cyber Application in FY20: Optimal Placement of Intrusion Detection
Cyber Application in FY21: Attack Graphs With Defender Intervention

• Modeling (+), Algorithms (-)

• General Algorithms (+), Tailored Algorithms (-)

• Software (+)
11



Major FY19 Developments

1. Assessing the state-of-the-art

2. Bilevel software and solvers

3. New cyber-grid models

1 2



1 . Assessing the State-of-the-Art

The optimization team has performed a review on the
literature to understand the current state-of-the-art

The team attended the
International Workshop on
Bilevel Programming
(June, 2018)

4-6-q1171*

IWOBIP ' 18
2nd International Workshop on

Bilevel Programming

18-22 June 2018
Inria Lille-Nord Europe, Lille

The team decided to not focus on drafting an article for this
review

• It is not clear how general existing methods are

• We are still learning what we need for cyber grid
applications

France

13



Partial Bilevel-Optimization Survey

• Mixed or pure integer in both upper and lower, no stochasticity
O [DeNegre and Ralphs 2008], [Dominguez and Pistikopoulos 2010],

[Fischetti et al. 2016, 2017, 2018], [Kleniati and Adjiman 2015], [Lozano
and Smith 2017], [Mitsos 2010], [Tahernejad et al. 2016], [Tang et al.
2016], [Wang and Xu 2017], [Wiesemann et al. 2013], [Xu and Wang
2014], [Yue et al. 2019], [Zeng 2015], [Zheng et al. 2018]

• No integer variables, no stochasticity
O [Zheng et al. 2018], [Dempe et al. 2018]

• [Zhao and Zeng 2012] mixed-integer upper and lower with a notion
of uncertainty. No probabilities, consider worst case. Tri-level

• Surveys
O [Dempe 2005, 2018], [Liu et al. 2018]

Motivating Concerns
• Available software (Ralphs et al. and Fischetti et al.)
• Lower level integer decisions (Yue et al.)

1 4



Existing Branch and Cut Bilevel Solvers

MibS
o Ralphs et al. (Lehigh)
o COIN-OR bilevel programming branch-and-cut solver
o MibS is open source, we can look under the hood and add our own
ideas

o We have tested MibS on existing sample problems

• "Fischetti Solver"
o Fischetti et al. (U. Padua)
o Uses CPLEX branch-and-cut algorithm and built-in callbacks to make the
branch-and-cut tailored to solve bilevel programming models

o Leverages commercial solvers, which are likely to be robust
o We have tested the solver on existing sample problems

• Future Work
o Apply both solvers to our past models for validation
o Determine which of our new models can be solved with these solvers

1 5



Zeng Solver
411„,...j111MIN.

"Zeng Solver"

• A projection-based reformulation and decomposition algorithm

• Allows for the solution of bilevel programs with integer variables in the
lower-level problem.

• Uses column-and-constraint-generation method to avoid enumerating
all possible integer solutions.

Implementation in Pyomo

• Pyomo implementation leverages unique Pyomo capabilities

• This implementation runs successfully and correctly solves simple
problems that were demonstrated in the paper.

Next steps

• Scalability studies

• Investigate the effect of adding uncertain data in the upper level
constraints and solving robustly

1 6



2. Bilevel Software and Solvers

Challenge: how are we going to solve cyber-grid optimization
applications in SECURE

• No commercial solvers exist for our applications

• Few academic solvers, with nontrivial limitations

Observation: This is an emerging area with a lot of interest

• When we deprecated pyomo.bilevel, people complained!

1



What is the "best" way to build solvers?

Bilevel Solvers (Python)

Opt Modeling (Python)

Opt Solvers (Python)

Opt Modeling (C++)

Bilevel Solvers (C/C++)

LP/IP/NLP Solvers (C/C++)

Build Solvers on top of Pyomo

Build Solvers on top of Python

/ I I

IPOPT

18



FY19 Software Activities

Using Pyomo

o Developed the PAO package from pyomo.bilevel
• Reworked and generalized dualization logic

o Implemented bilevel solver of Zeng et al.

Using Python

o Considered implementing bilevel solver of Zeng et al.

o Developed POEK, which is 4-6x faster than Pyomo in problem setup

o Demonstrated that POEK supports fast resolves to Gurobi and IPOPT

Using C++
o Developed COEK, which supports solver-agnostic direct interfaces

o Interfaced COEK with Python (POEK)

1 9



Comparison of Approaches

Key Features

Fast
Solvers

Solver
Agnostic

Expression
Repn

Matrix
Repn

Robust
Xforms

Using Pyomo Fischetti Python Fischetti C++ MibS
c++

PAO Zeng Gurobipy POEK COEK CPLEX COIN-
OR

N

Y

Y

N

Y

N

Y Y Y

Y Y N Y

Y Y Y Y

N* N* N* Y Y

? ?

N

N N N



Optimization Software Strategy

Observations:

• Software has not dominating our work
, This was a concern at the last review

• But, we need to make optimization software a larger focus in SECURE

Challenges With Existing Techniques:

• Software control is limited

• Minimal debugging information

• Licensing issues

• Fixed MIP solvers hard-coded (which has performance implications)

• Modeling limitations

FY20 Focus: Develop solver implementations to demonstrate that we
can effectively deploy scalable solvers

21



3. New Cyber-Grid Models

Challenge: Robust
predictions with limited
Emulytics/UQ predictions

Models
Parameterized
with Emulytics

Data

Challenge: Capturing
meaningful abstractions for
Emulytics analyses

Optimization

Uncertainty III  
I • 4•C < • •••• •

Quantification

Models that
Help Define
Emulytics

Experiments

1111 Emulytic
22



3. New Cyber-Grid Models

• Reachability with a
simple topology-
based attack model

• Modeling with attack
graphs

• Placement of cyber
sensors

Uncertainty
Quantificatio

Optimization

Emulytics

23



3. New Cyber-Grid Models

Uncertainty
uantification

Optimization

• Network
segmentation to
mitigate large
disruptions

• Assign physical
devices to RTUs
mitigate large
disruptions

Emulytics

24



Game Theory / Optimization

Optimization
of Models

Parameterized
with Emulytics

Data

ptimization

• *,

rUncertainty ill
uantification

Threat Modeling with
Game-Theory

Methods to Evaluate
Success Metrics

Optimization
to Define
Emulytics

Experiments

25



GPLADD / Bilevel Programming

Game Theory

• Can model multi-stage games

• Solvers often provide heuristic solutions

• Can provide exact solutions in special cases

Bilevel Programming

• Usually limited to 2- or 3-stage games

• Solvers usually provide exact solutions to general classes of
problems
o But not guaranteed to find solutions quickly

• Can provide bounds on optimality

26



FY20 Focus Areas

• Develop and refine cyber-grid models, with a focus on integration
with UQ and Emulytics teams
o Demonstration Problem focused on Intrusion Detection System Design
o Demonstration problem focused on partitioning and device mapping

• Software development to enable the solution of these problems
o Resolve issues using MibS (with Lehigh)
o Re-implement Fiscetti et al approach using GUROBI

o Address performance bottlenecks (in Pyomo or PAO)

• New algorithmic development
o Robust formulations (RPI)
o Pessimistic formulations (GATech)

Academic Collaborators 
Dey, GATech
Mitchell, RPI
Ralphs, Lehigh
Zeng, U Pittsburg

27



Specific Accomplishments

• 6 Posters/Presentations
o IMA COIN-OR Workshop, INFORMS Computing Society Conference,
GraphX, IWOBIP Workshop, INFORMS Annual Meeting, Resiliency Week

• 2 Publications
o One lead by optimization team

• Preliminary model implementations

Stochastic Worst Case Attacker

Stochastic Intrusion Detection Placement

Network Segmentation

• Preliminary solver implementations
o PAO Dualizations
o Zeng bilevel solver

• Copyright Assertions (in process)
o PAO, COEK, POEK

28
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Optimization Modeling Outline

• Trilevel Programming High-Level Overview

• Preliminary Cyber Physical Security Models
o Worst Case Attacker

O Stochastic Worst Case Attacker

O Stochastic Intrusion Detection Placement

O Network Segmentation

• Future Optimization Problems

2



Trilevel Programming

Attacker

Designer

Defender

Meet the players!

Each player gets to make exactly
one set of decisions.

Designer goes first and knows what
attacker will do

Attacker accepts designers decision
and goes next knowing what
defender will do

Defende goes last and accepts
attacker decisions



Trilevel Programming

Attacker

Designer

Defender

• Minimizes designer objective
subject to design choice
constraints

• Objective and constraints may
include both designer and
attacker decisions

• The designE knows what optimal
choice attacker will make given
design choices

4



Trilevel Programming

Attacker

Designer

Defender

• The attacker accepts 'lesianer
choices and must work with them.
These designer decisions set the
attacker's choices

• Maximizes attacker objective
subject to attack choice
constraints

• Objective and constraints may
include both attacker and
a,fender decisions

• The attacker knows what optimal
choice defehje, will make given
attack choices



Trilevel Programming

Attacker

Designer

Defender

• The Defender accepts
attacker choices and must
work with them. These attack
decisions set the defender's
choices.

• Optimizes an objective that
depends on only Jeferiur
decisions

• Constraints includes Jefender
decisions only

6



Bilevel Programming

Attacker

Defender

Same game, one less player!

I



Feedback Request 1
Now l will present a series of four bilevel/trilevel models for addressing cyber
physical security questions.

l welcome any feedback you can give on these models!

8



Cyber Physical Attack Sequence Modeling

Internet

Utility Control Center Regulatory Agency

- -Amy-1 t- If ewall

iii1 T.-----.4
1 Nei
1 Frewall

Web

L
DMZ

▪ •••• •••
• 11••• MOM /1=81 •

•M

Router

EMS

Igo Router
insmosimig
rruZalFtewal

Substation

J

Relay Controller

Relay A Relay B Relay C.

ICCP
Server

Security
Reader Camera

• Elements of cyber attack
sequencE
o Sequence of hosts

o Attacker access at hosts

o Attacker actions at hosts

o Network knowledge

o Success probabilities

• Consider multiple attack
sequences with some
overlapping effort

• First question: which attack
sequences are most damaging
to the grid?

Oleg Sheyner and Jeannette Wing. Tools for generating and analyzing attack graphs. In
Formal Methods for Components and Objects, volume 3188, pages 344-371. Springer, 2003.
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Attack Graph

A simple example with Terminal nodes inflict damage
6 attack sequences... on grid if reached

Attacker on

personal desktop
with no

knowledge of

regulatory agency
network /

User access at
Workstation A on
regu latory age ncy

network

No knowledge of hosts
on regulatory agency

network /

User access to EMS in
control center

No knowledge of hosts

on this network.

Root access at
Workstation A on

regulatory agency network

No knowledge of hosts on
regu latory

agency network

Attack sequences can only start
at Initial nodes

Com pl ete control over
al l relays in Substation

A

Root access to EMS in
control center

Complete knowledge of
all hosts on this

network.

Intermediate nodes can only be
reached if at least one
predecessor node is reached

10



Attack Graph Based Attack Model

A slightly more complicated example:

Multiple initial nodes
possibly from multiple I 
communication
networks and/or
multiple physical
attackers

►•

÷  1 ,  1—' —1__,,
t  it

1

4--„,i, I •
t

 ••

1

Relays at multiple
substations can be
compromised and
allow attacker to
open loads,
generators, or lines

Combining kill chains into a single
graph allows for analysis of efficient
coordinated attacks

1 1



Worst-Case Attacker Model

max -y(s, y, u, v, w, z)
x,y,u,v,w,z

s.t.
Dexe < B

eET

Xe < E xeeeTr.
X e < Yr

Yr E
E 

rER/
(1 _ yr) — + 1 (1 — Yr)

E (1 _ yr) — 1741 + 1 vk (1- — Yr)
rERk

E
r€7zg 

_ yr) — 17-eg + 1 (1 — Yr)

L,Sry(x, y, u, v, w, z) = minL,s Eb€B Pb6,p,p  ,p 

Pk = VkBk(Oo(k) Od(k) ek)

Attack Model

pG L,S

gEgb g Ice fklo(W)=b1 
Pk + EkEik'Id(k')=b1 Pk = V Pt'

IELb

— STax < pk STax

„„ dpG,Tnin < G < w DG,max
Pg

i€Lb (1 — ui)PIL _< 
<

l€Lb

— 7f<eb<7r

Damage Control

Optimal Power
Flow

K1 ti K1

ti K1

K1 K1

*Derived from synthetic data that does not represent actual
Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids grid: https://electricgrids.engr.tamu.edu/electric-grid-test-
Javier Salmeron-Kevin Wood-Ross Baldick - IEEE Transactions on Power Systems - 2009 cases/activsg2000/ 12



Worst-Case Attacker Model Status

• Data Requirements from Emulytics and UQ
O Attack graph

o Edge weights: how hard is it to get from source node to destination node?

o RTU mapping: if a relay is compromised, what grid components are opened?

• Solution Technique

O Dualize defender problem and collapse into a single-level mixed-integer program
(MIP)

O Use commercial solvers

• Problem Difficulties

o Models transformation leads to a MIP that can be difficult to solve due to
numerical conditioning

o New structure of reduced model can create computational difficulties

1 3



Comparison with GPLADD

• Only one stage per decision maker
• No attacker -> defender -> attacker -> defender -> attacker -> defender

• Our models explore a search space with exponentially many choices to
make high-level decisions

• Future goal is to create synergy between optimization bilevel models and
GPLADD

Attacker moves

Defender moves

time



Stochastic Attack Graph

0.65

Attacker on

personal desktop

with no

knowledge of

regulatory agency
network

0.05

User access at
Wo rksta ti on A on
regu latory agency

n etwo rk

No knowledge of hosts
on regulatory agency

n etwo rk

Root access at
Workstation A on

regulatory agency network

No knowledge of hosts on
regu latory

agency network

User access to EMS in

0.75 control center 0.1

No knowledge of hosts

on this network.

1
Com pl ete control over
al I rel ays i n Substati on

A
0.42

Root access to EMS in
control center

Complete knowledge of
0.65 all hosts on this

n etwo rk.
0.85

EMULYTICS
Now let's add edge probabilities
to model difficulty in moving
between nodes

DAKO iA
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Stochastic Attack Graph Based Attack Model

• Attacker pushes "effort" through the network from black node to terminal
nodes

• Edge probabilities cause effort leaking
• Total flow out = Total flow in after leaking
• Effort threshold is used to determine if RTU's are compromised

Attacker effort budget

10

(max effort, success probability)

minimum effort requirement

(5, 0.75)

(6, 0.75)

3

• 

4
(4, 0.85) •  

If effort reaching this terminal
node is above 4, three RTU's
are compromised

Feng Pan, William S. Charlton, and David P. Morton. A stochastic program for interdicting smuggled nuclear material. In Network Interdiction
and Stochastic Integer Programming, volume 22, pages 1-19. Springer, 2003.

(5, 0.95)
*
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Stochastic Worst-Case Attack Model

s.t.

E Q.e B
eEEF(.)

Zs = E PQae
eEET(s)

E ae = E P:'ae
eEEF(.) (

ae < u,

tstS, < zS

rEmi
(1 — yr) — +1 <u1 < (1- yr)

rERk 
(1 Yr) — IRkl + 1 Vk < (1 — Yr)

l ± 1 < g (1 Yr)
rER9(1 yr)—IR

L,S
-y(u, v, w) = min

" —1p,pa 1frEBPb

max 7(u, v, w)
42,z ,8,u,v

Stochastic Attacker

10

s.t. Damage Control
pk = Vie Bk(Oo(k) Od(k) ek)

E PG —gEgb g kEfkilo(k9=11}Pk kE{kild(k9=b1Pk = leCb FY'
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Stochastic Worst-Case Attacker Model Status

• Data Requirements from Emulytics and UQ
o Attack graph
o Edge probabilities: probability of not being detected when moving between
nodes

o RTU mapping: if a relay is compromised, what grid components are opened?

o Attacker effort budget: how much total effort does the attacker have available
to expend?

o RTU effort: how much effort does each RTU need before the attacker controls it?

• Solution Technique
o Dualize defender problem and collapse into a single-level mixed-integer program
(MIP)

o Use commercial solvers

• Problem Difficulties
o Models transformation leads to a MIP that can be difficult to solve due to

numerical conditioning

o New structure of reduced model can create computational difficulties
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Intrusion Detection System Placement

EMULYTICS



Intrusion Detection System Placement Model

Network Designer
s.t.

E 15 B
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IDS Placement Model Status

• Data Requirements from Emulytics and UQ
o All data from stochastic worst-case scenario attack model

o Sensor costs and budget

o Sensor probability multipliers: if a sensor is purchased, which edge probabilities
are affected and by how much are the probabilities decreased?

• Solution Technique
o Dualize inner problem and reduce to a difficult mixed-integer bilevel program

o Try MibS, Fischetti solver, and recent algorithms

• Problem Difficulties

o The resulting bilevel program cannot be reduced again into a single MIP
• Leader has both continuous and discrete variables
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Network Segmentation Problem

For now, assume three
security zone model
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Network Segmentation Problem

TSO 1

Serve

CC 1

m

Serve erve

Substation l

• The grid can be severely
damaged when
Substation 2 and
Substation 3 are attacked
together.

• Substation 1 and
Substation 2 are
configured so that the grid

ti

TS0 2

CC 2

is fine if they are attacked
Serve

together.

Substation 2

ti

Substation 3

tii
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Network Segmentation Model
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Network Segmentation Model Status

• Data Requirements
O Network segmentation budget

O Attacker budget

• Solution Technique

O Dualize inner problem and reduce to a difficult mixed-integer bilevel program

o Try MibS, Fischetti solver, and recent algorithms

• Problem Difficulties
O The resulting bilevel program cannot be reduced again into a single MIP

• Leader has both continuous and discrete variables

• Advantage

o Data requirements are minimal

o Unlike other models, this one does not require detailed Emulytics/UQ data.
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Network Segmentation Results

The current 4-RTU exemplar is small enough to perform optimization
through complete enumeration of all choices for designer, attacker,
and defender
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Future Extensions of Network Segmentation

• Network segmentation pricing
O Assign a cost to each subnet that depends on security zone
O Use a budget to limit the overall cost of network segmentation

• If necessary, add subnet detail so that a subnet is more than just a node.
Preferably don't since this model requires minimal SME data.
O Use caution when adding model detail. We must remember that these bilevel
models are incredibly difficult to solve

• Add automated network segmentation into Emulytics

SCORCH
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Future Optimization Problems

• Network scanning optimization

0 Use optimization to pick optimal network scanning parameters
• Number of nodes to scan in parallel

• Probe delay
• Number of retries

• Optimize over RTU connections to loads, lines, and generators to suggest
more resilient cyber physical configurations

• Provide Emulytics team higher-fidelity power flow capability

28



Conclusion 1
• Our bilevel and trilevel models are driving discussions on what type of

optimization problems we should formulate
O What kind of data can we expect to get from Emulytics/UQ experiments?
O Are the questions that these models address interesting to the rest of the team?
o If V&V effort indicates that model fidelity is an issue, we can add detail and

reiterate.

• After year 1, we have a promising suite of tools for trying to solve our
difficult models

• Santanu Dey from Georgia Tech is excited about our models and is ready
to use his expertise to help us

• These models have huge publication potential

O Easily one publication per model
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Overview of the Exemplar Study/Workflow

Threat
Model

• Crashoverride on
a single ICS

• Focus on part of
the attack
Reconnaissance

• Attacker needs to act
quickly

• Attacker tries to locate
RTUs using nmap

• Defender tries to detect
such searches using snort

• Parameter ranges set for a
fast strike attack

Attack Effect
on Resources

• A representation of the
a region of the Texas Grid

• Flat cyber network
• Controls 8 RTUs
• Build an emulation model

of the system
• Run the emulation many

times to cover the
parameter space

• Build models for impact
on cyber

• Validate models using
emulation

Consequence
Prediction

• Quantify impact on the
power grid based on
loss of load

• Investigate how a
sophisticate adversary
can use this attack in
an optimal way

• Provide feedback to
previous steps about
sensitive parameters
regions

A F.

Identify the
experimental question
and system of interest

Identify input
parameters for the

study

1
Characterize the input

parameters
(distributions or levels)

Identify parameter
regions of interest

Generate the
experimental design

(structured or sampled)

1
Perform the runs for
the experimental

design

1

Postprocess the results
for each run

1

Analyze the results
across all the runs

Perform higher-order
analytics, e.g., V&V, Opt.



Understand the Threat 1
Identify the

experimental question
and system of interest

1
Identify input

parameters for the
study

t
Characterize the input

parameters dmil
(distributions or levels)

1

• Question: how do we improve our resilience
against crashoverride on the power grid?

• Focus on the reconnaissance step of the attack
chain
o Attack tool: nmap, to locate RTUs in the network

o Defense tool: Snort to detect network scans

.

Characterize the input
parameters

(distributions or levels)

1
11. Generate the

experimental design
(structured or sampled)

Setting:
o An adversary can get to the system through a

phishing attack

o Once in the system, it has a small time-window to
operate.

o Restrict nmap parameters to this space

Workflow steps:
o Model the system

• Network architecture, parameters, RTU placement

3



Impact of the threat on the cyber system

• Execute the model to search over
the parameter space to propagate
uncertainties to build distribution of
the attack impact
o How many RTUs are likely to be
compromised?

o What does the tail look like?

o Are there correlations between pairs
of RTUs being compromised?

• Verify, and validate
o the original emulation model
o and the abstractions we build for

higher order analytics

• Answer higher questions within the
cyber system
• What is the best way to attack?
• What is the best way to defend?
• What are alternative ways to defend?

Perform the runs for
the experimental •

design

Postprocess the results +II
for each run

Analyze the results
across all the runs

1
Perform higher-order
analytics, e.g., V&V, Opt.
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Tie between cyber and physical systems

• Given the models of the attack on
the cyber system,
o What are the consequences on the

physical system?

o How can the adversary use the
attack for maximum damage?

o How do we operate on the physical
system with cyber awareness?

o N-k security has a new meaning now.

• Feedback to the earlier steps
o How do we build cyber systems for

better physical resilience?
• Network segmentation
• Judicious intrusion Detection Systems

o What are the sensitive model
parameters that need to be
captured with higher fidelity?
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Cyber-aware resilience and
Consequence-aware cyber defense

Attack Effec o
Resources

Consequence
Prediction

• Cyber attacks lead to correlated physical failures.
0 What is a cyber fault line?

• How do we prioritize our defenses?

• How effective are our defenses?
o Is one solution quantifiable better than another?

• How do we improve cyber-systems for
better resilience?

• How do we operate on physical systems
in a cyber threat-informed way?
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L

Research Plan (Overview)

Year 1: Integration and Algorithmic Exploration
• Surveys; apply present capabilities; integration (tools and ideas);

initial results for new ideas; fine-tuned problem definitions
• Exemplar 1: Single operating authority; flat SCADA/RTU network;
• Products: Prototype implementations; papers on early results;

integrated experimental environment

Year 2: Algorithm Development
• Deep dive into algorithmic research; testing at scale/complexity;

research software; initial demonstration of new, joint capabilities

• Exemplar 2: Regional; SCADA/RTU network; multiple ICS networks

• Products: SECUREtk 0.1 (internal use); Algorithm publications

Year 3: Demonstrate Capability
• Pushing the boundaries of tools; Reporting results; demonstration of

capabilities; research software to tools;
• Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services
• Products: SECUREtk 1.0 (sharable with research partners); Integration

publications
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FY20 Plan: Integrated Overview

• Scaling up the Exemplar
o More complex SCADA networks; Multiple ICS networks;
o More complicated questions; restructuring the network; tailored defenses

o Regional attacks: attacks on multiple ICS
O Detailed models for higher dimensions

• Leveraging Exemplars to Showcase Use Cases of SECUREtk
. Risk management through stochastic adversarial optimization
o Design of Emulytics experiments with analytical methods

o Constructing confidence intervals under high response variability

O Hypothesis testing to guide experimental design

• Quantifying \My as part of the Cyber Experimental Process
O Conducting \/&\/ in the context of problem

O Requirements analysis to assess well-posedness of cyber models

o Extending methods to address boundary conditions and estimating tail probabilities

• Integration of Threat Characterization to Experiment Ensembles
O Pruning meaningless and low-consequence attack spaces prior to running Emulytics

experiments

O Identifying optimal mitigation strategies that deter or evolve the threat space

8



What is SECUREtk?

• SECUREtk is the ultimate goal, but it is not the top priority for now.
o Not a driver for basic research, but driven by basic research

o Currently developing building blocks

• Basic research is complemented by software development
o E.g. Bi-level solvers for optimization

• It will be a collection of tools
o Minimega, Firewheel, DAKOTA, Pyomo, etc.

o Enables external contributions, flexibility for various systems

• Developing software for common needs
o Scorch for many emulations with varying parameters

• FY20 Plan: develop a better understanding of the user profile and
algorithmic tools
o Details on Zach's talk on Wednesday morning
o Let's talk about what to include on the wrap up discussion:

9



Cyber Experimental Software Stack

EMULYTICS
DAKOIA

l)kl:WOMO

SECUREtk
5. Human-

Machine OQ, Optimization, GPLADD, mathematical modeling,
data analysisInterface

4. Design of
Experiments

3. Experiment
Design

2. Cyber
Experimentat

1. Process
Modeling

Q, Optimization, GPLADD, mathematical modelingl
per-run post processing

Tool-specific (SCEPTRE, minimega, Firewheel, Phenix,
ns3), DEW, Scorch, threat tools

■ SCEPTRE, minimega, ns3, threat

PowerWorld

A
SCORCH

Ensemble data
— — — — — —

Per-run results

Experiment tools,
parameters, response
metrics

) Topologies,
configurations,

L experimental tools,
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Research Element Dependencies

Provides bounding
analyses and

baseline scenarios

//
Uncertainty

characterizations to
parameterize robust

optimization

iOptimization

I

I

Uncertainty
Quantification—II

=

Efficient identification
of threat regions of
interest; optimized
investment options

High fidelity black box
cyber models; cyber
defense parameters

Threat models that support
uncertainty analysis; variable

fidelity models 

Dimensionality reduction;
multi-fidelity modeling;

assessment of convergence
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March EAB feedback items

CA

RI ,

' TC

ST ,

DE

i Community awareness
o "Futyre presentations should

explicitly acknowledge related
research and articulate how
SECURE is going beyond it. "

• Risks identification
. "qxplicitly identify risks associated

with the project and develop
strategies to mitigate them "

• Threat characterization
. "it was not clear to the board

how the threat characterization
work contributed to the overall
goals of the project "

• SECUREtk

• Domain expertise
. "given thgt the exemplar is the

power grid, the EAB did not see
sufficient evidence that the team
has the required domaip .
expertise to create realistic
scenarios that willanswer
meaningful questions "

( PA

CE #

PD., ,

• Project architecture

O "The board suggests that the
team map out a project
"architecture" that shows how
tasks are connected ...
[and]the team needs to clearly
define what comprises success
and stake out integration
activities to be accomplished
throughout each year of the
project"

• Customer engagement

O "it was not apparent either who
the specific customers will be
for SECURE's output or that the
research plan is appropriately
addressing medium- to long-
term customer challenges "

• People development

O "The EAB was unclear on SNL's
development / promotion of
talent and expertise in
cybersecurity"

1 2



Who can benefit from SECUREtk?

Adison the Engineer, IT decision maker

"Will deploying this cybersecurity solution have meaningful impact?"

• Her team offers different opinions about the potential benefits of the
proposed solution and its impact on productivity

•  She needs a thorough cost/benefit analysis to base her decision on 

Captain Howard, DoD, high-consequence systems

"Can we credibly assess system performance under various threat

scenarios?"

- He is in charge of a high-consequence system

• He trusts his red team, but the stakes are too high; the system is too
complex; and time is too short

Leon the PM, capability steward

"What are the gaps in our capability roadmap to focus on to

maximize impact? " 
He controls a budget that is too small; needs to prioritize

- Many conflicting expert opinions; system is too complex for the
answers to be simple



APPROXIMATE CONTROL VARIATE
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

P"' Let's consider N, LF evaluations: /11., =

The generic Approximate Control Variate is defined as

M
ei(cx,g) = 0(z) cx,A,(zi)

i=i

The optimal weights and variance can be obtained as

aACV = —Coo [4, A] —1Cov el]

(cvACVN\ = / \Var(Q )) var CO) — RIM') •

NOTES:

1 For a single low-fidelity model: R2Acv 1 =

2 We can build provably optimal estimators: pl < Rkv < 4c/7
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