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EAB Charter

The External Advisory Board (EAB) to the Science and Engineering of
Cybersecurity by Uncertainty quantification and Rigorous Experimentation
(SECURE) LLDRD Grand Challenge (GC) will serve in an advisory capacity
to assess and provide external, independent review and guidance to the GC fteanm
and management at Sandia National Laboratories on the project’s Strategy,
Relevance/ Impact, Quality, Capabilities, and Partnerships. (See next shide)

The EAB will provide feedback on these five elements of Research Assessment
throughout the three-year course of the project. Focus questions highlighting
Dparticular elements of interest will be provided at each meeting, but the EAB is
enconraged to comment on any or all elements, and to provide additional advice
to the project team as desired.




Five Elements of Research Assessment

Strategy

Mission Relevance & Impact

Quality

Capabilities

Partnerships & Technology Transitions

ELEMENT

Execute a research strategy that is clear, aligns
discretionary investments (e.g., LDRD) with the
research strategy, and supports DOE/NNSA priorities.

Ensure that research is relevant, enables the national

security missions, and benefits DOE/NNSA and the
nation.

Ensure that research is transformative, innovative,
leading edge, high quality, and advances the frontiers
of science and engineering.

Maintain a healthy and vibrant research environment

that enhances technical workforce competencies and
research capabilities.

Research and develop high-impact technologies
through effective partnerships and technology transfer
mechanisms that support the laboratory’s strategy,
DOE/NNSA priorities, and impact the public good.

External reviews are linked to
SNL Performance Objective: Science, Technology and Engineering Mission




SECURE GC EAB #2 Focus Questions

(Strategy) At its first meeting in March 2019, the EAB recommended that SECURE should map out a
single project architecture, clearly define what comprises success for individual tasks and the
project as a whole, and stake out integration activities to be accomplished throughout the project.

*  Please provide feedback on how effectively we communicate (a) the rationale (“story”) of the project and
(b) the research plan —is it sound, comprehensive, executable? What adjustments to the overall plan or
individual thrust areas should we consider?

*  What are the biggest technical / programmatic risks in Year 2 of the project, and what changes would you
recommend to address them?

The exemplar for Year 2 is focused on placement of malware on a SCADA network and subsequent
consequences to the power grid. Is this an appropriate exemplar; what enhancements would you

suggest? Spedcifically:
> What degree of progress, if any, do you see with respect to optimization, UQ, scalability, and validation?

> How effectively does the exemplar demonstrate the propagation of these attacks in a probabilistic manner
and how they can be optimally mitigated? How well does it illustrate an effective connection between the

thrusts?

(Quality) Is the research demonstrated to date of high quality and at the leading edge of the cyber
experimentation community? What, if anything, needs to be sharpened / improved?

(Partnerships & Technology Transition) Please comment on the team’s plans for engagement with
external communities and “Life after LDRD” (e.g. identification of sponsors who will adopt key
accomplishments / support further development.)
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AGENDA

Day 1: October 29, 2019

Director Champion Welcome, Comments, and Charge to the Board - 8:15-8:45

Project Rationale and Overview - 8:45-9:45, Break - 9:45-10:00

Emulytics - 10:00-11:30

Break and Pick up Food for Working Lunch 11:30-12:00

Uncertainty Quantification - 12:00-1:30, Break: 1:30-1:45

Optimization - 1:45-3:15

Thrust integration and longer term technical vision 3:15— 3:45

Break - 3:45-4:00, EAB Closed Session - 4:00-5:00, Quick questions / feedback 5:00 — 5:15
Dinner for EAB Members, PI, PM, Director Champion, and LDRD Office 6:30 — 8:00

Day 2: October 30, 2019

Address questions from the previous day - 8:30-8:45
Programmatic Vision / Life after LDRD discussion — 8:45-9:45
Charge Review/Concluding Questions - 9:45-10:00

Break 10:00-10:15

EAB Closed Session - 10:15-11:30

EAB Outbrief to Team - 11:30-12:30

Adjourn at 12:30; some EAB members remain for other discussions in the afternoon
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SECURE Overview

Ali Pinar, Pl
/ach Benz, PM

@ EﬁETﬁE'Y N A‘m Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Wtens Seber vty Adminteomton Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA0003525.




What is the return on investment for cylber securitye ( !I

Weapons Avionics Maintenance Cybersecurity




Who else cares about refurn on investmente { !i

Adison the Engineer, IT decision maker
“Will deploying this cybersecurity solution have meaningful impacte”

A ¢ "
wn-u& Captain Howard, DoD, high-consequence systems
q ) “Can we credibly assess system performance under various threat

] : 1
I scenariose

Alice the Architect, Grid resilience planning
“How do we take into account cyber vulnerabilities in grid operationse”

ﬁ D
“How do we take into account consequences in cyber system designe *

e
[T

Leon the PM and Dr. Turing the PI, capability stewards
“What are the gaps in our capability roadmap to focus on to

maximize impacte

Olivia G. Arcane, Government systems analyst
“Which part(s) of our system is most fragilee”




evidence

Without dete,
you are just another person
with an opinion.

W. Edwards Deming

Image Source: census.gov




Why do we need to quantifye (.gl

Adison the Engineer, IT decision maker
“Will deploying this cybersecurity solution have meaningful impacte”

« Her team offers different opinions about the potential benefits of the
proposed solution and its impact on productivity

« She needs a thorough cost/benefit analysis to base her decision on

Captain Howard, DoD, high-consequence systems
“Can we credible assess system performance under various threat

scenariosg”
« He is in charge of a high-consequence system

* He frusts his red team, but the stakes are too high; the system is too
complex; and time is too short

Leon the PM, capability steward
“What are the gaps in our capability roadmap fo focus on to

maximize impacte
* He controls a budget that is too small; needs to prioritize

« Many conflicting expert opinions; system is too complex for the

— answers to be simgle -




Bringing Rigor into Cyber Experimentation: '.’z

The Plan in a Nutshell o

SECURE: Science and Engineering of Cyber security through
Uncertainty quantification and Rigorous Experimentation

The Goadl: Bring rigor into cyber experimentation

The Idea: Follow the principles of Computational
Science and Engineering (CSE)

The Challenge: Cyber systems are different than EMULYTICS
those in traditional CSE applications. ‘
The Plan:

« Build on our current strengths in core capabilities
o Emulytics, Uncertainty Quantification (UQ), Optfimization D A K D | A
* Advance the state of the art in core capabilities

* Integrate core capabilities over a power grid exemplar “/‘PYDMD

The Product: Algorithmic expertise to support the full workflow of

rigorous cyber experimentation and software tool SECUREtk




Cyber experimentation approaches (.!I
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ACTUAL SYSTEM VIRTUALIZED TESTBED SIMULATION

TESTBED

Interoperability in a single experiment

> SIMULATED

REAL HARDWARE ABSTRACT HARDWARE ABSTRACT HARDWARE
REAL SOFTWARE REAL SOFTWARE ABSTRACT SOFTWARE



Challenge is bringing together disparate strengths (.!I

What we need Three Thrusts of SECURE

* Predict Answer “What if questions”
at scale, with confidence.

« Emulytics

* Assess confldence in predictions; EMULYTICS
characterize and propagate uncertainties

« Uncertainty Quantification

DAKOTA

 Make robust decisions under uncertainty
and under advanced threat conditions

Qo
« Adversarial Stochastic Optimization ‘/ PYDMD




Three Research Elementfs and One Mofivatfing 3.%
Application to Tie Them All ml &

« The Electric power grid is a cyber-physical
system that is becoming increasingly

information dependent. CRASHOVERRIDE

« The 2015 Ukranian power grid attack
showed the potential effects
of a cyber attack on a critical infrastructure.

Analysis of the Threat
to Electric Grid Operations

« This moftivating application helps us better
understand how pieces fit fogether.

¥ US-CERT

UNITED STATES COMPUTER EMERGENCY READINESS TEAM

HOME ABOUT US CAREERS PUBLICATIONS = ALERT S AND TP S RELATED RESOURCES cvP

Alert (TA17-163A)
CrashOverride Malware

More Alerts

ast revised ly 27, 2017

¢ Print 3 Tweet Kl Send Share

Systems Affected

Industrial Control Systems

Overview

The National Cybersecurity and Communications Integration Center (NCCIC) is aware of public reports from ESET and Dragos outlining a new, highly capable
Industrial Controls Systems (ICS) attack platform that was reportedly used in 2016 against critical infrastructure in Ukraine. As reported by ESET ¥ and Dragos &,

the CrashOverride malware is an extensible platform that could be used to target critical infrastructure sectors. NCCIC is working with its partners to validate the
ESET and Dragos analysis, and develop a better understanding of the risk this new malware poses to U.S. critical infrastructure 9



What is the SECURE Product@e = I

Identify the
experimental question

A cohesive experimental workflow and set of and system of interest
tools and techniques...

Identify input

parameters for the

 ...that rigorously quantifies the effectiveness of study
actions in the cyber domain

Characterize the input

. - ML parameters
« We will develop foundational capabilities such as (distributions or levels)
o UQ for discontinuous, high dimensional systems o —
- Scalable solvers for optimization f | regions ofinterest

o Scalable Emulyftics

Generate the
experimental design

« .., and produce Additional (structured or sampled)
designs |
o EXperTS needed? Perform the runs for
- Publications i
o Algorithms
o Tools fo share Postprocess the results
(SECUREH(, DAKOTA, PyomO, minimegg) for each run

Analyze the results
across all the runs




Overview of the Exemplar Study/Workflow (.

Threat
Model

Crashoverride on

a single ICS

Focus on part of

the attack
Reconnaissance
Attacker needs to act
quickly

Attacker tries to locate
RTUs using nmap
Defender fries to detect
such searches using snort
Parameter ranges set for
a fast strike attack

Attack Effect on

Resources

A representation of the
aregion of the Texas
Grid

Flat cyber network
Controls 8 RTUs

Build an emulation
model of the system
Run the emulation
many times to cover
the parameter space
Build models for impact
on cyber

Validate models using
emulation

Conseqguence

Prediction

Quantify impact on
the power grid based
on loss of load
Investigate how a
sophisticate
adversary can use this
attack in an optimal
way

Provide feedback to
previous steps about
sensitive parameters
regions




Research Plan (Overview) B
-

Year 1: Integration and Algorithmic Exploration
« Surveys; apply present capabilities; integration (tools and ideaqs);
initial results for new ideas; fine-tuned problem definitions
« Exemplar 1: Single operating authority; flat SCADA/RTU network;

« Products: Prototype implementations; papers on early results;
integrated experimental environment

Year 2: Algorithm Development

Deep dive into algorithmic research; testing at scale/complexity;
research software; initial demonstration of new, joint capabilities
Exemplar 2: Regional; SCADA/RTU network; multiple ICS networks
Products: SECUREftk 0.1 (internal use); Algorithm publications

Year 3: Demonstrate Capability
Pushing the boundaries of tools; Reporting results; demonstration of
capabilities; research software to tools;
Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services

Products: SECUREtk 1.0 (sharable with research partners); Integration
publications




Overview of Year 1 Progress (.!I

* |nitial results that tie security to scientific foundations
« Detailed plan for the power grid exemplar

« Demonstration of integration of the exemplar
 |Invited talks and publications

* |AB Review

- EAB Review

* Initial External Engagements with a wide customer space and
research partners

« On schedule with all milestones

« Communications:
o Started SECURE Seminar Series: 4 talks so far
o Started Quarterly Newsletter: 1st issue out, 2"9 issue in progress
- Domains name: securegc.sandia.gov; sandia.gov/securegc

13
R ———————————



Integration has been the primary goal (.!I

« Goal: SECURE should be an interdisciplinary team that will create
foundational fechnologies for rigorous cyber-experimentation.

« Our plan: Start with the integration and let the research grow out
of the common roofts
o Conference room reserved for a full day for SECURE activities
o Initiated flow of information between research elements in the first year
o Developed common language

o Avoided integration only through team leads; encourage individuals to
understand other fields; build a network

At the end of the year, we are a team that can
« develop interdisciplinary solutions
« ask questions we could not have asked before
« better understand the limits of current methods and
fundamental challenges behind practical problems




Many Promising Early Results

Host Userland

Guest Userland Guest Userland

1.8

HTTP HTTP

Server Client
1.6 P

Guest OS Guest OS
$—|j e )
OVS Bridge —
121 D) B
Host 0S

o
oo

T

Cl

o~
o
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|

¢ Model Mean
* Emulation Mean

Number of Requests/s
—95% Confidence Interval

Vulnerabilities discovered
o
> N
T
|

o ‘ Single Fidelity —+
MuitiFi_delgy(HF-L' . 04y, + 8 ¢ 1
Multi Fidelity (,5514 — Bl |
0 | 1 | | | | |
0 2 4 6 8 10 12 14 16

Time

Estimator StDev

A glass box model build from
emulation
10 100 1000 for threat characterization

Equivalent HF cost

Adoption of Multi-fidelity UQ
techniques for high- confidence
models for communication times

Ability to identify worst case scenarios without

enumeration N B
General purpose SW in progress Multiple RTUs Compromised
*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 18



Research Plan (Overview)

Year 1: Integration and Algorithmic Exploration
« Surveys; apply present capabilities; integration (tools and ideaqs);
initial results for new ideas; fine-tuned problem definitions
« Exemplar 1: Single operating authority; flat SCADA/RTU network;

* Products: Prototype implementations; papers on early results;
integrated experimental environment

Year 2: Algorithm Development
« Deep dive into algorithmic research; testing at scale/complexity;
research software; initial demonstration of new, joint capabilities
« Exemplar 2: Regional; SCADA/RTU network; mulfiple ICS networks
* Products: SECUREtk 0.1 (internal use); Algorithm publications

Year 3: Demonstrate Capability
* Pushing the boundaries of tools; Reporting results; demonstration of
capabilities; research software to tools;
« Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services

* Products: SECUREtk 1.0 (sharable with research partners); Integration
publications




FY20 Plan: Infegrated Overview (.!i

« Scaling up the Exemplar
o More complex SCADA networks; Multiple ICS networks;
o More complicated questions; restructuring the network; tailored defenses
o Regional attacks: attacks on multiple ICS
o Detailed models for higher dimensions

- Leveraging Exemplars to Showcase Use Cases of SECUREtk
o Risk management through stochastic adversarial optimization
o Design of Emulytics experiments with analytical methods
o Constructing confidence intervals under high response variability
o Hypothesis testing to guide experimental design

* Quantifying V&V as part of the Cyber Experimental Process
o Conducting V&V in the context of problem
o Requirements analysis to assess well-posedness of cyber models
o Extending methods to address boundary conditions and estimating tail probabilities

 Integration of Threat Characterization to Experiment Ensembles

o Pruning meaningless and low-consequence attack spaces prior to running Emulytics
experiments

o ldentifying optimal mitigation strategies that deter or evolve the threat space



EAB Feedback from March 2019 (.!I
« Overall positive impressions
o SECURE proposes to address a long-overdue research challenge .....

o ... proposed a sound approach ...

o ... assembled a talented team that demonsirated ability to leverage
experience gained form prev. projects

- The overall plan for the research and the progress to date were
impressive ...

o ...quickly built strong cross-disciplinary collaborative relationships...

* with constructive feedback on

o what was missing in the presentation
- Publication list; CVs — new web page
- Sponsorship targets — Zach's presentation on Day 2
- Project architecture — end of the day presentation
- Threat characterization — Tom's presentation today

o What was missing in the project plan



EAB Feedback

« Community awareness
o Worked with Perspectives to explore the space broadly

o Collaborations with Academia
- GTlech, Texas A&M, UC Davis, RPI, UC Berkeley

o Talks/sessions in conferences

o Workshop in the works
o SECURE Speakers

« Power systems domain expertise
o NE ISO visit; GTech and Texas A&M collaborations; on-team and local experts

* People development
o New hires, new team members, new roles for team members
o Graduate students

* Risks identification
o Next slide



Risk Mitigation (.!i

« (Un)Realistic and (not) representative exemplar

o Working with domain experts; avoid real data for classification; focus
on research

« Cascading effects of a delayed task
o If there is a delay, proceed with synthetic data

- Defined our interfaces to ensure that an output can be rigorously
computable.

o So evenifthere is a delay, we are confident that integration is feasible

« Miscommunication issues in infegration
o This was the first task; we will integrate early and often

- Difficulty of validation
o Start with small problems
- Focus on methodology, so that we are ready when we have the data

« Uncertainty margins too large to be practical
o ldentify the source and improve if we can
o If not, proving wide margins is useful.

20



T Morch EAB foodback fems @8

rch EAB feedback items

Ma ‘.!

CA

RI

[|®

ST

DE

Community awareness

o Future presentations should
exphcfrl% acknowledge related
research and arficulate how
SECURE is going beyond it. "

Risks identification

o explicitly identify risks associated
with the project and develop
stfrategies to mifigate them "

Threat characterization

o 1t was not clear to the board
how the threat characterization
work contributed to the overall
goals of the project

SECUREfk

Domain expertise

o 'given that the exemplar is the
power grid, the EAB did not see
sufficient evidence that the tfeam
has the required domain .
expertise to create realistic
scenarios that will. answer
meaningful questions "

PA

CE

PD

* Project architecture

(©]

"The board suggests that the
team map out a project
“architecture” that shows how
tasks are connected ...
[and]the feam needs to clearly
define what comprises success
and stake out integration
activities to be accomplished
throughout each year of the
project”

« Customer engagement

(@]

"it was not apparent either who
the specific customers will be
for SECURE’s output or that the
research plan is appropriately
addressing medium- to long-
term customer challenges’

« People development

(@]

"The EAB was unclear on SNL’s
development / promotion of
talent and exper’rise in
cybersecurity’

21
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Simulated Case Study:
Scenario Description

Presenter: Eric Vugrin

@ EﬁETﬁ&“Y N A‘m Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Motons Neber Setuty Admintevmton Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-NA0003525.




Simulated Grid Case Study: March EAB (.!i

 RTU Layout:
o 1 RTU per substation (8 total)
o Small subset of substations

o Nominal operations:
320.81 MW Load

Attack RTUs

Load Shed (Mw)

RTU Number

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 2




Simulated Grid Case Study: March EAB &0 )

« Key Simplifications
o Analyzed 1 step of kill chain (action on objective)

o Considered relatively small system
- Focused on control network
- 8 RTUs total

o Assumed attacker has prior knowledge of RTUs

o Considered "“a lot of grid” and “limited cyber”
- Single metric of interest: load shed

This presentation describes how we have expanded upon our initial
case study to consider additional complexities.




Updated Case Study: Multi-Step Kill Chain (.g

Achieve
Inifial Command Command loss of
infection and control and control load

( ( ‘ (

Pivot to ID Run
engineering vulnerable CRASH
workstation RTUs

K Start \

2. Deliver emalil

3. Follow link

4, Execute

5. Obtain IP of engineering
workstation

6. Command/control

/. Pivot to engineering
workstation

8

. Scan for RTUs
Q Ready for attack /




“Scenaro-Cyber &g

cenario — Cyber

Notional SCADA/ICS Network ‘.ﬁ

Control Centeﬁ:

. Historian OPC Server
H
§ >

8 substations, 24 remote terminal units (RTUs)

Fleld§
Vulnerable |
substation substation substation substation

989 $89 99

a—
Engineering Workstation
(Compromised)

« Afttacker scans
network fo find
potential
vulnerabilities

« Causes disruptions
via RTU payloads

- Defender

~ monitors
 network traffic
~ to detect

& aftacks

TS AP QS

substation substation

substation

substation

Vulnerable

Vulnerable RTUs not firewalled for maintfenance 5




Scenario — Physical '.
2000 Bus Synthetic Model of Texas Power Grid

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 6



Simulated Grid Case Study: Extensions (.!i

| Mach | October ___

System Analyzed Only control network Enterprise + control
networks

Steps in Kill Chain Single step Multiple steps

How much cyber and Lots grid, little cyber Added a lot more cyber

how much gride

Attacker Knowledge Knows all vulnerable Has to find vulnerable

RTUS RTUs

Metrics of Interest Load shed Load shed + many
cyber-focused metrics

Scale 8 RTUs 24 RTUs (and just started
on 240 RTUs)

Many of the following presentations will include models, results,
analysis, and capability development for portions of this case study.




Laboratory Directed Research and Development
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SECURE Predictive Cyber Emulation
Jeamimenbers: (Emulytics) Task

« Jerry Cruz

Sasha Outkin Tom Tarman
Christian Reedy

Tom Tarman

* Vince Urias
« Eric Vugrin
@ Eﬁ'ﬁ'ﬁ&“v N AYS‘@‘ Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of
Motons Neber Setuty Admintevmton Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NAQ003525. UNCLASSIFIED UNLIMITED

RELEASE




March EAB feedback items covered in this talk ( !I

CA

RI

e

ST

DE

Community awareness

o "Future presentations should explicitly acknowledge related
research and arficulate how SECURE is going beyond it. "

Risks identification

o "explicitly identify risks associated with the project and develop
strategies to mitigate them ™

Threat characterization

o "It was not clear to the board how the threat characterization work
conftributed to the overall goals of the project "

SECUREtk

Domain expertise

o "given that the exemplar is the power grid, the EAB did not see
sufficient evidence that the team has the required domain
expertise to create realistic scenarios that will answer meaningful
questions "



Predictive Cyber Emulation - Outline (.!I

* Task overviews and accomplishments (Tom)

o E.1: Emulytics platform and modeling
- Demo overview

o E.2: Modeling uncertain threats
o E.3: Model confidence/V&V

* FY20 plans

* Mathematical modeling and validation for network
scanning vs. infrusion detection (Eric)



Emulytics task organization

E: Emulytics
task

EJlBlatioms E.2: Threats E.3: V&V

EXGRE
= - : .
Exempk]r |men5|oh0 ITY
reduction

E.1.2: ES.2
Efficiency Extrapolation

4




E: Emulytics
task

|
E.1: Platforms E.2: Threats E.3: V&V
. E2S A
ELL mm Dimensionality
Exemplan reduction
ENIRCE = E:8 2
Efficiency Extrapolation

E.1: Emulytics platform and modeling




Research Task E.1: Emulyfics platform '.’z
Task overview ‘ﬁ

si1a3aweded SLjuod

soLlaw asuodsau

| | —'—> Collection App

Question: Are there engineering hurdles associated with automated
design of experiments and computational efficiency at scale?

« E.1.1: Develop exemplar questions and models
o TAMU collaboration will provide tools for topology generation

« E.1.2: Cyber-experimental efficiency and usability
o Interfaces to allow external control (e.g. Dakota) over parameters and execution
- Mathematical modeling

o Experiment platform — (experimental variability, efficiency)

. SECUREtk (SCORCH) ;
|



E.1: Emulytics platform '.’z
Accomplishments since March ‘d

FIELD

« Defined experimental scenarios v bl bl R
o Exemplar
o Opftimization and UQ scenarios = xm,.m eS8 S8 a8 98 @

« Created and validated
mathematical model of - o s
network scanning/IDS

« Publications e “8C 898G 98T aas
o UTSA invited talk Demo Y Nl Awd Awd
o CSET = | N . i
TODOlogy Vulnerable ‘
o INFORMS
- External engagements s o R o
s o 8 | sl
8 USC/ lSl Cliestion si);%i‘rilcn;ﬁga I Analysis/risl: intervals
and design assessmen
- GA Tech . “_.
- ISO/NE | DE ST
o TAMU | DE SECUREtk
qarc h ”-e CTU re representation o, = f(a,,01,0,,0,)




that results from user receiving a malicious emaile

A\

E.1.1: Exemplar - what is the expected loss of load "z

Initial infection Action on
and pivot objective

Action

Questions

Team questions

Uncertainties

Emulytics/multi-
fidelity

User opens malicious Malware scans for

email

How quickly can the
threat successfully
pivot to the control
center network?

GPLADD: What is
the pivot probability
/ timing to control
centfer network?

Location of initial
infection

Malicious emails

RTUs

How quickly can IDS
detect the scan?
What fraction of
RTUs is detected?

Scanning: What are
the scanning
time/detection
tradeoffse

ldentified RTUs

Scanners

Alice the Architect, Grid resilience planning

U D

Qy P
[ TT )

“How do we take info account cyber vulnerabilities in grid operationse”
“How do we fake info account consequences in cyber system designe“

Malware uploads
map and maintains
channel for control

How quickly can IDS
detect persistent
comms?e

Optimization: What
is the optimal sensor
placement to
detect C2¢

Background traffic
mix

C2 channels

GPLADD: Graph-based Probabilistic Learning Attacker and Dynamic Defender
IDS: Intrusion detection system
RTU: Remote terminal unit

Crash override

What is the loss of
loade

Optimization: What
is the optimal
selection of RTUs?

Timing of attack

Crash

Load loss is only

one possible metric




E.1.1: Our approach uses theory and '.’z

experiment to answer the demo question L
Achieve
Initial Command Command loss of
infection and control and control load
@ ® © ® @
Pivot to 1D Run @
engineering vulnerable CRASH Z
workstation RTUs §':;
- Game theory/Markov ﬁl—‘;?
analysis to assess probability L4 -f

of success and timing

Not assessed aft this time

Mathematical and
Emulytics modeling to
assess number of
discovered RTUs and loss of
load




E.1.2: Cyber experimentation '.’z
efficiency/usabllity A\ a

* Mathematical modeling of network A bl
scanning and infrusion detection and system of interest

o Topic for today’s deep dive

Identify input

parameters for the

« SCORCH (SCenario ORCHestration) study
o Described in tfoday's deep dive

Characterize the input
parameters
| (distributions or levels)

* Experiment variability
o Variability due to virtual network interface

Identify parameter

Inconsistent delays seen in e 1000 interface e
Mitigated by switching to virtio
Described in Gianluca'’s talk Generate the
experimental design
o Experimental randomness Additional (structured or sampled)

Statistically significant differences between serial ~ desgne,
and paraliel runs '

Isolated to induced experimental randomness
(e.g. packet loss)

Described in Laura's talk

Perform the runs for
the experimental
design

Postprocess the results

® SecureTK for each run
o Described in Ali's talk this afternoon

Analyze the results
across all the runs




E.1: FY20 plan (.!i

 E.1.1: Exemplar demo
o Propagate Emulytics modeling into the enterprise network
- Scale up (~100 field devices, control center network, enterprise network)
- Leverage topologies from TAMU/Kate Davis
o V&V experiments to support exemplar demo

* E.1.2: Emulytics platform
- SECUREtk architecture definition
- Mathematical modeling (e.g. command and control channel)
o Topology import from Texas A&M models/tools
o Background traffic

« Publications
o FY20 - Network scanning/infrusion detection
o FY20 - Experimental workflow, SECUREtk (or components), case study



E: Emulytics
task

|
| ' '
E.1: Platforms E.2: Threats E.3: V&V
] E2311E
ENTIN] mm Dimensionality
Exemplar reduction

El.2 = Ef30:
Efficiency Extrapolation

E.2: Modeling uncertain threats

1




Research task E.2: Modeling uncertain threats '.’z
Task overview ‘d
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Adapted from: Hutchins, Eric, Michael Cloppert, and Rohan Amin. "Intelligence-Driven Computer Network Defense Informed by Analysis of
Adversary Campaigns and Intrusion Kill Chains." The Proceedings of the 6th International Conference on Information Warfare and Security. 2011.

Question: What are the research hurdles associated with modeling

sophisticated (and often unknown) threats with uncertainty?

« Specific threats evolve, so adopt frameworks that can be updated as threats
change

o E.g. Lockheed Martin Cyber Kill Chain

o Game theoretic framework - Graph-based Probabilistic Learning Attacker and Dynamic
Defender (GPLADD)

o Extensible threat modeling tools for emulation-based cyber experimentation

« Use GPLADD within CKC framework to inform threat/defense distributions and

narrow parameter space for emulation-based experiments (initially developed for
PRESTIGE hardware trust LDRD 13



E.2: Modeling uncertain threats '.’z
Accomplishments since March ‘d

« Developed Markov threat model for enterprise portion of demo
scenario

« Publications (primarily under PRESTIGE LDRD, leveraged by SECURE)

o Alexander V. Outkin, et.al. GPLADD: Quantifying Trust in Government and Commercial
Systems: A Game-Theoretic Approach. ACM Trans. Priv. Secur. 22, 3, Article 18 (June 2019)

o Yu-Cheng Chen, Dustin Campbell, Vincent Mooney, Santiago Grijalva, Brandon K. Eames,
Alexander V. Outkin, Eric D. Vugrin. 2019. “Power Grid Bad Data Injection Attack Modeling
in PRESTIGE". Proceedings of 2019 Government Micrcircuit Applications & Critical
Technology Conference (GOMACTech)

o Cynthia Phillips, Alexander Outkin. 2018 “Probabilistic-Learning Attacker, Dynamic Defender:
A Cybersecurity Game of Deterrence and Resource Allocation”. Workshop on Competitive
Economics of Cybersecurity. Albuguerque, NM. November 16, 2018.
« External engagements

o GA Tech

« Reviewed Dr. Tamer Basar (UIUC) publications CA
o Attacker/defender modeling in IDS
o Advances in sensor data aggregation

o Would complement time-based Attacker/Defender modeling, e.g. to
support attack progression inference
14




E.2: Why pursue game-theoretic threat '.’z
modelinge ‘d

Achieve
Initial Command Command loss of
infection and conftrol and control load
® @ > ® ® TC
Pivot to ID Run
engineering vulnerable CRASH
workstation RTUs

Captain Howard, DoD, high-consequence systems
"Can we credibility assess system performance under various threat
[\ scenariosg”

>
f\

« Game theoretic modeling
(GPLADD)

o End-to-end threat framework “Morph”, i.e., move target:
conftrol + remove attacker

o Leverages results from in-scope g benaflt
activities (emulation) and out-of- “Take":
scope data from literature (human control
facrors)

o Many attacker-defender moves (e.qg.
moving target defense)

o Attack/defense evolution over time 4

o First look™ at sensjtivities that require [ ] | ) /
high fidelity investigation Aftack Conirol

initiated gained

Time-to{control: Time-to{control: Time-to{control:

« Optimization
no previous

o Exact solutions for well-formulated o o il oy il
and parameterized problems

o ldentify worst-case threat

15
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E.2: Markov model is a framework for reasoning "‘

about end-to-end threat chain o
Initial Command Command Alg?si%\;‘e

infection and control and control load
e o , ® ‘_ e o e

Pivot to ID Run
engineering vulnerable
workstation RTUs
1. Start

2. Deliver email
3. Follow link

0.13

Key:

Informed by literature

© informed by math/Emulylics 099
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E.2: Preliminary Defender Options Analysis (.

Attack Stage vs.Time
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E.2 Implications to Defender Opfimization (.!I

 |f the cost the defender has to pay per incremental detection
improvement on all nodes is the same, then:

- The defender would get the best return on additional investments in
detection improvements on RTUs ("Ready” node 9)

o Detection improvement on “Ready” node 9 has the least marginal cost

o The current sensor placement or analytics is locally suboptimal, unless it
IS a corner solution

o Next: solve the problem with arbitrary cost functions

pel Olivia G. Arcane, Government systems analyst
ﬁgp “Which part(s) of our system is most fragile2”
bl
Long run Ready residence time vs.Detection probability increase Long run Ready residence time vs. detection prob. incr.
nce tim
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E.2: Comp. of 15sec vs. 60 sec RTU scans ‘G4

Scanning Long-term attack Expected load loss,  Attack expected load Expected load loss, Attack expected load
strategy (sec) Ready (5) scanning stage (%) loss (%) scanning stage (MW) loss (MW)
15 0.82 18.41 15.10 84.686
60 0.52 32.81 17.18 150.926
End-to-end
Attack Stage vs.Time step Attack Stage vs.Time step

Atiack Stage Attack Stage

: ] [ ]

Time step r i
- - - - — Time ste|
100 200 300 400 500 100 200 300 400 500 P

Captain Howard, DoD, high-consequence systems
“Can we credibility assess system performance under various threat

™\ scenarios2” ] ’rimes’rep =1 hour




E.2: FY20 plan (.!i

« E.2: Modeling uncertain threats
o Represent a set of attacks
o Handle uncertainty in threat parameters
o Add threat models to Emulytics experiment platforms

- Publications
o FY20 — Markov/GPLADD modeling for power grid threats

20
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Research task E.3: Model confidence '.

Task overview ‘d

From: Hieb, J., J. H Graham, and B. Luyster, A Prototype Security
Hardened Field Device for Industrial Control Systems. 2019.

Question: How do we confidently make a V&V case at scalee¢

« E.3.1: Dimensionality reduction - understand which uncertainties
most affect model V&V
o Kasimir Gabert’s research

o Physical experimentation - collaboration with Kate Davis at Texas A&M
RESLab experiments on larger scale ICS systems
Funded through LDRD Campus Executive program (Chrisma Jackson, TAMU C.E.)

« E.3.2: Extrapolation — understand how V&V experiments
extrapolate to V&V statements about larger system
22



E.3: Model confidence '.’z
Accomplishments since March ‘“

« Worked with Texas A&M to understand their capabilities and
identify possible V&V experiments
o DoS on field devices
o Protection mechanisms

* |dentify sensitive regions using graph dimensionality reduction
o Kasimir Gabert dissertation at GA Tech

« What do small V&V experiments say about validity of larger
systemse
- UQ team

« Validating mathematical models

« Publications

« External engagements
o Texas A&M l DE

23
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E.3: We are developing a Verification and '.’z
Validation framework for Emulytics. ‘“

« Overall Question: “Is our Emulytics model acceptable for a
particular applicatione”

« Verification: Is the Emulytics experiment set up so that all VMs
operate as if they are running on their owne

o Is each VM getting all the resources it is requestinge How does
host configuration and capacity affect VM behaviore

o What sanity checks are needed to verify that the VM
outcomes are not (or minimally) affected by the run
environment?

« Validation: Given verification, does the VM produce the same
results as a standalone physical node would?e
o What is the impact of behavioral differences in buffer

management, network drivers, efc. between virtual
environment and physical systems?e

o For which quantities of interests can we make meaningful
comparisons using which validation meftrics?

24
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E.3: V&V process (.a

Dimensionality reduction

Extrapolation

Generation subnet

il

Physical V&V

/~—\ Captain Howard, DoD, high-consequence systems
=) “canwe credibility assess system performance under various threat
(N scenariose”

https://electricgrids.engr.tamu.edu/
electric-grid-test-cases/activsg2000/

« E.3.1: Kasimir's research — dimensionality reduction
o ldentify repeating subgraphs
o Summarize large graph with smaller graph

« E.3.1: TAMU/SNL - physical V&V experimentation

o Protection schemes
o Response to DoS attack

i . _ : https://upload.wikimedia.org/wikipedia/
E.3.2: UQ team research - extrapolation L e

o Small V&V — Large system Modular.jog

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ 25




E.3: Ongoing and FY20 Planned V&V Activities: (.!I

« Verification

o Examples:
- Ensure that equivalent network paths have similar routing stafistics
- Comparison of statistics from serial and parallel runs
o Goals:
- Develop a set of necessary conditions for verified Emulyfics
- Incorporate tools for assessing these conditions in SECUREtk
- Apply these tools to SECURE exemplars

 Validation:

o Examples:
- Compare analytfic scanning model to Minimega
- Compare Bilevel optimization to Powerworld
- Compare Emulytics models to physical testbeds (TAMU)

o Goals.

- Set up physical testbeds
- Develop appropriate metrics: e.g. Qol distributions or sensitivities

Develo roach for vollq[c’rn larger scale systems built from smaller
scale vgllgp?ed componen k(%lmlg dssser ation wor

« Publications
o FY21 - V&V (dimension reduction and extrapolation)

26



E: Emulytics
task

E.1: Platforms E.2: Threats E.3: V&V
. E2S A
ELL Dimensionality
Exemplan reduction
ENIRZ: E.3.2:
Efficiency Extrapolation

FY20 plans

27




FY20 plan (.!i

« E.1.1: Exemplar demo « E.2: Modeling uncertain threats

o Propagate Emulytics modeling
into the enterprise network

o Scale up (~100 field devices,
control center network,
enterprise network)

o Leverage topologies from
TAMU/Kate Davis

o V&V experiments to support
exemplar demo

« E.1.2: Emulytics platform
o SECUREtk architecture definition

o Mathematical modeling (e.g.
command and control
channel)

o Topology import from Texas
A&M models/tools

o Background traffic

o Represent a set of attacks

o Handle uncertainty in threat
parameters

o Add threat models to Emulytics
experiment platforms

E.3: Model confidence

o V&V experiments with Texas A&M

o Graph theoretical network
dimensionality reduction for V&V

Publications
o FY20 - Network scanning/intrusion
detection

o FY20 - Experimental workflow,
SECUREtk (or components), case
study

o FY20 - Markov/GPLADD modeling
for power grid threats

o FY21 -V&V (dimension reduction
and extrapolation)

28



Risks RI (’a

IRk [Nextsteps

Exemplar demo Unrealistic tfopologies  TAMU collaboration
Emulyftics platform Experimental variation Understand variability
and possible
mitigations
Threat uncertainty Are GPLADD/Markov  Start integrating threat
models valid? tools info models
Model confidence Invalid extrapolation Understand conditions

for valid extrapolation

29
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Scanning — mathematical modeling,

emulation, and validation
Eric Vugrin
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A\

SECURE Predictive Cyber Emulation:
Example Application to a Scanning &
[Ealinambes Detection Scenario

« Jerry Cruz

+ Alexander Outkin . .
. Christian Reedy Presenter: Eric Vugrin
« Tom Tarman

* Vince Urias

 Eric Vugrin
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Motons Neber Setuty Admintevmton Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security
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Preview (.!i

« Scenario: investigated use of scanning & detection tools during the
reconnaissance phase of an aftack on the power grid

* Method:
- Developed Emulytics model of attack
- Developed mathematical, “glass box” model of attack

 Results:

- Validated glass box model against Emulytics experiments

o Glass box model and enhancements to Emulytics infrastructure have
resulted in computational and analytical efficiencies for studying
relevant uncertainties



Outline

Infroduce scenario

Specify analysis and research questions
Describe methodology
Provide results

Discuss insights and future directions

This presentation aims to show some progress towards Emulytics

research goals in the context of a specific scenario.




“Scenaro-Cyber &g

cenario — Cyber

Notional SCADA/ICS Network ‘.ﬁ

Control Centeﬁ:

. Historian OPC Server
H
§ >

8 substations, 24 remote terminal units (RTUs)

Fleld§
Vulnerable |
substation substation substation substation

989 $89 99

a—
Engineering Workstation
(Compromised)

« Afttacker scans
network fo find
potential
vulnerabilities

« Causes disruptions
via RTU payloads

- Defender

~ monitors
 network traffic
~ to detect

& aftacks

TS AP QS

substation substation

substation

substation

Vulnerable

Vulnerable RTUs not firewalled for maintfenance 4




Scenario — Physical '.
2000 Bus Synthetic Model of Texas Power Grid

*Derived from synthetic data that does not represent actual grid: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/activsg2000/ £



Assumptions (.!i

Attacker Defender
« Goal; « Goal;
o Find vulnerable RTUs o Detect attack before
quickly & stealthily attacker can exploit
- Cause loss of load vulnerabilities
« Tool: NMap Network * Tool: Snort

Mapper




Assumptions: Tools - NMap —( I

S ‘.g

 Half-open SYN scan (Bou-Harb et al. (2014))

OPEN

« Key parameters

- Host Group Size — The number of hosts to scan in parallel
- Delay - The delay time between sequential probes

« Assumption: Which hosts are up is known

<

o

CLOSED

- E;(VMVQE;Y

SYN Pory 2

-
®

e

FILTERED

s
*—Pop 5,
ST

A

- Accomplished via initial ping scan (ICMP echo requests) in the

emulation

Bou-Harb et al. (2014). “Cyber Scanning: A Comprehensive Survey,” IEEE Communications Surveys & Tutorials, 16(3): 1496-1519.

nmap -PE -sS -n -p 22




Assumptions: Tools - SNORT (.!I

« sfportscan module (Roelker et al. 2004)

o Detection

SYN/RST

60 s 120 s

First Detection Window Second Detection Window

* If snort observes 5 or more TCP SYN/RSTs (during initial 3-way
handshake) within a 60 second window, it creates an alert (i.e.
detection)

o An NMap probe to a closed port generates this kind of reset

o Medium and high sensitivity are similar but with different thresholds and
they also count number of new TCP connections

« Assumption: normal traffic does not result in TCP SYN/RSTs



Assumptions: Tools- Effects of Key Parameters

NMap (Attacker)

t Speed of

Detection

Snort (Defender)

Detection : Detection
Sensifivity

t False Alarms




Questions (.!I

« Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU identification?¢
adisonthe  , Probability that the attacker is detected over time? st B

o
ronest o AT which point during the scan should the attacker attack RTUs
to maximize loss of load?

 Validation: can we validate results from emulation
experiments through comparison with glass box model
estimatese And vice versa?¢

Dr. Turing the PI

* Practical consideration: how can we implement
experiments in organized, efficient manner to capture
potential uncertainties?

Leon the PM




Experimental Workflow (.!‘

Attacker
* Fixed ICS network topology S’rro’regy » Fixed RTU-grid inferconnection
If t>t_go, .I.Opology
then .. T
Parameter Cyber _— Optimal
configuration| Experimentation ~— — Power Flow

——>

Cyber
& )| oot [EE
V3 &p Results

 Decouples cyber and grid

experimentation —
« Cannot capture feedback N _
- Parameters set SIECT> Physical
« (Thousands) of Cyber experiments are run Effe(ﬂs
eSuUITS
« Cyber results saved \ )

« Cyberresults are franslated to inputs to optimal power flow tools

» OPF tools generate physical effects results




Uncertainty within the Analysis (.i!

) . RTUs Load Loss
« Sources of uncertainty: e | R
o Order of scanning RTUs max=460MW

o Time out of scanning probes 1 0.00

o RTUs discovered 2 0.48

« Treatment within Experiments - Ll

o Emulation experiment repeated 1000 times 4 0.52

- Each experiment run for ~200 seconds 1.2 0.48

« Outputs IS =

o Vulnerable RTUs discovered vs time Ll Lo

o Probability attacker is detected vs time 2 e

. Loss of load estimation ij ;:(5)(2)

o Attacker strategy specifies when to attack RTUs

o Post-process cyber effects to determine if RTU b3 048

attack starts before detection 1.2,4 1.00

o If so, determine which RTUs were identified and 1,3.4 0.52

use look up table to determine load loss 234 1.00

* Likely due to Braess's Paradox, i.e., Braess et al. “On a Paradox of Traffic Planning,” Transp Science, ] ,2,3,4 1.00
2005, 39(4): 446-450. 12



Glass Box Model: lllustrative Description 20

e = Filfered
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Glass Box Model: lllustrative Description =() )
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Glass Box Model: lllustrative Description =() )

P(IL1OJ1.1.0) ¥

P(1,0,0|1, |,0)
ne:

P(0,1,0]1,1,0)

gl P(0,0,0|1,1,0)

£
2

PO, 1,1)

0
D
-

L
=




Glass Box Model: lllustrative Description =() )
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Glass Box Model: lllustrative Description B0 X




Glass Box Model: lllustrative Description B0 X
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Glass Box Model: Implementation

Inpufts Analytical Solution Probability Distributions at
(Not estimated via Discrete Times

Monte Carlo Sims)

Parameter
Configuration

32 T= 0+delay

T= 0+4*delay

06
o8
04
0
02
ar
ol - .
o 3 ) " a
Ll
.
.

T= 0+N*delay




Example Results (.!I

« System settings
o 4 open (aka vulnerable) RTUs
o 8 closed RTUs
o 12 filtered RTUs

o Probability of probe time out = 0.1

 NMap settings
o Host group: 4
o Scan delay: 10s
o Max # of retries: 1

« Snort setting:
o Low sensitivity

« Strategy:

o a priori, attacker decides to wait for T seconds, and then attacks RTUs
that have been identified by t=T.

o If attacker detected before T seconds, attack fails and no load loss.

20
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Questions (.!I

« Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU idenftification?

adsonthe . Probability that the attacker is detected over time? Aekcer

Engineer

- At which point during the scan should the attacker attack RTUs
to maximize loss of load?e

 Validation: can we validate results from emulation
experiments through comparison with glass box model
estimatese And vice versa?¢

k Dr. Turing ihy

* Practical consideration: how can we implement
experiments in organized, efficient manner to capture
potential uncertainties?

Leon the PM
21




Results: Vulnerability Identification (.!i

ol

w

—
T

- Emulytics: Mean
-------- Emulytics: 95% CI
* Glass Box Model Mean

Mean Vulnerabilities Discovered
o N
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Time (s)

o

22
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Results: Detection of Attacker (.!l
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* Glass Box Model
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Results: Load Loss (.a

—_

=
)

O
o

Mean Load Loss (Relative to Max Possible)

0.2 [; —— Emulytics: Mean
= = Emulytics: 95% CI
* Glass Box Model
O L I |
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Attack Start Time (s)
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Results: Load Loss

—_

Opftimal strategy: wait unftil scan is
done, then attack RTUs

O
o

O
o

Mean Load Loss (Relative to Max Possible)

0.2 [; —— Emulytics: Mean
= = Emulytics: 95% CI
* Glass Box Model
0 ! I !
0 50 100 150 200

Attack Start Time (s)

25




Results: Load Loss

—_

If we change NMap settings,

is “finish the scan” strategy sfill optimale |

O
o

O
o

Mean Load Loss (Relative to Max Possible)

0.2 [; —— Emulytics: Mean
= = Emulytics: 95% CI
* Glass Box Model
0 ! I A
0 50 100 150 200

Attack Start Time (s)

26




Example Results (.!I

« System setting

- - Probability of probe ’rime\ou’r = 0.1
* NMap settings - Faster scan, higher

o Host group: 6 chance of detection
\ © Scan delay: 5s J

« Snort setting:
o Low sensitivity

« Strategy:

o a priori, attacker decides to wait for T seconds, and then attacks RTUs
that have been identified by t=T.

27



Results: Vulnerability Identification (.‘!
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Results: Detection of Attacker (.!l
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Results: Load Loss

—_

08

O
o

“Finish the scan” is worst strategy!

Attacker gets detected before
B attacking RTUs.
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Results: Load Loss

—_

Optimal strategy: attack after ~15s
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Example Results

System setting
o Probability of probe time out = 0.1

NMap settings
o Host group: 4
o Scan delay: 10s

Snort setting:
o Low sensitivity

.

~N
Strategy: attacker uses feedback from scans to determine when to

attack
o Attack RTUs after finding N vulnerabilities

J

32



Results: Load Loss vs. Strategy

Host Group:4 Scan Delay:10

100 1 open
2 open
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hat
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Adison the

Engineer
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Results: Load Loss vs. Strategy
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Questions (.!I

« Analysis: for this scenario, can we estimate
o Rate of vulnerable RTU identification?
Adison the o Probability that the attacker is detected over time?¢ "Xﬁ!!.i.i';?

o
ronest o AT which point during the scan should the attacker attack RTUs
to maximize loss of load?

 Validation: can we validate results from emulation
experiments through comparison with glass box model
estimatese And vice versa?¢

Dr. Turing the PI

* Practical consideration: how can we implement h
experiments in organized, efficient manner to capture
potential uncertainties?

*eon the PM




root@enlB89:~#

usage: scorch [-h] [--run_name RUN_NAME] [--namespace NAMESPACE] configuration

Securetk.emulytics scenario orchestration tool

positional arguments:
contiguration Name of scenario configuration to run

optional arguments:
-h, --help show s help message and exit
--run_name RUN_NAME Name of scenario run
--namespace NAMESPACE

Name of yace to run against

* Implements a simple “scenarios” scripting language

« Facilitates experimental data I/O to and from the emulated
network environment

o Inspired by Distributed Experiment Workflows (DEW)'
« Enables rapid development of repeatable scenarios

« Modular scenario Y“components” promote reuse

1Jelena Mirkovic, Genevieve Bartlett, and Jim Blythe. 2018. DEW: distributed experiment workflows. In Proceedings of the T1th USENIX
Conference on Cyber Security Experimentation and Test (CSET'18). USENIX Association, Berkeley, CA, USA, 4-4.
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Experimental Set Up: SCORCH (.!l

* Projects that use/considering using SCORCH:
o Advanced C2 threat modeling
o Behavioral analytics for ICS
o Resilience analysis for energy systems

* Project needs:

o Running large numbers of repeatable scenarios in emulated
environments
o Data collection from emulation experiments
- Validation
- Training data
- Exploratory analysis

39



Experimental Set Up: SCORCH (.!l

Compute cluster

Definition

Head node R

- //P

" eI .

ET— § scoren = |

- "

o do |
Scenario

Emulation Experiment

i

Command and ConTro// \\Do’ro /O

> scorch —run-name RUN-1 SCAN_SCENARIO



Experimental Set Up: SCORCH (.!I
. Replacescriptifneeded {)} DAK OTA]

ScriPt call scorch N fimes. N is large

% |

e,

0)

8 > scorch —run-name RUN-n SCAN_SCENARIO

0)

<

5 Head node

=

O -

g o !: — SCORCH
Scenario lT

RUN-1

Definition RUN-2 Post Process |: :

RUN-1000
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Insights and Progress

« Improved Emulytics infrastructure for repeating large # of
experiments

o Efficient data extraction and analysis

manual/serial parallel
Perform Emulyhcs Runs ~10 days 3 hrs

o Improved consistency for repetition of Emulytics experiment
- Modular design ought to work well with other studies

« Threat model considered both technology and strategic elements
o COITS technologies: NMap, Snort
o Strategy tradeoffs: benefits/drawbacks for attack strategies

« Study catalyzed collaboration with UQ team

42



Insights and Progress (.a

« Benefits from co-development of Emulytics and glass box models

o Emulytics experiments helped identify undocumented NMap behaviors
to include in the glass box model

o Glass box model was used to explore space of parameters before
performing Emulytics runs

o Cross-validation and verification

« Glass box model provides efficiencies under some conditions

4 open, 8 closed, 12 filtered mm
Scanning (normalized) ~4s <1s <1s THE DELL LATITUDE 14

detection: 1 delay/threshold
setting ~12hrs ~4.5hrs ~0.5 hrs

detection: additional — -
delay/threshold ~6hrs ~0.8hrs ~0.1 hrs

« Glass box model differs from scanning-/security-related efforts e.Q.

o Toutonji et al. 2012; Chen & Ji 2005 (many o’rhersz: using epidemic
propagation models 1o model spread of internet worms and malware

o Turner & Joseph 2017; Huang et al. 2012: analyzing/improving Snort
o Alpcan & Basar 2005: game theory/optimal control analysis of IDS

o Wong et al. 2012 : atfack-defense stochasftic gome net 43
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Unexpected Results and Next Steps (.gl

« Expected “simple” example showed
surprising complexity Scaling Up: 10x Expf.

« Challenges comparing “discrete time”
model with *confinuous time results”

H
o

* Next step: draft manuscript for publication

« Possible next steps
o Scaling up
o Add “background traffic”
o Test/validate on non-emulated network
o Explore strategy evaluations for this problem

Mean vulnerabilities Discovered
N
o

-

D 300 600]

Time (s)

- Have some ideas using partially observable Markov B
decision process models ggg'nRTUS ;22%
- Good opportunity for further collaboration with Closed = 80
optimization tfeam Filtered =120

o Consider modeling and analysis for other
portions of the kill-chain, e.g. command and

control

44
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Feedback (.!i
 Feedback on all aspects of the effort is appreciated

+ Feedback on following topics would be especially appreciated

o Suggested publication forums
o ldeas on next steps
o Further developments to SCORCH

45
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SECURE: Science and Engineering of Cybersecurity b\"z

Uncertainty quantification and Rigorous Experimentat

The Goal: Bring rigor info cyber experimentation

UQ Team: Develop and deliver approaches which

allow uncertainty quantification to be performed on
Emulytics efficiently.

Forward UQ: propagate uncertainties on inputs to uncertainty on predictions
L . 4 )
Uncertainty in input variables u

%& E:‘ﬂ‘;‘;/:lcs Statistics on
output s(f(u
o put s(f(u))

probability densities

\ J \_ J




What does success look like?2 (.!I

STEPS Year 1
ﬂ. Demonstrate that we can sample Emulytics models reproducibly ocrosm
platforms

o Establish interface to Emulytics models for running ensembles
o Sampling strategies
o Characterization of input distributions

2. Validate a specific Emulytics problem (e.g. a particular network and
\ threat) /

3. Develop methods that can perform the forward UQ problem
more efficiently

o Sampling of discrete variables, experimental design
o Dimension reduction

o Multi-fidelity approaches

4. Demonstrate a full UQ workflow that is generalized over multiple
threats and networks at scale.

3



Outline ‘.;!

« Analysis of the Exemplar
o Sensitivity with respect to host group size/delay
o Uncertainty with respect to the attacker strategy
o Reproducibility of emulation runs across platforms and in parallel runs

« Research Thrusts
o Multifidelity Uncertainty Quantification
o Discrete uncertainties
o Dimension Reduction

« FY2020 Plans
« Deep dive into Multifidelity



Uncertainty Analysis of Exemplar

Alice, Designer Attacker Captain Howard, Defender

(N




Pivot to engineering
workstation

Initial infection

Deployed
on one

machine N

pPIVOts

Malicious
Email

Not deployed

Malware
Not
Deployed

Analysis of Exemplar Uncertainties

Achieve loss of

ID vulnerable RTUs Run CRASH load
® ® O
RTUT+2
Two RTUs /RTU] +4
Network have /; RTU3+4
Scanning: two CRASH —
KL eling RTUT > Load
Loss
Network One RTU2 - Load
Scanning: RTU has Loss
one RTU CRASH —> RTU3->Load
found Loss
Which IP is RTU4-> Load
attacked LOSS

No RTUs
have
CRASH

Calculate Expected Value of Loss of Load given possibility of inifial infection




Treatment of uncertainty in scanning (.!i

« Each set of experiments in minimega involved 1000 samples at a
particular setting (humber of probes, delay between probes sent).

« Each of the 1000 samples was run for 200 seconds. At each
second, the number of successful probes on open, closed, and
filtered ports was recorded.

« These results were then post-processed using a number of attack
strateqgies

- One class of strategies involved the attacker just waiting to identity M
open ports (M =1, 2, 3, or4). Assoon as M ports are achieved, CRASH is
deployed

o The other class of strategies involved the attacker waiting for some time
(e.g. 10, 20, 30 sec.) to deploy CRASH.

o Each strategy then had a particular load loss, depending on the
attacker/defender time race and which RTUs were hit.

Why 1000 samplese There is a large coefficient of variation (std. dev./mean)
of the number of open ports found per attack strategy. For example, the T15
strategy had a CoV of 1.08, the 775 had a CoV of 0.5.




Treatment of uncertainty in scanning (.?

Various

Attack Prob of
Host Group | Detection
Size Minimega el

J 1000 runs ; ., Loss of

Delay Nmap/Snort - o

number of 8

open ports

discovered

Now we can address questions such as what are the statistical
differences between loss of load at 80 seconds across attack strategies?




Results: Comparing two versions of attacks (.!|

4 probes, Delay 10 sec 6 probes, Delay 5 sec

Host Group:4 Scan Delay:10 Host Group:6 Scan Delay:5

- 1 open -~ 1 open
2 open w2 0open
= 3 open ~— 3 open
—— 4 open : r_/—/_ —— 4 open

, - 5 open =~ 5 open

[jf

10 20 30 40 50

e
iS

[y

o
W
o
@©

ot
e

o
S

o
[y

detection probabibility
¢ o ;
N
detection probabibility

o
]

-

50 100 150

o
(=]

o
o

Time (s) Time (s)

« Detection occurs much earlier when attacker runs 6 probes every
5 seconds.

« Aftacker has significant probability of NOT being detected in the
4 probe, 10 second delay case.




Results: Comparing two versions of attacks (.!|

4 probes, Delay 10 sec
Wait for a specified time

Host Group:4 Scan Delay:10

100 a—l S
- 30s
80 — 458
— 60s
@ — 758
8 60 —— NoDetection
)
(]
= 40
&
20 |
: A
0 50 100 150

Time (s)

Next page will compare these strategies at 80 seconds.
T15 strategy: mean load loss of 18.4%
T60 strategy: mean load loss of 32.8%




Results: Zoom in on 4 probes, delay 10 ('!I

« Comparing a T15 strategy vs. a Té60 strategy at 80 seconds

s wmmm T15 strategy
=== TH0 strat
500 strategy
400
> T15 strategy: mean
% 300 1 load loss of 18.4%
g T60 strategy: mean
200 1 load loss of 32.8%
100 -
A1 |
0 20 40 60 80 100

% load loss

« T-test comparison for equality of mean load loss at 80 seconds using these
two strategies shows that they are statistically significantly different.
« If you only look at the mean, you don’t see the differences in the distribution

11
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Visualization of probabillistic results over time

Number of Hosts Scanned

Open Histogram Mean
40 -
35 -
30 L
25+
20 -
15 L
10 +
. 5k
| ' ' | 0 B i A
06 04 02 00 0 200 400
Frequency Time (s)

600
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Reproducibility and Randomness



and parallel vs. serial runs of minimega

Comparison of scanning results across platforms '.’z

Sceptre Serial vs Carnac Serial

T-test Results @ each time step
Sceptre 1000 Serial Runs
vs Carnac 1000 Serial Runs

A\

Carnac Serial vs Carnac Parallel

T-test Results @ each time step
Carnac 20 Parallel Runs of 50
vs Carnac 1000 Serial Runs

1.0 1.0 A
| 2 B
0.8 7 i1 0.8 \ —
v 0.6 o 0.6 1 ’_‘L_]
=
F 0.4 F 04  —
—— open —— open
02 _— Iclosed ' 024 — 'closed .
—— inconclusive —— inconclusive
—==- tscore =0.2093 -=—- tscore =0.0239 _[_I“/_
0-0 T T T T T T T T O-O T T T I------I----- T ----I-------I
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
Time Step Time Step
& We expected more similarities in the means (higher T R PA

\

Score values) when comparing results across platforms
or with parallel/serial implementation.
This led us to investigate randomness. y




What if we remove some of the randomness? (.!I
Baseline Comparisons: remove the random aspects of the Emulytics that we
control (probability of dropping a packet and random port scanning order)

No Probability of :
D . p Y ot Fixed Port Order for
ropping a Packe -
PRING Scanning
T-test Results @ each time step T-test Results @ each time step
Carnac 1000 Serial: no drop only Carnac 1000 Serial: fixed port sequence only
vs Carnac 20 Parallel Runs of 50: no drop only vs Carnac 20 Parallel Runs of 50: fixed port sequence only
1.0 1 1.0
— open —1
— closed
0.8 [V 0.8 — inconclusive
/\ / ===t score = nan
o 0.6 1 o 0.6 1
0.4 = 0.4-
—open
— closed
U — inconclusive |  accccceccceeeccsee———- - 0.2
=== tscore = 0.1456 /
0 0 L | L) T T T T 0 0
0 10 20 30 40 50 ' 10 20 30 40 50
e Step Time Step




Deeper dive info randomness issues (.gl

We did verity that we get the SAME exact results across all 1000 realizations
for both serial and parallel when we have no probability of dropping a
packet and a fixed port order for scanning.

Open

(9]

|

w

Closed

N

Number of open ports found
[

o

~N [oe] o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Time (sec)

a

@ parallel_norand_nodrop e e o o serial_norand_nodrop

wv

=

w

These are consistent with our \
understanding of the protocol

and the fastest the topology L 8 5 7 8 L B iR DA WD %W WA W E & D
can be scanned. fmeteed

e parallel_norand_nodrop ® e o o serial_norand_nodrop

Number of closed ports found
N

[y

o




Deeper dive into randomness issues (.!I

Now |look at effects one at a fime:

Open Closed

w

»~

r

w

/

N

Number of ports found
Number of ports found
O P N W D UT OO N 00 O

~—

[

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

[

1 3 5 7 9 11131517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

o

Time (sec) Time (sec)
e parallel_norand_nodropessss serial_norand_nodrop e parallel_norand_nodropeeeee serial_norand_nodrop
e serial_norand e serial_nodrop e serial_norand e serial_nodrop

Without dropped packets, ports are found earlier.
Port order has a larger effect than dropped packets.

PA

Interaction between Emulytics team and UQ team resulted in
greater understanding of randomness in the emulation:s.




Research Thrusts



Research Thrust: Discreteness in UQ (.gl

» Polynomial Chaos Expansions (PCEs)

o Stochastic expansions approximate the functional dependence of
the output response on uncertain model parameters by expansion in
a polynomial basis.

o The polynomials used are tailored to the characterization of the
uncertain variables.

o These approaches have become very popular in the computational
science community over the past two decades

o Maijority of the research is based on continuous random variables

» PCEs based on discrete polynomiails:
o Better suited to accurately represent discreteness in input
variables (compared to continuous basis PCEs)

- Expect better accuracy with fewer samples compared to continuous
basis PCEs

o Can represent full output distribution (compared to just summary
statistics with MC sampling)

CA
19
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R AV ;

esearch Thrust: Discreteness in UQ !

* Pilot tests to assess feasibility and potential benefits
o Comparing discrete and continuous PCE representations of

canonical functions in terms of accuracy and number of required

samples

o Analyzing cost (number of samples) as a function of
- Number of uncertain variables
- Number of levels for each discrete variable
- Nonlinearity of the approximated function

o In collaboration with John Jakeman and Cosmin Safta through
the FASTMath SciDAC institute

« On next slide, the discrete PCE is calculated in terms of custom
polynomials with coefficients obtained through regression on Leja
samples

* On the next slide, the continuous Legendre-Uniform PCE is obtained

through regression on points randomly sampled in discrete input

space

CA
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Discrete PCE outperforms continuous, especially '.
R0,

when some dimensions have few masses.

PCE Convergence for # Masses: [8, 8, 6, 10] PCE Convergence for # Masses: [8, 2, 4, 2]
—— Discrete —— Discrete
- Continuous 109 { —— Continuous
10—2 i
10—1 J
f- 10_3 3 [
2 © 1072
| . | .
(O] (O]
wn wn
s 107 S 1073
o o
1073 107
107>
10—
0 250 500 750 1000 1250 1500 1750 40 50 60 70 80 90 100

# points # points

Input space of size 8 x 8 x 6 x10=3840 Input space of size 8 x 2 x 4 x2=128

« Approximation of Genz Gauss Peak Function

« 4D discrete variables with uniform probability masses
o Number of masses in each dimension randomly picked
o Locations randomly picked in each dimension
21



Research Thrust: Multifidelity Modeling ('!I

« Gianluca Geraci will present slides on this topic

* Minimega emulator is used as the high-fidelity model, NS-3 network
simulator as the low-fidelity model

« Showing progression of multifidelity methods with a series of case
studies of increasing complexity:

o Qolis the response (requests/second) for http traffic
o 1 client/1server
o 1 source/1 destination but four routers in between. The routing is fixed.

o Same as above but the routing paths are given different costs to
demonstrate the effects of changing routes (e.g. changing topology)

o Bandwidth rates, delays, and number and size of packets are input
variables.

24



Dimension Reduction (.!i

o Two approaches:

- Explicit aggregation of nodes (100 nodes
aggregated fo one which has a similar
behavior as the 100 in terms of traffic, loads)

- Formal mathematical approaches

o We are starting to get large, rich data sefts (e.g. the
closed/open/filtered states over time, or all the
power states over time).

-~ Determine areduced or compressed representation
of the Emulyfic model’s inputs and/or outputs.

-~ Reduced space technigues involve a linear or
nonlinear mapping between the full space to a
reduced space of meta variables. Example:
Principal components analysis (XPCA), active
subspace 2

— Efficiency for UQ

XPCA: eXtending PCA for Combinations of Discrete and Continuous Data, Kincher-Winoto, Kolda, and Anderson-Bergman,
SAND2018-8213C. Also at: arXiv:1808.07510 23




FY20 Plan: Scalability and Tail Estimation ‘.!
« Research Thrusts

o Multifidelity UQ:

- Can we scale from 6 nodes, 14 uncertaintfies to a hundred nodes, hundreds of
uncertaintiese

- Can we include discrete choices (e.g. topology routing) within MF UQ at scale?¢
Develop multifidelity approaches for tail estimation. | ca

o Discrete polynomials:

- What is the limit for this %odorocche What are advantages and disadvantages
compared with plain MCx CA

o Dimension reduction: Take rich state information from the
scanning/detection/power systems state output and start with PCA.

o Confinue to support exemplar uncertainty and sensitivity analysis studies
o Validation studies

o SECURETk development

24



. . '
Publication Plan ‘.:

International Conference on Uncertainty 19Q3
Quantification in Computational Sciences and

Engineering

INFORMS 2019 Annual Meeting 20Q1
Multifidelity approaches for Emulytics models: 20Q4
SIAM/ASA Journal on Uncertainty Quantification

13th USENIX Workshop on Cyber Security 20Q4
Experimentation and Test (CSET)

SIAM Computational Science and Engineering 21Q2
14th USENIX Workshop on Cyber Security 21Q4
Experimentation and Test (CSET)

Experimental Design/Dimension reduction for 21Q4
Emulytics models: Journal of Network and Computer

Applications

25
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Multifidelity UQ for network applications:
Lessons learned and perspectives

Geraci, , Laura Swiler, Bert and Erin A

SECURE LDRD Grand Challenge i
External Advisory Board k- -
October 29th, 2019 b
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Multifidelity Uncertainty Quantification
(a recap from the previous EAB)




UNCERTAINTY QUANTIFICATION ’.‘

FORWARD PROPAGATION — WHY SAMPLING METHODS? A\

(Forward) Uncertainty Quantification: propagate the uncertainty parameters through the
computer codes in order to quantify their effects on the Quantity of Interest (Qols)

UQ context for SECURE at a glance:
> High-dimensionality, non-linearity and bifurcations/discontinuities

> Large set of modeling choices available (network topology, operative conditions, etc.)

Natural candidate for UQ:

> Sampling-based (MC-like) approaches because they are non-intrusive, robust and flexible...

» Drawback: Slow convergence (’)(Nfl/z) — many realizations to build reliable statistics

Goal of Multifidelity UQ:

Reducing the computational cost of obtaining MC reliable statistics by combining several models

Pivotal idea:

> Simplified (low-fidelity) models are inaccurate but computationally inexpensive
= low-variance estimates

» High-fidelity models are costly, but accurate
= low-bias estimates

@ Sampling methods are complementary with respect to the (discrete) surrogates approaches

1/27




MONTE CARLO '.z
GENERALITIES A\ !

How does a sampling method work?
Let consider a random variable @, we want to compute its expected value E [@] (or high-order
moments):

Let's use MC to compute the value ™

ne _ LS o)
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QN :N;Q
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©
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Miss @ 2

0 100 200 300 400 500 600 700 800 900 1000
Repetition
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MONTE CARLO '.z
INTRODUCING THE NOTION OF FIDELITY A\ !

Numerical problems cannot be resolved with infinite accuracy (discretization error), the MC
estimator for a specific fidelity Mth level

¢ et 1 & 0]
A e i
Q%,N = = ZQM
N
i=1
, #Hit
Let's use MC to compute the value m o
N =100, Nx=16 ——
pi ——
1 = v o Est Mean (Nx=4) ——
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Y -
LI 1 L IRV o 38
(9 P °
% @ e *3%],
) N
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° \ =
~ 05 LR — 3
o0 % o, o
L]
L Ky oW (‘ z
° e ® .o'
L
s o & © !
§ %o o ®
.00. > 9 Hit o 26 . . i . . . |
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MONTE CARLO '.z
OVERALL ESTIMATOR ERROR A\ !

Two sources of error in the Mean Square Error:

E[@% -E@)?] = "2V 1 Elaw - Q)
Pivotal idea:

» High-fidelity models are costly, but accurate
» low-bias estimates

> Simplified (low-fidelity) models are inaccurate but cheap
» low-variance estimates

Single Fidelity

Multi Fidelity

Woe
wa o
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Multifidelity Estimator: How does it work?




OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?

» HF model, i.e. the model for which you want to compute the statistics

P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

4/27




OPTIMAL CONTROL VARIATE
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE

What do we need?

» HF model, i.e. the model for which you want to compute the statistics

P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?
1 We take a MC estimator for the HF model, Q

4/27




OPTIMAL CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE ‘ a

What do we need?

P> HF model, i.e. the model for which you want to compute the statistics

P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated
How do we build the MF estimator?
1 We take a MC estimator for the HF model, Q

2 We add a weighted sum of unbiased terms, Zil a; (Ql - ﬁi) where fi; is an approximation to the
expected value of the ith LF model
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OPTIMAL CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE ‘ a

What do we need?

P> HF model, i.e. the model for which you want to compute the statistics

P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?
1 We take a MC estimator for the HF model, Q
2 We add a weighted sum of unbiased terms, Zil a; (Ql - ﬁi) where fi; is an approximation to the
expected value of the ith LF model
3 We consider N; LF evaluations: N; = [r;N] for each model
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OPTIMAL CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE ‘ a

What do we need?

P> HF model, i.e. the model for which you want to compute the statistics

P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?
1 We take a MC estimator for the HF model, Q
2 We add a weighted sum of unbiased terms, Zil a; (Ql - ﬁi) where fi; is an approximation to the
expected value of the ith LF model
3 We consider N; LF evaluations: N; = [r;N] for each model

4 We solve for the optimal weights «; (and the optimal number of LF evaluations N;)
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OPTIMAL CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE ‘ a

What do we need?

P> HF model, i.e. the model for which you want to compute the statistics
P (a set of) LF model(s), i.e. they are not required to predict the HF response but only to be correlated

How do we build the MF estimator?
1 We take a MC estimator for the HF model, Q

2 We add a weighted sum of unbiased terms, Eil a; (Ql - ;’li) where fi; is an approximation to the
expected value of the ith LF model

3 We consider N; LF evaluations: N; = [r;N] for each model

4 We solve for the optimal weights «; (and the optimal number of LF evaluations N;)

What do we obtain?

How does the variance reduction term look like?

wj=1
Ty,

P For a single low-fidelity model: R?ACV—I = p%, where ry =

P (Pearson's) correlation coefficient: py

. ; CHF
»  Computational cost ratio: w =

CLF
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MULTIFIDELITY ESTIMATOR '.z
HOW DOES IT COMPARE WITH MC? A\ !

O] 0 C
clie = clio © (w= 02 )

T Cur’

0.9 :
0.8 \\\ \
3 07 \‘\\ e
% - \ Theta
g \ e
§ 04 A e
8 03 . e 0 —
0.2 \ . 81451
T o 03 ——
B e G S S — 02 —
0 L AT : 01 ——
1 10 100 1000 10000

FIGURE: MF normalized total cost w.r.t. to a MC with same estimator variance.
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MULTIFIDELITY ESTIMATOR z

HOW DOES IT COMPARE WITH MC? A\

Estimator distribution
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Correlation squared

MULTIFIDELITY ESTIMATOR
HOW DOES IT COMPARE WITH MC?
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Correlation squared

MULTIFIDELITY ESTIMATOR
HOW DOES IT COMPARE WITH MC?
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Numerical Experiments




EMULATION TOOL '.z
minimega ‘ a

minimega

» Tool to launch, manage and instrument virtual machines and networks
» It can run on your laptop or distributed across a cluster

» Scriptable API for automated experimentation

» Open source GNU GPLv3-licensed, publicly available and active project

» Integrate real hardware or humans with virtual experiments

Network emulation
» Experiments run in real time on virtualized hardware
> Initialization phase to launch VMs (OSes, applications, etc.)

> Virtual hardware introduces artifacts (i.e. stochasticity) from shared resources and nested
functionalities

Running real software captures real system behaviors
Allows for heterogeneous OSes

Flexible with respect to unknown software (does not require source code)
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SIMULATION TOOL '.z

ns-3 ‘

ns-3
> ns-3 is a discrete event simulator for IP and non-IP addresses
> Software written in C++ with bindings available for Python
» GNU GPLv2-licensed
>

Possible to construct simulations from reusable components to configure nodes, topologies
and applications

Discrete-event simulation
> Time evolves from event to event
» A single-threaded event list is executed
> Events are scheduled to occur at specific virtual /simulation time
> Events can generate additional events

» Simulation ends when a specific time is reached or there are no more events

10/27




MULTIFIDELITY FOR NETWORK APPLICATIONS I.;
A VERY RECENT STORY A\ g

Few comments on the State-of-the-art:

» Uncertainty Quantification is a relatively new concept in network applications
» Multifidelity UQ is a new concept in the UQ realm

> MF UQ for Emulytics is going to unveil challenges that cannot be entirely anticipated

Progression of test cases with increasing complexity:
» 1 Client - 1 Server example

> Is the concept of low-fidelity applicable in computer network applications?
> Is ns-3 a viable way of constructing such low-fidelity models?
> How much difficult is it to obtain a correlated low-fidelity model?

» 4 routers case with fixed costs

> Can we still apply MF UQ for a more complex (fixed) topology?
> How much difficult is it to obtain a correlated low-fidelity model for a more
realistic scenario, i.e. higher number of uncertainty parameters?

> 4 routers case with varying costs (i.e. varying topology)

> How good is ns-3 in capturing the response if the topology changes?

What can UQ provide today?

» Our experience with a variety of applications in Computational Science suggests to us that
performing UQ studies can help obtaining beneficial information starting from the
verification process throughout the entire system validation

11/27
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Test #1: 1 Client - 1 Server (ninimega—ns-3)




FIRST minimega—NS-3 DEMONSTRATION '.z

NETWORK CONFIGURATION: 1 CLIENT - 1 SERVER A\

Network Configuration
> 1 client - 1 server (possible to extend to multiple clients)
» 100 Requests

Uncertain Parameters
> DataRate ~ U(5,500)Mbps
> ResponseSize ~ In/(500, 16 x 10%)B

Fidelity definition
> Quantity of interest: Number of requests/s
> minimega — HF: 100 Requests (average over 10 repetitions)
» ns-3 — LF: 10 Requests (Delay 50ms)
> ns-3 — LF*: 1 Requests (Delay 5ms)

Host Userland

¢ Guest Userland Guest Userland
HF 1
HTTP HTTP
LF | 0.016 Server Ciint
LF* 0.002 !
[ Guest 08 | Guest 0S
TABLE: Normalized Cost ovs Bridge .

We assume serial execution for the Host 08
LF model, however we might easily '

increase the efficiency of LF (ns-3) by . i
running multiple concurrent evaluations FIGURE: Network Conflguratlon 12/27




ESTIMATOR STANDARD DEVIATION

FIRST minimega-ns-3 DEMONSTRATION '.z

Number of Requesls/s

1000
Single Fidelity ——
Multi Fidelity (HF-LF) ——
Multi Fidelity (LF‘% e
3 100 [
Q
7
s
©
E
g 10
1 H
10 100

Equivalent HF cost

FIGURE: Exp. Value StDev

1000

Confidence Interval (Mean)

Number of Requests/s
900 T

Single Fidelity (HF) ——
Multi Fidelity (HF-LF) —— |
Multi Fidelity (HF-LF*) ——

800
700
600
500
400
300
200 1
100 1

0
10 100 1000
Equivalent HF cost

FIGURE: Exp. Value Confidence Interval

@ More than 70% of variance reduction is obtained by adding only an equivalent cost of 11 HF runs
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Test #2: 4 routers case with fixed costs (ninimega—ns-3)




HIGH-DIMENSIONAL TEST '.z
4 ROUTERS CONFIGURATION A\ !

Network Configuration

> Source and Destination separated by 4 (non-aligned) routers

» 2000 Requests

Uncertain Parameters (7 parameters)
> DataRate ~ U(5,500)Mbps
> Delay fixed to 2ms
Fidelity definition
> Quantity of interest: Number of Requests/s
» HF (minimega): ResponseSize 100KB (average over 5 iterations)
> LF (ns-3): ResponseSize 50B and 10 Requests

c S —&
HF 1 b A \ 5
LF | 2.45E-4

TABLE: Normalized Cost c D psT

FIGURE: Network Configuration
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HIGH-DIMENSIONAL TEST '.z
4 ROUTERS CONFIGURATION — (MINIMEGA—NS-3) RESULTS A\ !

130 10

Muttifidelity —— Multifidelity —=—
Monte Carlo Monte Carlo ——
5 120
H 8
£ 10} &
S 100 E
§ M @
w0 L
° T k!
& S 153
g % oy VN g
o
g
60 1
10 100 1000 10 100 1000
Equivalent HF cost Equivalent HF cost
FIGURE: Estimated means and Cls. FIGURE: Standard deviation.
Notes:

» 30% variance reduction

» Correlation ~ 0.56 and r = 43
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Test #3: 4 routers case with uncertain costs
(Can we use UQ principles to understand better ninimega’s response?)




HIGH-DIMENSIONAL TEST '.z
4 ROUTERS CONFIGURATION — MINIMEGA’S RESPONSE A\ !

Network Configuration

» Source and Destination separated by 4 (non-aligned) routers — This case has 5 edges

» 2000 Requests
Uncertain Parameters (14 parameters: 8 rates and 6 costs)
> DataRate ~ U (5,500)Mbps
> Cost ~ U(1,4) (cost for A-D is ~ U(3,6))
Fidelity definition
> Quantity of interest: Number of Responses/s

> HF: ResponseSize 100KB (average over 10 iterations)

SRC A B

[ D DST

FIGURE: Network Configuration
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HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — MINIMEGA'S RESPONSE

Response (Mean Value)

Reg/s

Reg/s (CoV over the iterations)

150 200 250 300 350 400 450 500

Requests/s — Network device: e1000

0.4

Can we study the response of the system conditioned on the paths?

Response (Coeff of Variation)

150 200 250 300 350 400 450 500



HIGH-DIMENSIONAL TEST
4 ROUTERS CONFIGURATION — MINIMEGA'S RESPONSE

Reg/s

140

120

0 HE
0 50 100 150 200 250 300 350 400 450 500

Requests/s — Network device: e1000

CoV conditioned on Paths (Minimega)
0.4 T T

Req/s conditioned on Paths (Minimega)

MO P = S & O P P
. g DA A-

T
o oo n®

CoV

. 7 *e e

L o e I Y

MO O 9

0 50 100 150 200 250 300 350 400 450 500
Realization ID

Realization ID

@ Why is the response over the paths A-B-D and A-C-D different? They should be consistent...
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HIGH-DIMENSIONAL TEST g /
4 ROUTERS CONFIGURATION — MINIMEGA’S RESPONSE CONDITIONED ON THE SELECTED PATH !

Requests/s — Network device: e1000 — virtio

Reaq/s conditioned on Paths (Minimega) -- All vars CoV conditioned on Paths (Minimega) -- All vars
250 — — v BB 04 1 AD
2 A-BD - AB-D -
ABCD = 0.35 ABCD =
200 ACD - ACD -
150
@ e >
g 8
100
50
i . 0
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Realization ID Realization ID

@ We looked at the network interface and replaced €1000 with virtio
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HIGH-DIMENSIONAL TEST g /
4 ROUTERS CONFIGURATION — HOW DOES THE COST (PATH) AFFECT THE RESPONSE? ‘

Requests/s — Network device: e1000 — virtio

Reqg/s conditioned on Paths (Minimega) -- Fixed rates CoV conditioned on Paths (Minimega) -- Fixed rates
220 — . . AD o 03 — AD o
A-BD - AB-D -
ABCD = . * . . ABCD =
200 ACD - 095 el 2 ACD -
180
0.2
@
5 >
o
g 160 3
0.15
140
120 -
] =
100 L— : 0.05 o
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Realization ID Realization ID

This further demonstrate the consistence of results over different paths
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How difficult it is to select a low-fidelity model?
Can we use the flexibility in selecting the LF at our advantage?




4 ROUTERS CONFIGURATION '.z
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM) ‘ !

How do we select the ’best’ low-fidelity model?
> The LF model does not need to be predictive (i.e. the BIAS w.r.t. the HF can be very
large), but we need it to be correlated and inexpensive to run
> Therefore, designing a priori a LF model might not always be the best solution (for MF)

Very often a mismatch in parameterization exists between HF and LF — we can use the
'free’ parameters as tuning parameters to increase the correlation (given a finite set of HF
data)
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4 ROUTERS CONFIGURATION '.z
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM) ‘ !

Number of Requests = 10 Request Size = 50B
1 T T

) 9}
= =
H H
? ?
o o
o o
j: 3
£ N
K] T
E £
o o
= =

#Req =10 —=—

#Req=100 —=—

- : : #Req =500 =
100 10° 104 10° 102 108 0% 107 10° 102
Delay [s] Delay [s]

Notes:

» Several LF models can be obtained for different combinations of Number of requests and
Payload Size

> Each LF combination has a different correlation (with minimega) and cost

» The cost of a MF estimator depends on the properties of the LF model

The LF can be optimized to obtain the maximum accuracy for a MF estimator beforehand,
i.e. without requiring additional HF runs
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4 ROUTERS CONFIGURATION '.z
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM) ‘ !

Low-Fidelity Selection

Normalized Cost w.r.t. MC

#Req = 10, Size =50B —=—
0.1 #Beq =500, Size = 1KB —=—

108 10° 10 103 102
Delay [s]

The most predictive LF model on paper, might not be the most efficient from a MF
perspective
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4 ROUTERS CONFIGURATION '.z
NOT ALL LF MODELS ARE CREATED EQUALS (WE CAN TUNE THEM) ‘ !

Low-Fidelity Selection

1 L

Normalized Cost w.r.t. MC

#Req = 10, Size =50B —=—
0.1 #Beq =500, Size = 1KB —=—

108 10° 10 103 102
Delay [s]

The most predictive LF model on paper, might not be the most efficient from a MF
perspective
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How can we use this technology to support our customers?




A REALISTIC (HYPOTHETICAL) SCENARIO
SUPPORTING OUR CUSTOMERS

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?
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A generic UQer: Yes, give me the data and let’s run a MC simulation
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SUPPORTING OUR CUSTOMERS A\

A REALISTIC (HYPOTHETICAL) SCENARIO '.z

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?

A generic UQer: Yes, give me the data and let's run a MC simulation

Estimator distribution

0.18 T T T T T
MC -- minimega 21
0.16 - —
S 014
B
2 012
2>
‘D 0.1
{art
[0}
o 0,08
=
5 006
8
g o004
0.02
0

90 95 100 105 110 115
Expected Value
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SUPPORTING OUR CUSTOMERS A\

A REALISTIC (HYPOTHETICAL) SCENARIO '.z

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?

The MF-UQer: Yes, give me the data and let's run a MF simulation. Please also give me your
best (i.e. most predictive) LF model
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SUPPORTING OUR CUSTOMERS A\

A REALISTIC (HYPOTHETICAL) SCENARIO '.z

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?

The MF-UQer: Yes, give me the data and let's run a MF simulation. Please also give me your
best (i.e. most predictive) LF model

Estimator distribution

0.18 . T T T T
MC -- minimega 241
0.16 MF -- ns3 (500,1kB) [0
S o014
3
5 o1z
>
2 o4
=
[}
o 0.8
=
5 006
8
£ o004
0.02
0

90 95 100 105 110 115
Expected Value
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A REALISTIC (HYPOTHETICAL) SCENARIO
SUPPORTING OUR CUSTOMERS

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?
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SUPPORTING OUR CUSTOMERS A\

A REALISTIC (HYPOTHETICAL) SCENARIO '.z

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?

The SECURE-UQer: Yes, give me the data and let’s run a MF simulation. Let me tune the LF
model (no physical experiments)
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SUPPORTING OUR CUSTOMERS A\

A REALISTIC (HYPOTHETICAL) SCENARIO '.z

Customer X: | have a physical system for which I've collected data in the presence of uncertainty.
Can you help me assessing the response’s statistics?

The SECURE-UQer: Yes, give me the data and let's run a MF simulation. Let me tune the LF
model (no physical experiments)

Estimator distribution
0.18 ; v , , ,
MC -- minimega =

Qs I MF -- ns3 (500,1kB) [ |
S o014t MF -- ns3 (10,508) [ -
[}
5 o2t 4
2
2 o1
(=4
[
o 008
=
5 006
S
£ o004

0.02

0

90 95 100 105 110 115
Expected Value 26 /27




Concluding Remarks
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CONCLUSIONS g'.z
PRELIMINARY RESULTS: MULTIFIDELITY UQ FOR NETWORK APPLICATIONS ‘ s

State-of-the-art

>

|

Multifidelity Uncertainty Quantification proved to be effective for many different applications

Encouraging results have been obtained for simplified network configurations and scenarios

Lessons learned from the Emulytics standpoint

>

>

Configuration of the network devices (and potentially other parameters) has an impact on
the system response — Validation

Routing protocols used in the minimega and ns-3 models break ties in path costs differently

Future Directions

>

>
>
>

Extension to additional statistics (Tails, risk measures, etc.)
Multifidelity Sensitivity Analysis
Exploration of data-driven approaches for LF modelling (ROMs, active directions, etc.)

How to fully parameterize models? Scripts with 204 arguments begins to get unruly.
Topology generator — Dakota annotated graph — minimega/ns-37

How to pivot these experiments to more security-relevant quantities of interest? Study denial
of service? Simulation and emulation may not be the best models for real-world DoS.
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Approximate Control Variates
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OPTIMAL CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH KNOWN EXPECTED VALUE ‘ a

Let's consider M low-fidelity models with known mean. The Optimal Control Variate (OCV) is generated by
adding M unbiased terms to the MC estimator

& =+ 3 e (&~ )

> Qi MC estimator for the ith low-fidelity model

> 1i; known expected value for the ith low-fidelity model
> o =[a;,...,ay" set of weights (to be determined)

Let's define

P The covariance matrix among all the low-fidelity models: C € RMXM

P The vector of covariances between the high-fidelity @ and each low-fidelity @;: ¢ € RM
> ¢ = c¢/Var(Q), where p; is the correlation coefficient (@, @;)

The variance of the OCV estimator (optimal weights a* = —C_lc)
Var(@%Y) = var(Q) (1 — Rjcy) = var(Q) (1-&"c™"s), 0<Rpey <1.
NOTES:

1 For a single low-fidelity model: R%CV71 = p%

2 For all estimators in literature (MLMC, MFMC, etc.): R = p? < R%CV
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Optimization Thrust Overview 5

ﬁ

Problem: Decision-makers need to protect power grids against
informed, adaptive, malicious adversaries attacking their cyber
networks

Decision-makers need to:
o Account for likely adversarial behaviors/responses
o Plan response strategies
o Discover effective investment options

Challenge: There are exponentially
many adversarial behaviors, response
stfrategies, and investment options




Cyber Risk Modeling in Grid Systems

Consequence Uncertainty
Assessment Analysis

Threats

Emulytics

- >
Uncertainty Quantification

« Optimization Goal: [dentify investment options that most effectively
protect critical systems from cyber-physical threats

=
:! 7 .

Consequence Consequence

Attack Frequency




Motivating Concerns (’&

System Design is the focus of the optimization thrust
« How do we model system-level consequences?
 Where should we place cyber detectors in our networks?

 How can we partition our network to enhance security¢

Key Challenges

« System models can have many parameters, but we will have
limited data from Emulytics and UQ

* The optimization space accounts for threats and system options
o The threat space is very large
- Even small systems can have very large design spaces!



Interdiction — A Different Approach

That's a lot of choices!




Interdiction — A Different Approach

...and our plan needs to
account for all of their
choices!




What's Newe (.!I

Linear Programs

- Easily solved
- Widely used commercial and academic solvers

min, > c"x NOTE: These
s.t. Ax < b methods are
not cyber or
grid specific

Linear Bilevel Programs
- Hard problems (NP-hard)
- No general-purpose commercial solvers for discrete lower level decisions

: T T
min,» ¢ x+dy Upper Level Problem
S.t. Alx + Bly < b1

min,,sg cax+dyy
Lower Level Problem
Azx = Bzy < bz




What's Newe

(
Enumerate and
¥l 5 Evaluate All
© | T | Defender/Atftacker
L Options
5\
c
N
-
O
2
o
> 2 Easy Stochastic
T O ‘
< - Problems Programming
Few Many

# of Options to Defend and Attack



How Do We Solve These Problems?

Bilevel Solvers (Python) ﬁ@p

Opt Modeling (Python) Pyomo

I\

Gurobipy

Opt Solvers (Python)

Opt Modeling (C++)

Fischetti Mib$

A /

LP/IP/NLP Solvers (C/C++) CPLEX CBC Gurobi

Bilevel Solvers (C/C++)




= (Y
)" PYOMO (.!

An Optimization Modeling Tool
= Built in Python

= Diverse modeling capabilities

= Stochastic programs, disjunctive
programs, efc

= Can express modular, hierarchical
model structure

= Automatic model transformations

"WINNER

4 )
S.

INFORMS Computing

: \Soc:efy Prize - 2019 )

> 130,000 software
downloads in 2019

> 90,000 chapter
downloads of
the Pyomo book

Pyomo —
Optimization
Modeling

in Python




Technical Focus Areas (.!I

Defender- Bi-Level Multi-Level Generalization of
Attacker Game | (Attacker-Defender)| (Defender-Attacker- Formulation Approach
Models Defender)
Knowledgeand | Models of Cyber Stochastic Distributionally Robust
Data Components Interdiction
Uncertainty
Tailored Algorithms for Algorithms for Global Methods for
Optimization Nonconvex Discrete Subproblems Nonconvex, Discrete
Algorithms &S:bproblems ) Subproblems

| Cyber Application in FY19: Worst-case scenario analysis ]

Cyber Application in FY20: Opfimal Placement of Infrusion Detection
Cyber Application in FY21: Attack Graphs With Defender Intervention
* Modeling (+), Algorithms (-)
« General Algorithms (+), Tailored Algorithms (-)

- Software (+)
e RN L} Y N NN N ———



Major FY 19 Developments (.!I

1. Assessing the state-of-the-art
2. Bilevel software and solvers

3. New cyber-grid models



1. Assessing the State-of-the-Art ('!I

« The optimization feam has performed a review on the
iterature to understand the current state-of-the-art

« The team attended the
International Workshop on
Bilevel Programming
(June, 2018)

IWOBIP'1S8

2nd International Workshop on
Bilevel Programming

18-22 June 2018
Inria Lille-Nord Eurcpe, Lille, France

The team decided to not focus on drafting an article for this
review

 |tis not clear how general existing methods are

« We are still learning what we need for cyber grid
applications



Parfial Bilevel-Optimization Survey (.!I

* Mixed or pure integer in both upper and lower, no stochasfticity

- [DeNegre and Ralphs 2008], [Dominguez and Pistikopoulos 2010],
[Fischetti et al. 2016, 2017, 2018], [Kleniati and Adjiman 2015], [Lozano
and Smith 2017], [Mitsos 2010], [Tahernejad et al. 2016], [Tang et al.
2016], [Wang and Xu 2017], [Wiesemann et al. 2013], [Xu and Wang
2014], [Yue et al. 2019], [Zeng 2015], [Zheng et al. 2018]

* No integer variables, no stochasfticity
o [Zheng et al. 2018], [Dempe et al. 2018]

- [Zhao and Zeng 2012] mixed-integer upper and lower with a notion
of uncertainty. No probabilities, consider worst case. Tri-level

« Surveys
o [Dempe 2005, 2018], [Liu et al. 2018]

Motivating Concerns
« Available software (Ralphs et al. and Fischetti et al.)

* Lower level integer decisions (Yue et al.)

14



Existing Branch and Cut Bilevel Solvers (’i

* Mib$S
o Ralphs et al. (Lehigh)
o COIN-OR bilevel programming branch-and-cut solver

o [\é\ibS IS open source, we can look under the hood and add our own
ideas

o We have tested MibS on existing sample problems

» “Fischetti Solver”
o Fischetti et al. (U. Padua)

o Uses CPLEX branch-and-cut algorithm and built-in callbacks to make the
branch-and-cut tailored to solve bilevel programming models

o Leverages commercial solvers, which are likely to be robust
o We have tested the solver on existing sample problems

* Future Work

o Apply both solvers to our past models for validation
o Determine which of our new models can be solved with these solvers



Zeng Solver (.!i

“Zeng Solver”
« A projection-based reformulation and decomposition algorithm

« Allows for the solution of bilevel programs with integer variables in the
lower-level problem.

« Uses column-and-constraint-generation method to avoid enumerating
all possible integer solutions.

Implementation in Pyomo
« Pyomo implementation leverages unique Pyomo capabilities

« This implementation runs successfully and correctly solves simple
problems that were demonstrated in the paper.

Next steps
« Scalability studies

» Investigate the effect of adding uncertain data in the upper level
constraints and solving robustly



2. Bilevel Software and Solvers (.sl

Challenge: how are we going to solve cyber-grid optimization
applications in SECURE

« No commercial solvers exist for our applications

« Few academic solvers, with nontrivial limitations

Observation: This is an emerging area with a lot of interest

- When we deprecated pyomo.bilevel, people complained!



What is the "“best” way to build solvers? ('!I

Bilevel Solvers (Python)

Build Solvers on top of Pyomo
Opt Modeling (Python)

7N

Opt Solvers (Python) Build Solvers on top of Python

Opt Modeling (C++)

Build Solvers on top of C++
Bilevel Solvers (C/C++)

A / L \

LP/IP/NLP Solvers (C/C++) CPLEX CBC Gurobi IPOPT

18




FY19 Software Activities (.!I

Using Pyomo
- Developed the PAO package from pyomo.bilevel
- Reworked and generalized dualization logic

- Implemented bilevel solver of Zeng et al.

Using Python
o Considered implementing bilevel solver of Zeng et al.
o Developed POEK, which is 4-6x faster than Pyomo in problem setup
- Demonstrated that POEK supports fast resolves to Gurobi and IPOPT

Using C++
- Developed COEK, which supports solver-agnostic direct interfaces
o Interfaced COEK with Python (POEK)



Comparison of Approaches

Key Features Using Pyomo | Fischetti Python Fischetti C++
C++

PAO Zeng Gurobipy POEK  COEK CPLEX COIN-

OR
Fast
Solvers N i i Y Y Y
SEET Y N % Y N Y
Agnostic
Expression v v v Y v N
Repn
Martrix N N N N v v
Repn
Robust v N o 2 N N
Xforms

20



Optimization Software Strategy (.!I

Observations:

« Software has not dominating our work
o This was a concern at the last review

« But, we need to make optimization software a larger focus in SECURE

Challenges With Existing Techniques:
« Software control is limited

Minimal debugging information

Licensing issues

Fixed MIP solvers hard-coded (which has performance implications)

Modeling limitations

FY20 Focus: Develop solver implementations to demonstrate that we
can effectively deploy scalable solvers

21



3. New Cyber-Grid Models (.!I

Challenge: Robust Challenge: Capturing
predictions with limited meaningful abstractions for
Emulytics/UQ predictions Emulytics analyses

Optimization

Models Models that

Parameterized Help Define

with Emulytics Emulytics
Data Experiments

Uncertainty
@]lelalililelelile]n

Emulytics




3. New Cyber-Grid Models (.!I

« Reachability with a
simple topology-
based attack model

Modeling with attack
graphs Optimization

Placement of cyber
sensors

Uncertainty
Quantification

Emulytics
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3. New Cyber-Grid Models (.!I

 Network
segmentation to
mitigate large
disruptions

Opfimization Assign physical
devices fo RTUs
mitigate large
disruptions

Uncertainty
Quantification

Emulytics



Game Theory / Optimization (.!i

Optimization Optimization
of Models
Parameterized
with Emulyfics
Data

Optimization
to Define
Emulytics

Experiments

Uncertainty
Quantification

Emulytics

Threat Modeling with
Game-Theory
Methods to Evaluate
Success Metrics




GPLADD / Bilevel Programming (.;!

Game Theory
« Can model multi-stage games
« Solvers often provide heuristic solutions

« Can provide exact solutions in special cases

Bilevel Programming
« Usually limited to 2- or 3-stage games

« Solvers usually provide exact solutions to general classes of
problems
o But not guaranteed to find solutions quickly

« Can provide bounds on optimality
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FY20 Focus Areas (.!i

« Develop and refine cyber-grid models, with a focus on integration
with UQ and Emulytics teams
o Demonstration Problem focused on Intrusion Detection System Design
- Demonstration problem focused on partitioning and device mapping

« Software development to enable the solution of these problems
o Resolve issues using MibS (with Lehigh)
o Re-implement Fiscetti et al approach using GUROBI
o Address performance bottlenecks (in Pyomo or PAO)

* New algorithmic development Academic Collaborators
- Robust formulations (RPI) Dey, GATech
f et : Mitchell, RPI
o Pessimistic formulafions (GATech) Ralphs. Lehigh
Zeng, U Pittsburg
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Specific Accomplishments (.!i

« 6 Posters/Presentations
o IMA COIN-OR Workshop, INFORMS Computing Society Conference,
GraphX, IWOBIP Workshop, INFORMS Annual Meeting, Resiliency Week
« 2 Publications
o One lead by optimization team

* Preliminary model implementations
o Stochastic Worst Case Attacker
o Stochastic Intrusion Detection Placement
o Network Segmentation

* Preliminary solver implementations
o PAO Dualizations
o Zeng bilevel solver

« Copyright Assertions (in process)
o PAO, COEK, POEK
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Optimization Modeling Outline (.:

 Trilevel Programming High-Level Overview

* Preliminary Cyber Physical Security Models
o Worst Case Attacker

o Stochastic Worst Case Attacker

o Stochastic Infrusion Detection Placement

o Network Segmentation

» Future Optimization Problems



Trilevel Programming (.gl

Designer Meet the players!

Each player gets 1o make exactly
one set of decisions.

Designer goes first and knows what
Attacker attacker will do

Attacker accepts designers decision
and goes next knowing what
defender will do

Defender goes last and accepts
attacker decisions




Trilevel Programming (.!i

Designer * Minimizes designer objective
subject to design choice

qu '\ constraints
« Objective and constraints may

.‘i" include both designer and
attacker decisions
« The designer knows what optimal
choice attacker will make given
design choices

Attacker




Trilevel Programming (.!i

Designer

 The attacker accepts designer
choices and must work with them.
These designer decisions set the
attacker’s choices

« Maximizes attacker objective
subject to attack choice
constraints

« Objective and constraints may
include both attacker and
defender decisions

« The atftacker knows what optimal
choice defender will make given
attack choices

Attacker




Trilevel Programming (.!i

Designer

Attacker

The Defender accepts
attacker choices and must
work with them. These attack
decisions set the defender’s
choices.

Opftimizes an objective that
depends on only defender
decisions

Constraints includes defender
decisions only




Bilevel Programming (.a

Attacker

@

Same game, one less player!




Feedback Request (.!i
Now | will present a series of four bilevel/trilevel models for addressing cyber
physical security questions.

| welcome any feedback you can give on these models!



Cyber Physical Aftack Sequence Modeling (.!i

internet

Substation

Utility Control Center

Firewall

1]

Regulatory Agency

Router

EMS

Firewall g-‘b!
Eem

Router

Switch

Relay A Relay B

Relay C

P Swich

J |
Relay Controller ﬁ [ s m—
“ ard Security

VoiP Phone P!

Reader Camera

« Elements of cyber attack
seguence

o Sequence of hosts

o Aftacker access at hosts
o Afttacker actions at hosts
o Network knowledge

o Success probabilities

Consider multiple attack
sequences with some
overlapping effort

* First question: which attack
sequences are most damaging
to the gride

Oleg Sheyner and Jeannette Wing. Tools for generating and analyzing attack graphs. In
Formal Methods for Components and Objects, volume 3188, pages 344-371. Springer, 2003. 9




Attack Graph =0 )

A simple example with Terminal nodes inflict damage
6 attack sequences... on grid if reached

T

|
>

User access at
Workstation A on
regulatory agency
network

Y

No knowledge of hosts
on regulatory agency

network

Attacker on
personal desktop
with no
knowledge of
regulatory agency
network

Attack sequences can only start x
ot [T Infermediate nodes can only be

reached if at least one
predecessor node is reached




Attack Graph Based Attack Model (.!I

A slightly more complicated example:

Hﬁmli:

P Relays at multiple

pstati b
Multiple initial nodes supbstarions can pe

. : compromised and
possibly fronr]r.mulhple ?_,—"—\_.. e arierelier o
communication open loads,

nefworks and/or generators, or lines
multiple physical o— . ]

attackers »Tf — >0
O

Combining kill chains into a single
graph allows for analysis of efficient
coordinated attacks




Worst-Case Attacker Model

max v(z,y,u,v,w,z)

T,Y,u,v,Ww,z

s.t.

ZEET Dez.
Ter < ZeeT, .

Te < Yr

Yr SZSGTT Te

Yo =) =R +1<w < (1-)
Y oer, = u) —[Rel +1< 0 < (1—yy)
2rer, (1 ¥) IRyl +1<wy < (1-y)

<B
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vz, y,u, v, w, 2) =
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s.t.

Pk = Ve Br(Oo(k) — Oaky — Ok)
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B ™ F X s ™
— Sp™ < pp < S

G ,min G G.max
w, P, <p;, Sw P,

L _L.,S L
Zzezzb (I-w)R" <p,™ < Zteﬁb hi Flow

— <<

Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids
Javier Salmeron-Kevin Wood-Ross Baldick - IEEE Transactions on Power Systems - 2009

Attack Model

Damage Control
—

Optimal Power

ZleEz; PlL .

*Derived from synthetic data that does not represent actual

grid: https://electricgrids.engr.tamu.edu/electric-grid-test-
cases/activsg2000/ 12




Worst-Case Attacker Model Status (.sl

« Data Requirements from Emulytics and UQ
o Aftack graph
o Edge weights: how hard is it to get from source node to destination node?
o RTU mapping: if a relay is compromised, what grid components are opened?

« Solution Technigque

o Dualize defender problem and collapse into a single-level mixed-integer program
(MIP)

o Use commercial solvers

* Problem Difficulties

o Models transformation leads to a MIP that can be difficult to solve due to
numerical condifioning

o New structure of reduced model can create computational difficulties



Comparison with GPLADD ”!.4

d

Only one stage per decision maker
No attacker -> defender -> attacker -> defender -> attacker -> defender

Our models explore a search space with exponentially many choices to
make high-level decisions

Future goal is to create synergy between optimization bilevel models and

GPLADD
Defender moves

time
Attacker moves



Stochastic Attack Graph

User access at
Workstation A on
regulatory agency

0.65 ol 0.75 0.1

Y

No knowledge of hosts
on regulatory agency

Attacker on

personal desktop network 1
with no I
knowledge of
atory 0.42
regulatory agency
network L
0.05 0.65 0.85

_ EMULYTICS
Now let's add edge probabilities
to model difficulty in moving )>
between nodes

DAKOTA




Stochastic Aftack Graph Based Attack Model ( !I

« Aftacker pushes “effort” through the network from black node to terminal
nodes

« Edge probabilities cause effort leaking

« Total flow out = Total flow in after leaking
« Effort threshold is used to determine if RTU's are compromised

Attacker effort budget

/ If effort reaching this terminal
node is above 4, three RTU's
are compromised

Feng Pan, William S. Charlton, and David P. Morton. A stochastic program for interdicting smuggled nuclear material. In Network Interdiction
and Stochastic Integer Programming, volume 22, pages 1-19. Springer, 2003. 16

(max effort, success probability)




max y(u,v,w)
a,z,0,uu,w

4

€€EF () —
= E e,
L’GET(,)
E e = E 13(‘__&‘(1@
e€€p(s) e€€r(y)
e < U,
tsdr < 24

Zr?k;“ —y)— Rl +1 <y <(1—y,)
ZrE’Rk(l = yr) = IRLI +1 <y < (1 £ yr)
3 e, (1= 00) = Ryl +1 <y < (1~ )

- L.S
'}'('U‘, . 'lU) = min E pb
8.p.p% .p=S beB

iy

a@a
sit. Damage Control iy
P = Uk Bi(Ook) — far) — Ok)

. ‘ i L L
- Zke{k'lo(k’):b} Bk Zke{k'id(k')=b} =2 e, T P
— S <p < S
,wngC.min < P? < ,wngC.ma.r

Pl L L.S L
Y e G sn < Yo R

Stochastic Worst-Case Attack Model

SRS o

{

*Derived from synthetic data that does not represent actual
grid: https://electricgrids.engr.tamu.edu/electric-grid-test-
cases/activsg2000/ 17




Stochastic Worst-Case Attacker Model Status (.!I

« Data Requirements from Emulytics and UQ
o Aftack graph

o Edgogle probabilities: probability of not being detected when moving between
nodes

o RTU mapping: if a relay is compromised, what grid components are opened?

o Attacker effort budget: how much total effort does the attacker have available
to expend?e

o RTU effort: how much effort does each RTU need before the attacker controls it2

« Solution Technique

o Dualize defender problem and collapse into a single-level mixed-integer program
(MIP)

o Use commercial solvers

* Problem Difficulties

o Models transformation leads to a MIP that can be difficult to solve due to
numerical condifioning

o New structure of reduced model can create computational difficulties



Infrusion Detection System Placement ('!I

EMULYTICS

(3, 0.65)
DAKOTA

(5, 0.75)

10

(4, 0.75*0.85)

o

(6, 0.65)




Intrusion Detection System Placement Model

min A(x)

Network Designer ©

XTI
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st. —
10

(8,0.75)
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—w<Gp<mw grid: https://electricgrids.engr.tamu.edu/electric-grid-test-
cases/activsg2000/ 20



IDS Placement Model Status (.!I
« Data Requirements from Emulytics and UQ

o All data from stochastic worst-case scenario attack model

o Sensor costs and budget

o Sensor probability multipliers: if a sensor is purchased, which edge probabilities
are affected and by how much are the probabilities decreased?

« Solution Technigque
o Dualize inner problem and reduce to a difficult mixed-integer bilevel program
o Try MibS, Fischetti solver, and recent algorithms

* Problem Difficulties

o The resulting bilevel program cannot be reduced again intfo a single MIP
Leader has both continuous and discrete variables
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Network Segmentation Problem (.!|

Transmission System
For now, assume three Operator (TSO)

security zone model

one 2

lone |

Substation] Substation Substation 3

&= —E— —]
one 0

A A




Network Segmentation Problem (.!i

« The grid can be severely
1§ § damaged when
\ sssss Substation 2 and
&= Substation 3 are attacked
together.

« Substation 1 and
Substation 2 are
configured so that the grid B
is fine if they are attacked  =—8—8—
together. =

SubstationT Substation 2 Substation 3
= —= —

=
f
=
i
=
i
=
¢
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EMULYTICS

Attack Model %
—
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grid: https://electricgrids.engr.tamu.edu/electric-grid-test-

cases/activsg2000/
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Network Segmentation Model Status (.sl

« Data Requirements
o Network segmentatfion budget
o Afttacker budget

« Solution Technigue
o Duadlize inner problem and reduce to a difficult mixed-integer bilevel program
o Try MibS, Fischetti solver, and recent algorithms

* Problem Difficulties

o The resulting bilevel program cannot be reduced again intfo a single MIP
Leader has both confinuous and discrete variables

« Advantage
o Data requirements are minimal
o Unlike other models, this one does not require detailed Emulytics/UQ data.
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Network Segmentation Results (.!I

The current 4-RTU exemplar is small enough to perform optimization
through complete enumeration of all choices for designer, attacker,
and defender

Vulnerable
Min Max Load Shed vs Cost

substation  substation substation substation 550 A

— %  9%9% 94w das g

2
£ 500 -

[ nerusTon Detact ®
‘ 5 —e— attacker budget =1
- - [ ethan Detmrir T —a— attacker budget = 2
G450 —e— attacker budget = 3

-

=

= =

=

Erey nRaring Wer

- | ) . 400 -

swortation sbstation westation  substation 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Vulnerablo Segmentation Cost
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Future Extensions of Network Segmentation (.!I

« Network segmentation pricing
o Assign a cost to each subnet that depends on security zone
o Use a budget to limit the overall cost of network segmentation

 If necessary, add subnet detail so that a subnet is more than just a node.
Preferably don’t since this model requires minimal SME data.

o Use caution when adding model detail. We must remember that these bilevel
models are incredibly difficult to solve

« Add automated network segmentation into Emulytics

SCORCH
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Future Optimization Problems (.!I

* Network scanning optimization

o Use optimization to pick optimal network scanning parameters
- Number of nhodes to scan in parallel

- Probe delay
- Number of retries

« Optimize over RTU connections to loads, lines, and generators o suggest
more resilient cyber physical configurations

* Provide Emulytics team higher-fidelity power flow capability

28



Conclusion (.!i

« Our bilevel and trilevel models are driving discussions on what type of
optimization problems we should formulate

o What kind of data can we expect to get from Emulytics/UQ experimentse
o Are the questions that these models address interesting to the rest of the team®@

o If V&V effort indicates that model fidelity is an issue, we can add detail and
reiterate.

« Afteryear 1, we have a promising suite of tools for trying to solve our
difficult models

« Santanu Dey from Georgia Tech is excited about our models and is ready
to use his expertise to help us

* These models have huge publication potential
o Easily one publication per model
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Wtens Seber vty Adminteomton Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security
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Overview of the Exemplar Study/Workflow (.

Identify the
experimental question
and system of interest

Attack Effect Consequence
Identify input
parameters for the
study

on Resources Prediction

Characterize the input

«  Crashoverride on - Arepresentation of the «  Quantify impact on the ( distritfjt'ii’::;errfevels)
asingle ICS a region of the Texas Grid power grid based on

 Focus on part of Flat cyber network loss of_ load el horsiatae
the attack «  Controls 8 RTUs + Investigate how a regions of interest
Reconnaissance «  Build an emulation model sophisticate adversary

« Attacker needs to act of the system can use this attack in Generate the
quickly - Run the emulation many an optimal way eop e

« Aftacker tries to locate times to cover the * Provide feedback to -
RTUs using nmap parameter space previous steps about e

« Defender tries to detect «  Build models for impact sensitive parameters the experimental
such searches using snort on cyber regions design

« Parameter ranges set for a .«  Validate models using
fast strike attack emulation

Postprocess the results
for each run

Analyze the results
across all the runs

|

Perform higher-order
analytics, e.g., V&V, Opt.




g/
Understand the Threat ‘.i!
Identify the « Question: how do we improve our resilience

s EIEERLAIRIN o gainst crashoverride on the power gride
and system of interest

l * Focus on the reconnaissance step of the attack
chain
pa:g;r;tt'?g?g;‘:he > Attack tool: nmap, to locate RTUs in the network
study o Defense tool: Snort to detect network scans
‘!' » Setting:
Characterize the input
parameters o An adversary can get to the system through a
(distributions or levels) phishing attack
l > Once in the system, it has a small time-window to
operate.

Characterize the input . ]
parameters o Restrict nmap parameters to this space

(distributions or levels)

« Workflow steps:

o Model the system
Generate the - Network architecture, parameters, RTU placement

experimental design
(structured or sampled)




Impact of the threat on the cyber system &4 !i

 Execute the model to search over
LU G fhe parameter space to propagate
the experimental uncertainties to build distribution of

et the attack impact
How many RTUs are likely to be

! :
compromised?
Post h | : .
el . \What does the tail look like?
o Are there correlations between pairs

of RTUs being compromised?

» Verify, and validate
Analyze the results o the original emulation model

across all the runs o and the abstractions we build for
higher order analytics

=N

o
®

14
2}

1 « Answer higher questions within the
cyber system

Perform higher-order o What is the best way to attack? Attack Start Time (s)
SEUEEAS-AALAELN  What is the best way to defend?
o What are alternative ways to defend?

~— Emulytics: Mean | -
= = Emulytics: 95% CI
* Glass Box Model

s
a
g
o
x
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Tie between cyber and physical systems (.!i

« Given the models of the attack on Perform higher-order
The Cyber sys’rem analytics, e.g., V&V, Opt.

- What are the consequences on the
physical system?

o How can the adversary use the
aftack for maximum damage?

- How do we operate on the physical
system with cyber awareness?

o N-k security has a new meaning now.

-

o o o
S (=] [+ ]

Mean Load Loss (Relative to Max Possible)
o
[N

o

- Feedback to the earlier steps _ ? . |
- How do we build cyber systems for R '
better physical resilience?

- Network segmentation
- Judicious infrusion Detection Systems

o What are the sensitive model

parameters that need to be
captured with higher fidelitye




Cyber-aware resilience and

Conseguence-aware cyber defense

Threat Attack Effect on
Resources

How do we prioritize our defensese

 How effective are our defenses?
o Is one solution quantifiable better than anothere

- How do we improve cyber-systems for
better resilience?

 How do we operate on physical systems
in a cyber threat-informed way<

Conseqguence
Prediction




Research Plan (Overview)

Year 1: Integration and Algorithmic Exploration
« Surveys; apply present capabilities; integration (tools and ideaqs);
initial results for new ideas; fine-tuned problem definitions
« Exemplar 1: Single operating authority; flat SCADA/RTU network;

* Products: Prototype implementations; papers on early results;
integrated experimental environment

Year 2: Algorithm Development
« Deep dive into algorithmic research; testing at scale/complexity;
research software; initial demonstration of new, joint capabilities
« Exemplar 2: Regional; SCADA/RTU network; mulfiple ICS networks
* Products: SECUREtk 0.1 (internal use); Algorithm publications

Year 3: Demonstrate Capability
* Pushing the boundaries of tools; Reporting results; demonstration of
capabilities; research software to tools;
« Exemplar 3: Western Grid; IT/SCADA/RTU network; multiple subnets & services

* Products: SECUREtk 1.0 (sharable with research partners); Integration
publications




FY20 Plan: Infegrated Overview (.!i

« Scaling up the Exemplar
o More complex SCADA networks; Multiple ICS networks;
o More complicated questions; restructuring the network; tailored defenses
o Regional attacks: attacks on multiple ICS
o Detailed models for higher dimensions

- Leveraging Exemplars to Showcase Use Cases of SECUREtk
o Risk management through stochastic adversarial optimization
o Design of Emulytics experiments with analytical methods
o Constructing confidence intervals under high response variability
o Hypothesis testing to guide experimental design

* Quantifying V&V as part of the Cyber Experimental Process
o Conducting V&V in the context of problem
o Requirements analysis to assess well-posedness of cyber models
o Extending methods to address boundary conditions and estimating tail probabilities

 Integration of Threat Characterization to Experiment Ensembles

o Pruning meaningless and low-consequence attack spaces prior to running Emulytics
experiments

o ldentifying optimal mitigation strategies that deter or evolve the threat space



- e/
What is SECUREtk? ‘.:
- SECUREtk is the ultimate goal, but it is not the top priority for now.

o Not a driver for basic research, but driven by basic research
o Currently developing building blocks

« Basic research is complemented by software development
o E.g. Bi-level solvers for optimization

* |t will be a collection of tools
- Minimega, Firewheel, DAKOTA, Pyomo, eftc.
o Enables external conftributions, flexibility for various systems

- Developing software for common needs
o Scorch for many emulations with varying parameters

* FY20 Plan: develop a better understanding of the user profile and
algorithmic tools
o Details on Zach's talk on Wednesday morning
o Let’s talk about what to include on the wrap up discussion:



Cyber Experimental Software Stack

DAKOTA

vvvvvv

YOMO

EMULYTICS

UQ, Optimization, GPLADD, mathematical modeling,
data analysis

UQ, Optimization, GPLADD, mathematical modeling,
per-run post processing

3. Experiment Tool-specific (SCEPTRE, minimega, Firewheel, Phenix,
Design ns3), DEW, Scorch, threat tools )
2. Cyber SCEPTRE, minimega, ns3, threat
Experimentat
1. Process
Modeling PowerWorld

H

SCORCH

Ensemble data

e

Per-run results I

e e 1

Experiment tools,
parameters, response
meftrics

configurations,
experimental tools,
=daotaforcolection

Per-run results

[
[
Topologies, I
[

Per-run results



Research Element Dependencies

Optimization

Efficient identification
of threat regions of

interest; optimized

investment options

Provides bounding
analyses and
baseline scenarios

.....

Uncertainty

aracterizations fo High fidelity black box
parameterize robust cyber models; cyber
optimization defense parameters

Threat models that support
Uncertainty uncertainty analysis; variable

Quantification P fidelity models

Emulyftics

>
Dimensionality reduction;
mulfi-fidelity modeling;
assessment of convergence




T Morch EAB foodback fems @8

rch EAB feedback items

Ma ‘.!

CA

RI

[|®

ST

DE

Community awareness

o Future presentations should
exphcfrl% acknowledge related
research and arficulate how
SECURE is going beyond it. "

Risks identification

o explicitly identify risks associated
with the project and develop
stfrategies to mifigate them "

Threat characterization

o 1t was not clear to the board
how the threat characterization
work contributed to the overall
goals of the project

SECUREfk

Domain expertise

o 'given that the exemplar is the
power grid, the EAB did not see
sufficient evidence that the tfeam
has the required domain .
expertise to create realistic
scenarios that will. answer
meaningful questions "

PA

CE

PD

* Project architecture

(©]

"The board suggests that the
team map out a project
“architecture” that shows how
tasks are connected ...
[and]the feam needs to clearly
define what comprises success
and stake out integration
activities to be accomplished
throughout each year of the
project”

« Customer engagement

(@]

"it was not apparent either who
the specific customers will be
for SECURE’s output or that the
research plan is appropriately
addressing medium- to long-
term customer challenges’

« People development

(@]

"The EAB was unclear on SNL’s
development / promotion of
talent and exper’rise in
cybersecurity’

1



Who can benefit from SECUREtk? (.!I

Adison the Engineer, IT decision maker
“Will deploying this cybersecurity solution have meaningful impacte”

« Her team offers different opinions about the potential benefits of the
proposed solution and its impact on productivity

« She needs a thorough cost/benefit analysis to base her decision on

Captain Howard, DoD, high-consequence systems
“Can we credibly assess system performance under various threat

scenariosg”
« He is in charge of a high-consequence system

* He frusts his red team, but the stakes are too high; the system is too
complex; and time is too short

Leon the PM, capability steward
“What are the gaps in our capability roadmap fo focus on to

maximize impacte
* He controls a budget that is too small; needs to prioritize

« Many conflicting expert opinions; system is too complex for the

— answers to be simgle -




APPROXIMATE CONTROL VARIATE '.z
M LOW-FIDELITY MODELS WITH UNKNOWN EXPECTED VALUE ‘ a

For complex engineering models the expected values of the M low-fidelity models are unknown a priori

P Let's consider N; LF evaluations: N; = [r;N|

The generic Approximate Control Variate is defined as

M
Q(e,2) =Q(z) + > Ai(z)

i=1

The optimal weights and variance can be obtained as

var(@ (A7) = var(Q) (1 - Ricy).

A%V = _cov[a, Al Cov [é, Q]

NOTES:

. g -1
1 For a single low-fidelity model: RiCV—l = rlrl p%

2 We can build provably optimal estimators: p% < RiCV < R(QJCV

27 /27




