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Degradation of Commercial Li-ion Cells

Beyond 80% Capacity
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2 ‘ Moving Beyond 80% Capacity for Grid Applications

e 80% capacity is common reference point in manufacturer spec sheets
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* 80% capacity is a holdover from the EV world

o USABC 1996: “EV batteries should be removed from automotive use when current battery capacity is 80% of initial battery
capacity and current battery power capability is 80% of initial battery power capability”

o at this time, EVs were primarily powered by Ni-based batteries

e Unrealistic criteria for Li-ion batteries with higher energy density and power capability?



3 I How Far Beyond 80% Should We Go!?

One possible criteria: until a battery undergoes rapid degradation -
capacity

1
e Typical model of LiB degradation assumes a transition from linear behavior Kz

o Phase 1: SEl formation 3
o Phase 2: linear degradation

o Phase 3: rapid capacity fade (80% capacity assumed in this region)

cycle number

. . . Spotnitz et al. J. Power Sources 2003, 113, 72.
* Transition to rapid capacity fade has many names

o Transition point, tipping point, knee, rollover

e Transition to rapid capacity fade has many nuanced explanations
o General resistance increase at anode
o Liplating at anode
o Electrode dry-out
o Cathode processes (degradation or resistance increase)



Position of Knee Highly Dependent on Cycling Conditions

No knee down to 65% capacity Knee at ~80% capacity, but also
earlier or later
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Rapid Capacity Fade Due to Resistance Increase

normalized capacity

normalized resistance

Tipping point coincides with resistance increase of ~150%
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6 ‘ Li Plating as Cause of Rapid Resistance Increase

Cycle number
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Rapid Capacity Fade due to Electrode Dry-Out

e SEl formation reactions generate gas

e @Gas bubbles lead to a loss of contact between
active material and electrolyte

* Model fits the data, but no explicit experimental
confirmation of phenomenon
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9 I Rapid Capacity Fade due to Cathodic Processes

 Rollover due to impedance growth at positive
electrode

e Impedance growth associated with higher
charging voltage and electrolyte oxidation

* No change in anode impedance and no Li
plating observed on cells past tipping point
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Limited Materials Insight and Cycling Data Means Limited
" Predictive Capability

What is the remaining useful life (RUL) of a battery?
o Most studies calculate RUL with threshold of 75-85% capacity
o Most studies only model data in linear degradation region
o Of models that consider a ‘knee,” most based on just one experimental data set

Typical linear data set in RUL model One data set with knee used
by dozens of models/studies
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Richardson et al. J. Power Sources 2017, 357, 209. Sun et al. Microelectron. Reliab. 2018, 88-90, 1189.



11 I Recent Modeling Includes More Knee Data, but is Still Empirical

Goal of study: Develop accelerated degradation model as a function of stress factors to predict capacity fade
under normal operating conditions

Scope Outcome

o 3.36Ah LCO/graphite pouch cells NDC=f(N, T) =1 —exp(A *T +B) *N — exp(C* T + D)*NET+F
o 24 conditions x 8 cells each
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Next Steps: Expand Electrochemical and Materials Data Sets of
Commercial Cells Beyond 80% Capacity

Goal: Complete large-scale, long-term cycling study beyond 80% capacity to understand what causes and how to delay
tipping point
o Include materials characterization at various points in lifetime

Key Questions

1) What materials mechanism leads to rapid fade? Are there multiple?

2) If ESS installation with fresh batteries, how to predict RUL to knee based on full cycling history?

3) If ESS installation with 2" [ife cells, how to predict RUL to knee if limited knowledge of previous capacity fade?
4) How much advance warning/buffer is needed prior to rapid degradation?



13 ‘ Scope of Current Study at SNL: Cells and Manufacturer Specifications

Cathode Chemistry AKA Vendor Specific Max Acceptable
Capacity (Ah) Discharge Temperature
Current (°C)
LiFePO, LFP A123 1.1 30 -30to 60
LiNiy gCog 15AlG 0505 NCA | Panasonic 3.2 6 Oto 45
LiNiMnCoO, NMC LG Chem 3.0 20 -5t0 50
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‘ Cycle Count to 80% Capacity

Performance highly variable even within manufacturer specs
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15 ‘ Long-Term C
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Long-Term Cycling: SOC Dependence
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‘ Long-Term Cycllng Discharge Rate Dependence
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18 ‘ Cycling Past 80%: Preliminary Insights
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19 I Summary

Motivation

How much useful life does a battery have beyond 80% capacity?

Approach

Define end-of-life as transition to rapid capacity fade (knee/tipping point)

Conclusions
* Ingeneral, limited experimental data in literature showing knee point
« Knee-point capacity depends strongly on cycling conditions

« Multiple explanations for knee point: critical resistance, Li plating, electrode dry out, cathode
impedance

e Substantial long-term studies needed coupling electrochemical performance with materials
characterization
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