
Degradation of Commercial Li-ion Cells

Beyond 80% Capacity
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2 Moving Beyond 80% Capacity for Grid Applications

• 80% capacity is common reference point in manufacturer spec sheets

Examples:
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• 80% capacity is a holdover from the EV world
o USABC 1996: "EV batteries should be removed from automotive use when current battery capacity is 80% of initial battery

capacity and current battery power capability is 80% of initial battery power capability"

o at this time, EVs were primarily powered by Ni-based batteries

• Unrealistic criteria for Li-ion batteries with higher energy density and power capability?



3 How Far Beyond 80% Should We Go?

One possible criteria: until a battery undergoes rapid degradation

• Typical model of LiB degradation assumes a transition from linear behavior
o Phase 1: SEI formation

o Phase 2: linear degradation

o Phase 3: rapid capacity fade (80% capacity assumed in this region)

• Transition to rapid capacity fade has many names
o Transition point, tipping point, knee, rollover

• Transition to rapid capacity fade has many nuanced explanations
o General resistance increase at anode

o Li plating at anode

o Electrode dry-out

o Cathode processes (degradation or resistance increase)

cycle number

Spotnitz et al. J. Power Sources 2003, 113, 72.





5 Rapid Capacity Fade Due to Resistance Increase
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Ecker et al. J. Power Sources 2014, 248, 839.
Stroe et al. Microelectron. Reliab. 2018, 88-90, 1251.



6 Li Plating as Cause of Rapid Resistance Increase

SEI growth 
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7 Li Plating as Cause of Rapid Resistance Increase

SEI growth 
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8 Rapid Capacity Fade due to Electrode Dry-Out

• SEI formation reactions generate gas

• Gas bubbles lead to a loss of contact between
active material and electrolyte

• Model fits the data, but no explicit experimental
confirmation of phenomenon
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9 Rapid Capacity Fade due to Cathodic Processes

• Rollover due to impedance growth at positive
electrode

• Impedance growth associated with higher
charging voltage and electrolyte oxidation

• No change in anode impedance and no Li
plating observed on cells past tipping point

1000 2000 3000 4000

Cycle nurnber

Ma et al. J. Electrochem. Soc. 2019, 166, A711.



Limited Materials Insight and Cycling Data Means Limited
Predictive Capability

What is the remaining useful life (RUL) of a battery?

o Most studies calculate RUL with threshold of 75-85% capacity

o Most studies only model data in linear degradation region

o Of models that consider a 'knee,' most based on just one experimental data set
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11 Recent Modeling Includes More Knee Data, but is Still Empirical

Goal of study: Develop accelerated degradation model as a function of stress factors to predict capacity fade
under normal operating conditions

Scope
o 3.36Ah LCO/graphite pouch cells

o 24 conditions x 8 cells each

cycling test matrix.
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Diao et al. J. Power Sources 2019, 435, 226380.

Diao et al. Energies 2019, 12, 2910.
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Next Steps: Expand Electrochemical and Materials Data Sets of
Commercial Cells Beyond 80% Capacity

Goal: Complete large-scale, long-term cycling study beyond 80% capacity to understand what causes and how to delay
tipping point

o Include materials characterization at various points in lifetime

Key Questions

1) What materials mechanism leads to rapid fade? Are there multiple?

2) If ESS installation with fresh batteries, how to predict RUL to knee based on full cycling history?

3) If ESS installation with 2nd life cells, how to predict RUL to knee if limited knowledge of previous capacity fade?

4) How much advance warning/buffer is needed prior to rapid degradation?



13 Scope of Current Study at SNL: Cells and Manufacturer Specifications
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14 Cycle Count to 80% Capacity

Performance highly variable even within manufacturer specs
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15 I Long-Term Cycling:Temperature Dependence
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16 I Long-Term Cycling: SOC Dependence
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17 I Long-Term Cycling: Discharge Rate Dependence
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18 Cycling Past 80%: Preliminary Insights
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19 Summary

Motivation

How much useful life does a battery have beyond 80% capacity?

Approach

Define end-of-life as transition to rapid capacity fade (knee/tipping point)

Conclusions

• In general, limited experimental data in literature showing knee point

• Knee-point capacity depends strongly on cycling conditions

• Multiple explanations for knee point: critical resistance, Li plating, electrode dry out, cathode
impedance

• Substantial long-term studies needed coupling electrochemical performance with materials
characterization
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