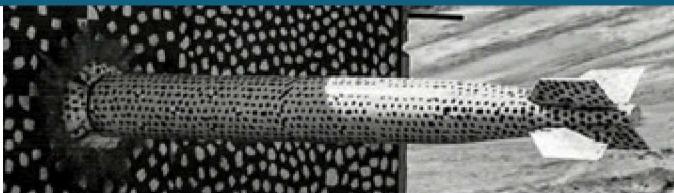


Toward Dynamic, Tactical, Remote Robotic Ops: Active Perception and Other Key Technologies



SAND2019-13842PE

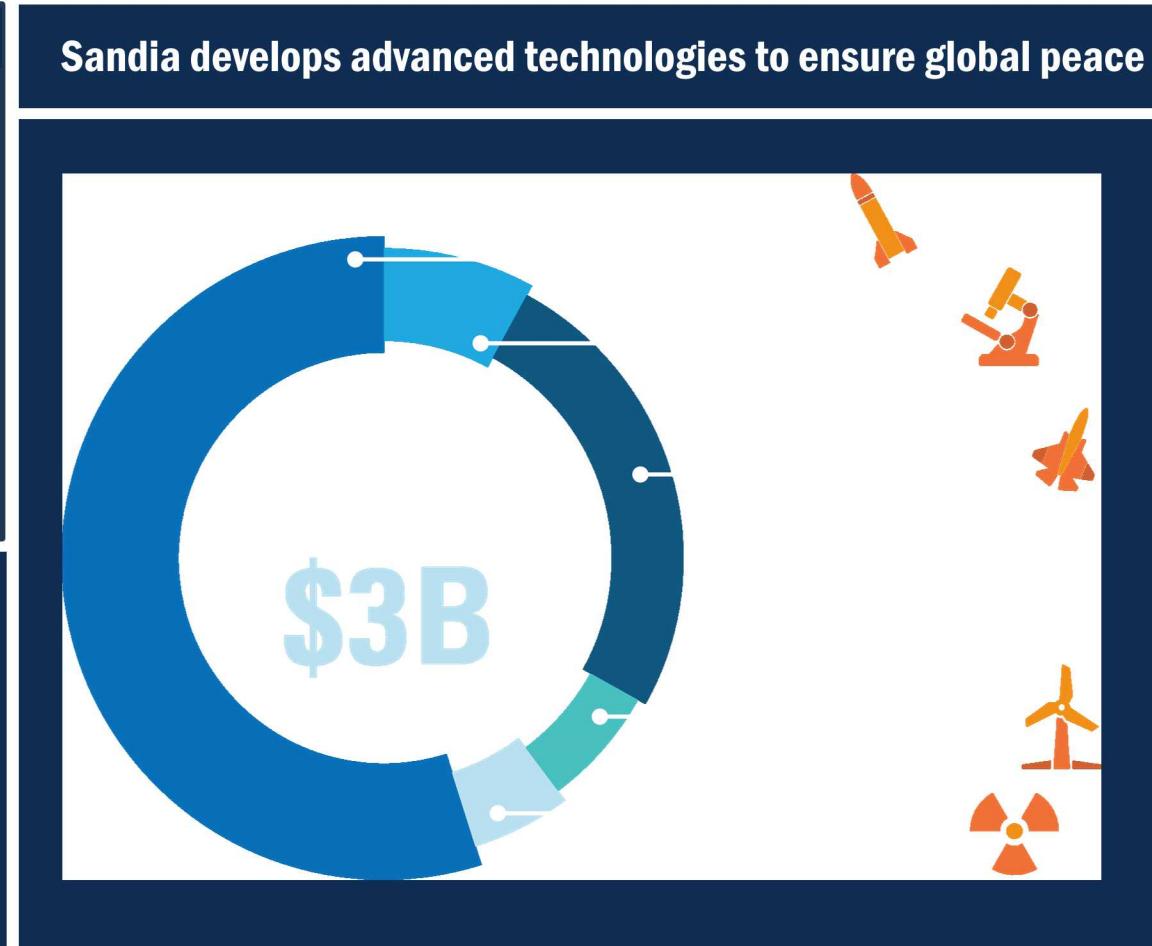
PRESENTED BY

Stephen P. Buerger, PhD, High Consequence Automation & Robotics

High Consequence Automation & Robotics

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Sandia is a ***multi-mission laboratory*** with major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness

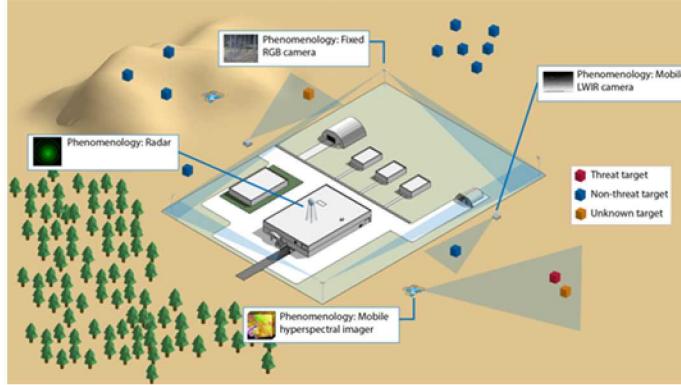


High Consequence Automation • Unique Mobility • Advanced Manipulation • Advanced Control Systems • Unmanned Systems Autonomy • Custom Mechatronics • Cybernetics • Simulation-Based Training, Response, & Operations

Tactical Operations with Unmanned Systems (UMS): Operate UMS teams toward goals at human (or faster) speeds, with human (or better) effectiveness, against dynamic environments & adversaries

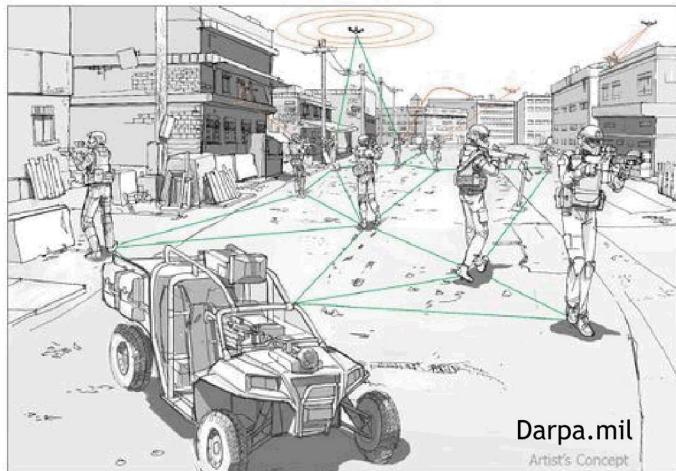
Physical Security:

Detecting, Assessing, and Delaying Threats



Abandoned Facility Recon:

Unknown compound, potential adversaries

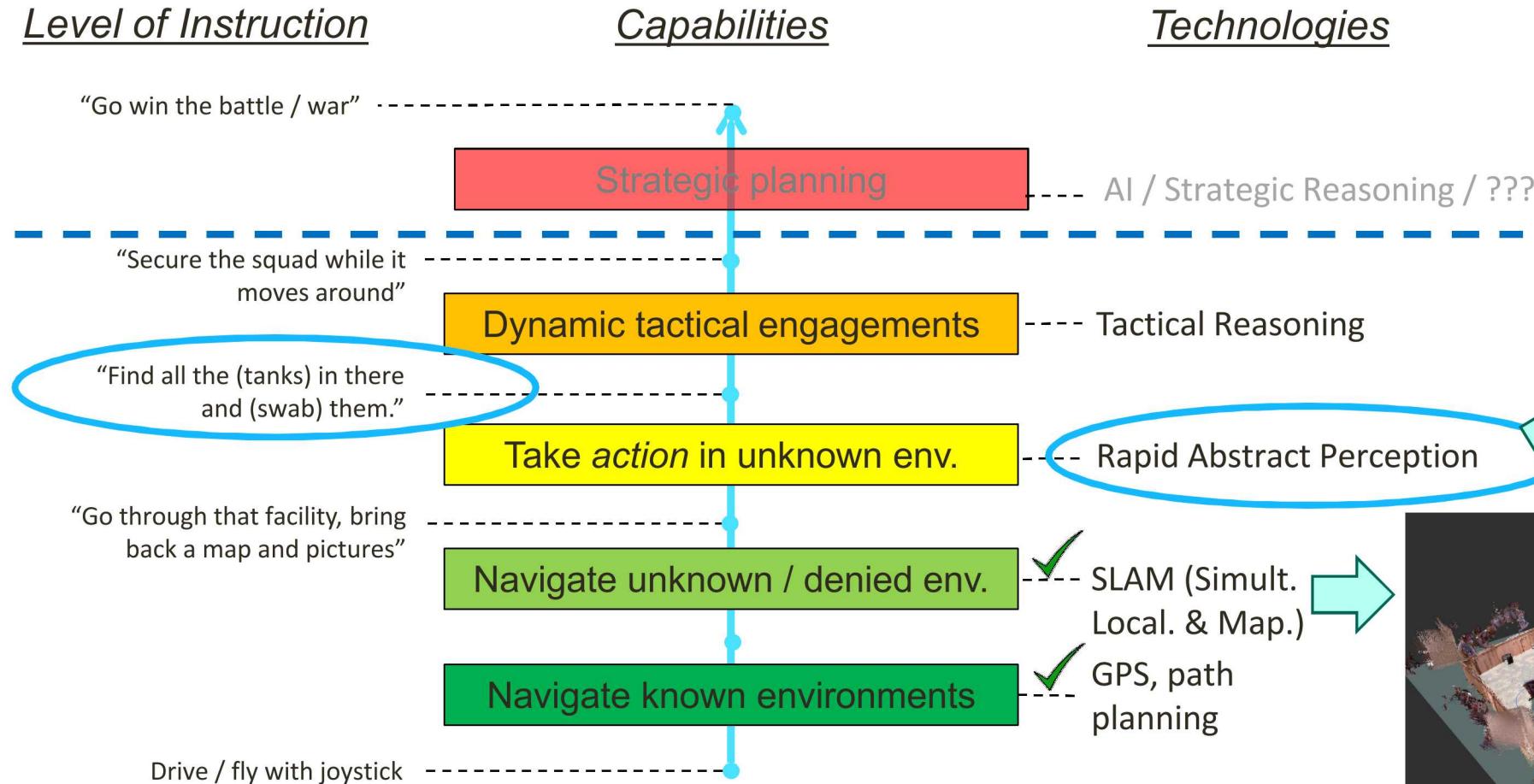


Future dismounted operations:
Migrating UMS from support to peers

Mine Rescue / Disaster Response:
Denied, uncertain, complex environments

Need: MOBILITY -
EFFICIENCY - SPEED
- COLLABORATION -
PERCEPTION -
TACTICS - ACTION

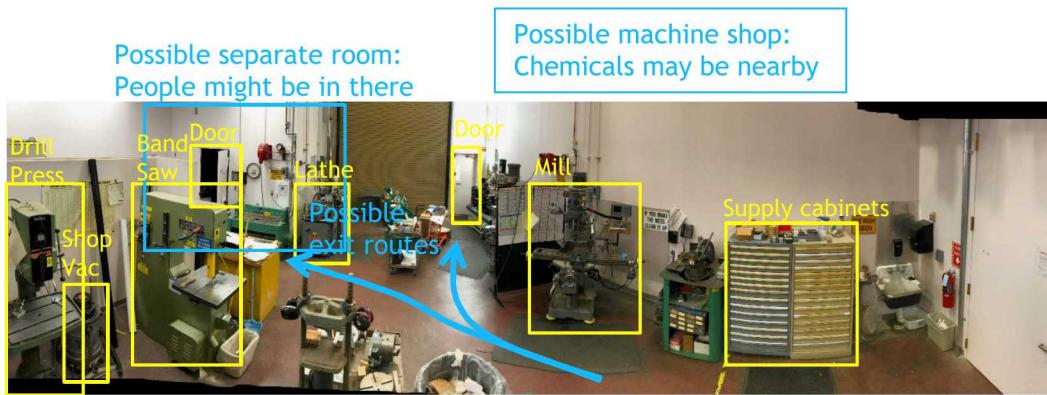
Moving up the Tactical UMS “Autonomy Ladder”



IROS 2014 Kinect Challenge
Github - RTAB-map

What do we mean by intelligent perception?

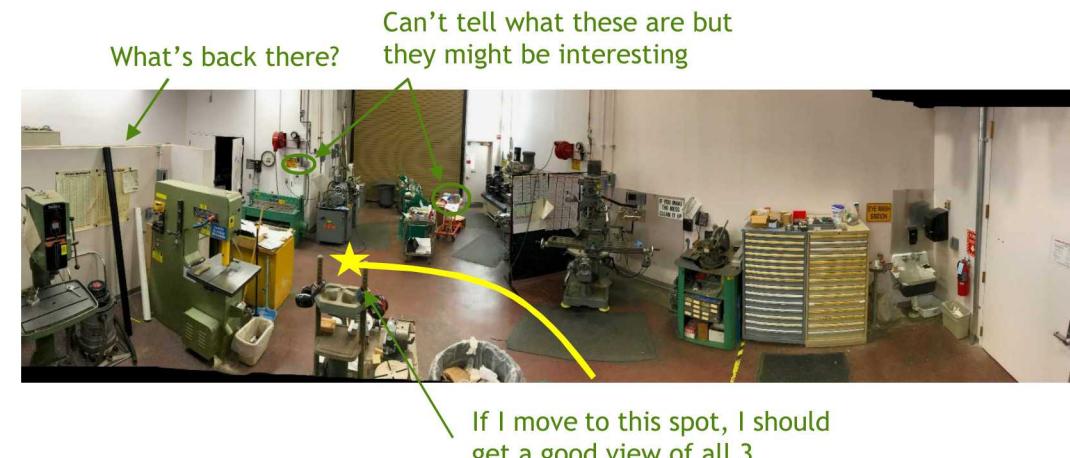
Elements:



Intelligently drawing higher-level conclusions (e.g. semantic classification) from sensor data

To autonomously drive down *semantic* uncertainty:

- Effectively requires placing a classifier, or an approximation of one, inside a control loop

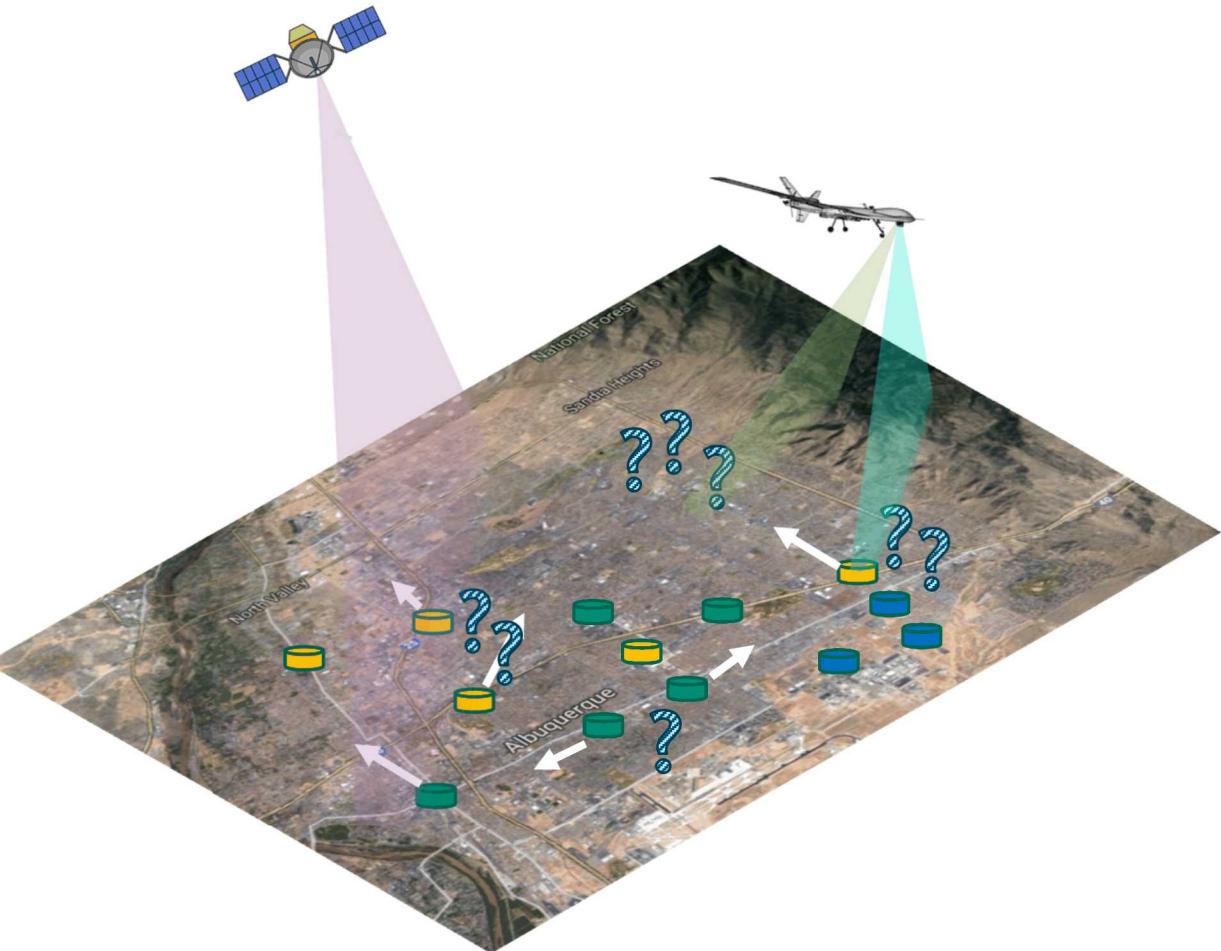


Controlling a sensor to autonomously drive down uncertainty by getting the best data in real-time

- Not just tip-and-cue; continuous (or large-space discrete) problem in space and time

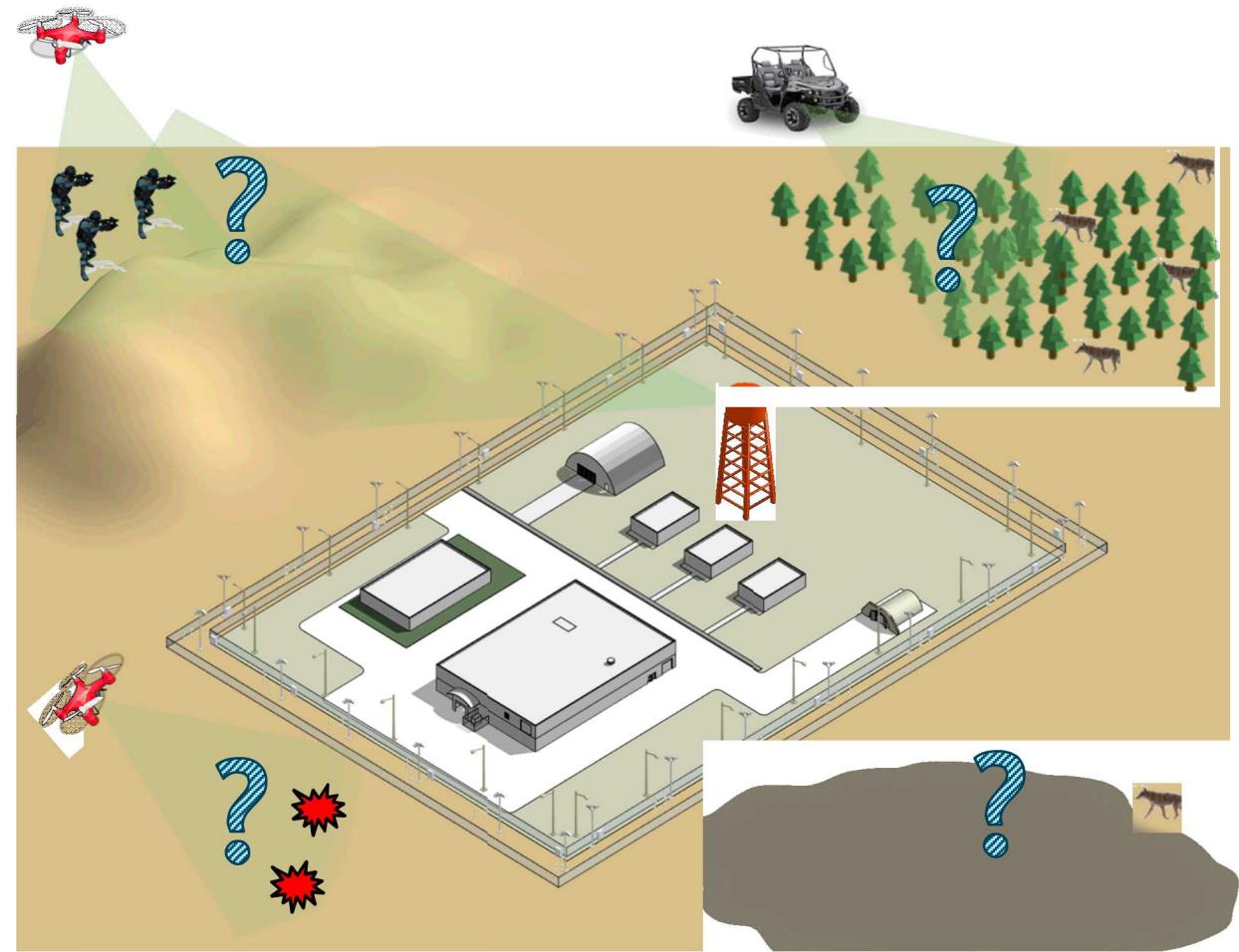
Big challenge: putting pieces together into something that works in real world

Autonomous Threat Awareness



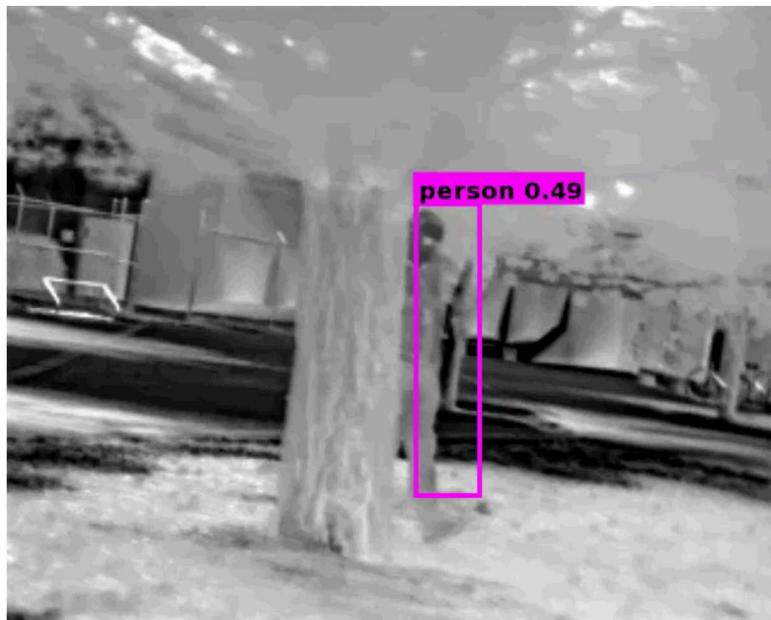
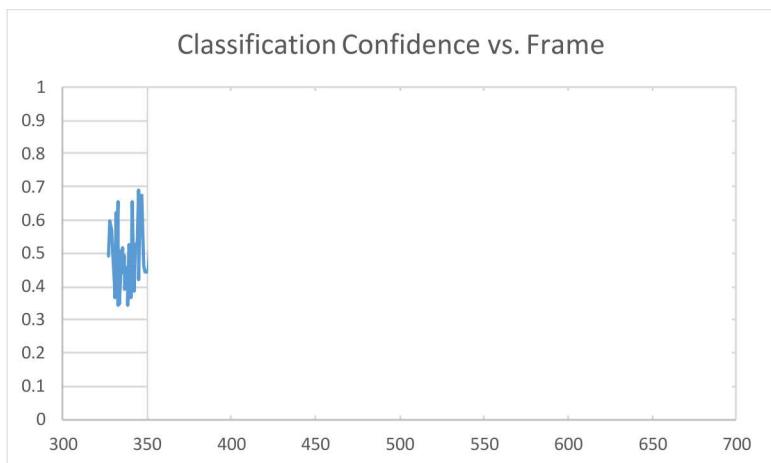
Place sensors to “minimize uncertainty in the threat environment”

- Presence, location (geometry) & identity (semantics) of objects of interest (or non-interest)
- Balance search (new detections) vs. characterization (prior detections)



Solve this problem
continuously &
indefinitely

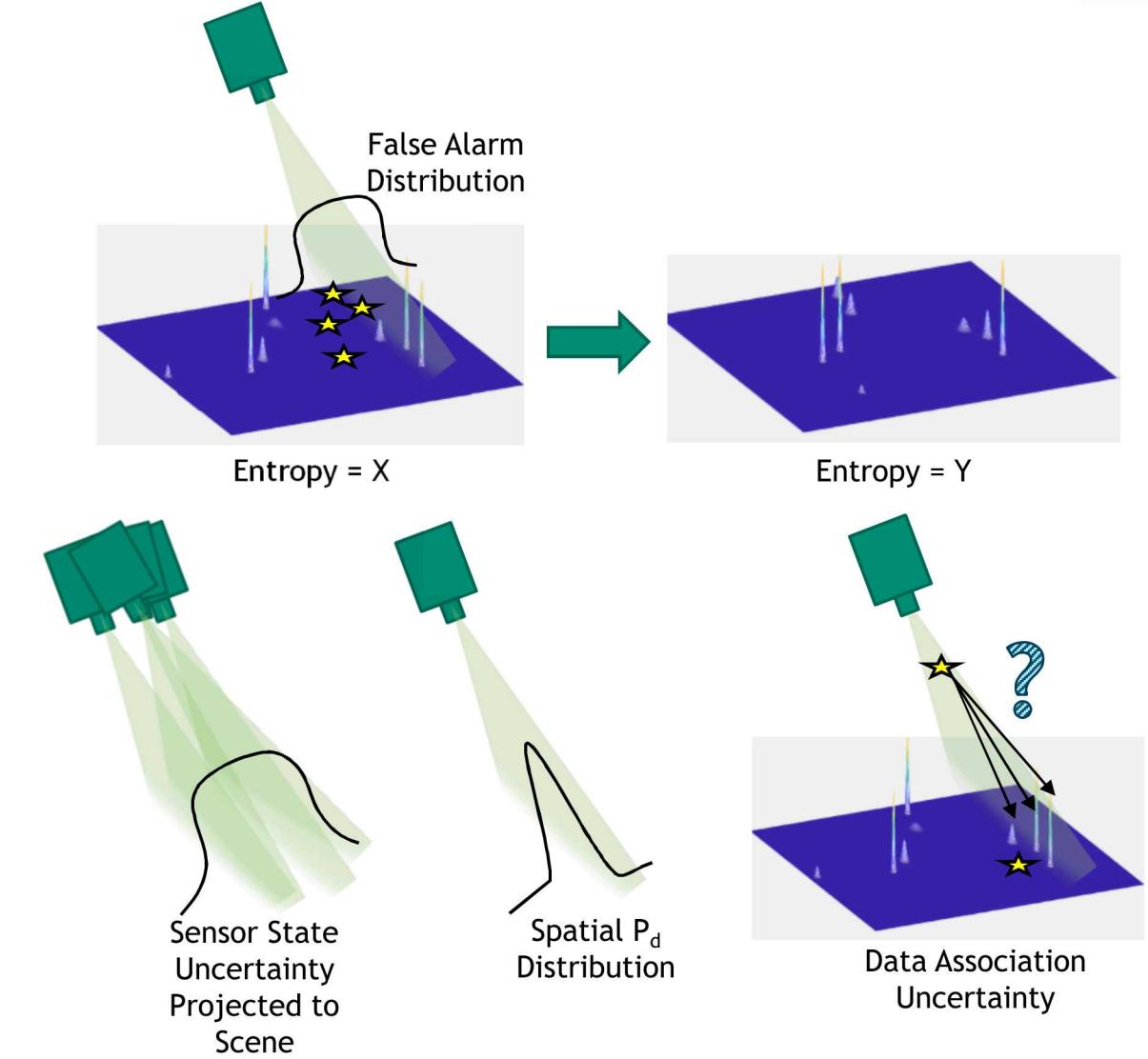
Why Moving Sensors?: The Benefits of Perspective Change



Info-Driven Control to Minimize Uncertainty: Challenges of Doing it “The Right Way”

An ideal approach: treat everything probabilistically

- Compare current distribution (prior) to expected posterior based on predicted measurements
- Select measurement that maximizes info gain via, e.g. direct optimal control
- (Some of the) sources of uncertainty:
 - Sensor state uncertainty
 - Probability of detection (with variations: spatial, geographic, target type, state, etc.)
 - False alarm rate (with variations as above...)
 - Multi-target data association uncertainty
 - Cardinality uncertainty (number of targets)
 -
- Frameworks exist to handle this (e.g. FISST tracking), but there are challenges
 - Real-world classifier output form (not pdf / pmf)
 - Scaling & computational challenges (real models are nonlinear)
 - Challenges particular to distributed systems (double counting, etc.)
 -

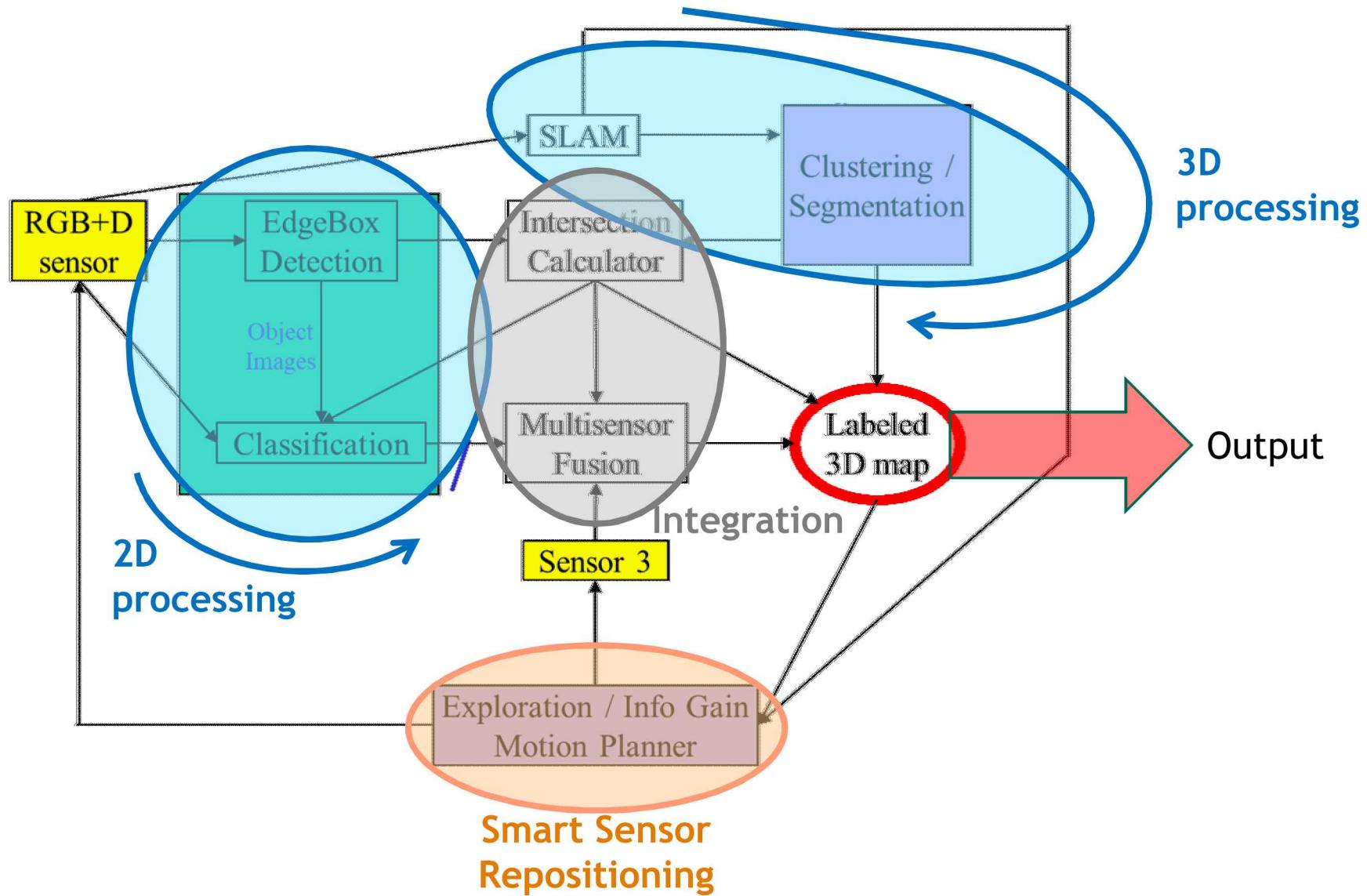


What can we implement now?

Rapid Abstraction in Confined Environments (RACE)

Autonomously: Swab all gas cylinders in chemistry labs or welding facilities. Map the whole space and locate any of the new MQ-3000 sensors.

- Semantic & geometric mapping
- Find rare objects
- Explore intelligently



SLAM with segmentation

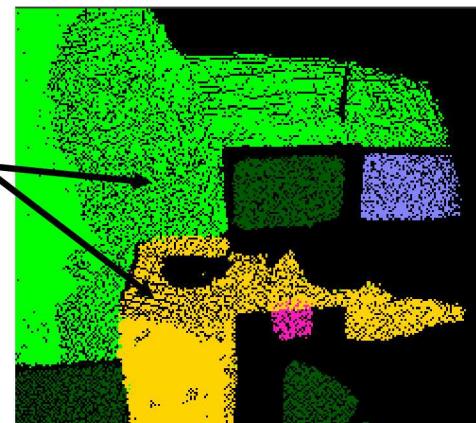
Surfel-based SLAM approach

- Adaptation of [1, 2]

Real-time surface-normal based segmentation

- GPU adaptation of [3] for full resolution segmentation in real-time ($\sim 20\text{Hz}$)

Distinct objects



1. Keller, et. al., "Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion", *Int. Conf. 3D Vis.*, 2013
2. Whelan, et. al., "ElasticFusion: Real-Time Dense SLAM and Light Source Estimation", *Int. J. Robot. Research*, 2016
3. Tateno, et. al., "Large scale and long standing simultaneous reconstruction and segmentation." *Computer Vision and Image Understanding* 157 (2017): 138-150.

Object Detection and Classification

Apply YoloV3 [1] frame-by-frame

- RGB image CNN-based detector
- Provides bounding box and classification at ~ 20 Hz
- Pretrained on common objects: computing (keyboard, mouse, laptop, display, etc), furniture (chair, table, etc.), household (refrigerator).
- Retrained with doors, cabinets, and other items of interest

Bayes update classification for every point

- Fuse information from multiple views, multiple sensors
- Compensate for false positives/negatives

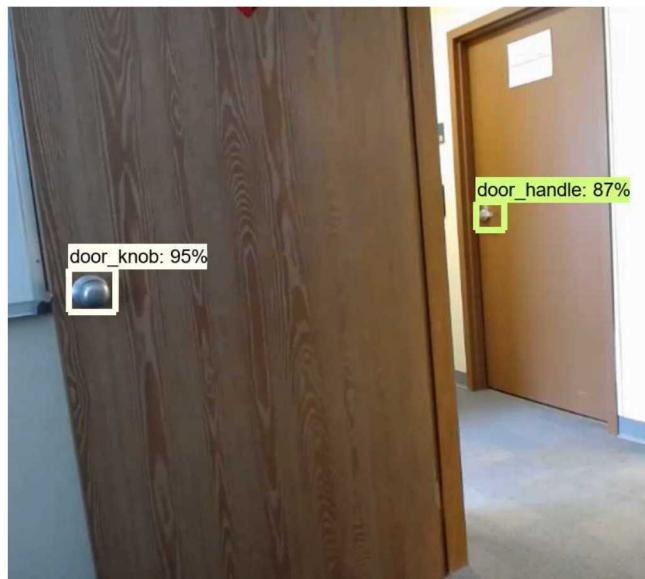


Colors indicate class labels (frame by frame)

Uncommon Object Detection and Classification (I)

Retraining Deep Net Classifiers

- For objects that are common but not in standard training sets



Low-Shot Methods

Text & Logos

Exploration & Information Gain

- Estimate the information gain of a new view by:

1. Getting better views of objects

- Instantaneous info content estimated by a heuristic considering distance and relative face normal

2. Decreasing uncertainty in map occupancy [1]

- Probabilistic occupancy grid (octree representation for efficient storage in 3D [2])

$$I(a) = w_1 \Delta_a H + w_2 \Delta_a IC$$

$$H(m) = - \sum_{c \in m} p(c) \log p(c) + (1 - p(c)) \log (1 - p(c))$$

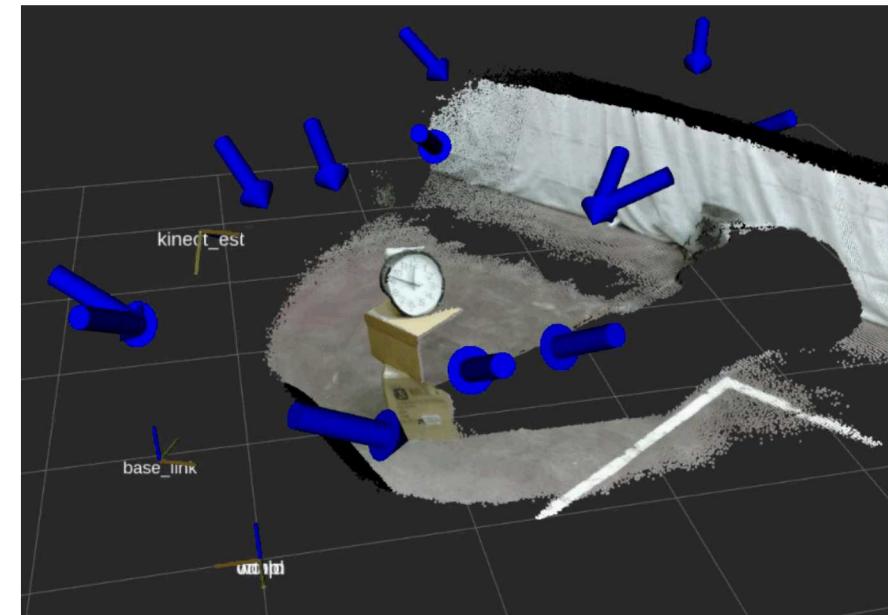
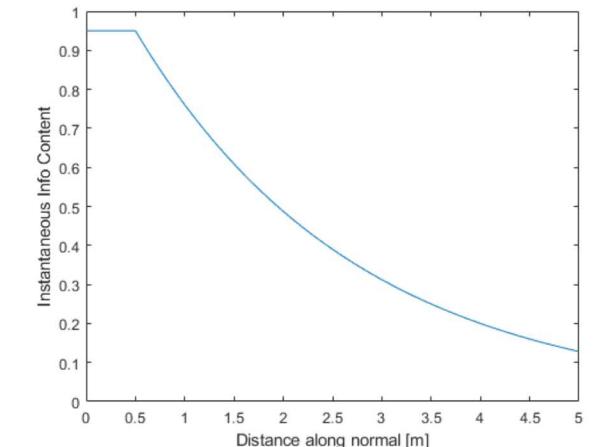
$$I.C_{ij}(\phi) = \underbrace{\mathbf{1}_{V_{F,i}}(\mathbf{x}_{t,j} + \mathbf{v}_{t,j}(\phi))}_{\text{Point in view}} \underbrace{\max\{-\hat{\mathbf{v}}_{t,j}(\phi) \cdot \hat{\mathbf{x}}_{ij}(\phi), 0\}}_{\text{Surface facing camera}} \underbrace{\exp(-\lambda_1 (\max\{\|\mathbf{x}_{t,j} - \mathbf{x}_{s,i}\|, d_{\min}\} - d_{\min}))}_{\text{Distance to surfel}}$$

- But how to decide views to consider?

1. Random sampling of space (for exploration)

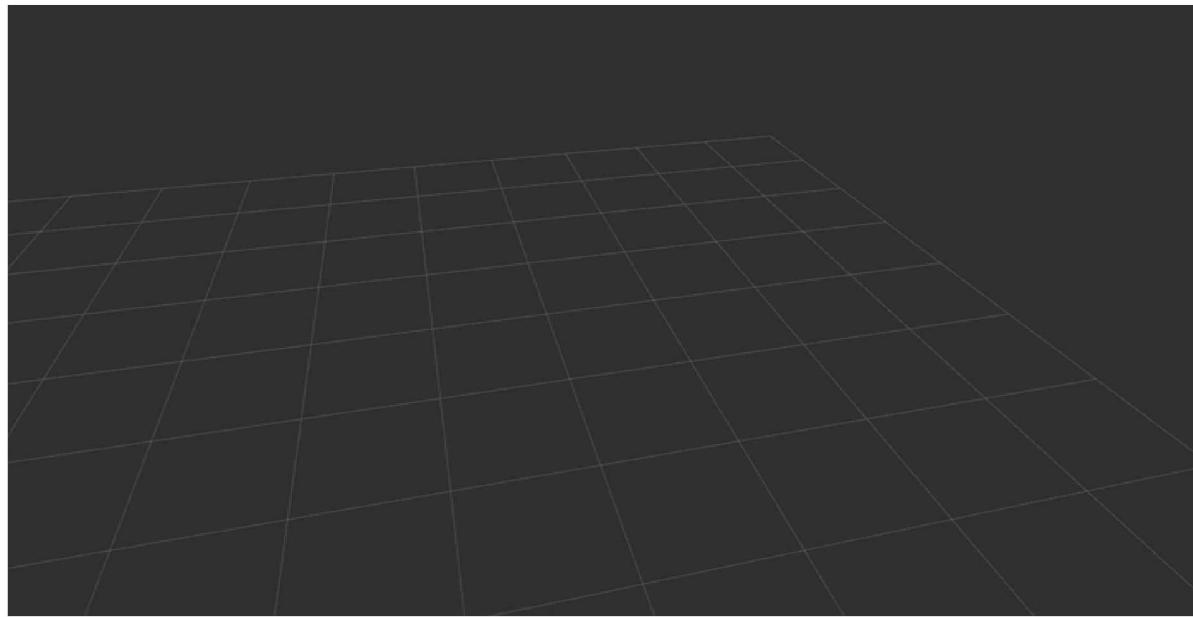
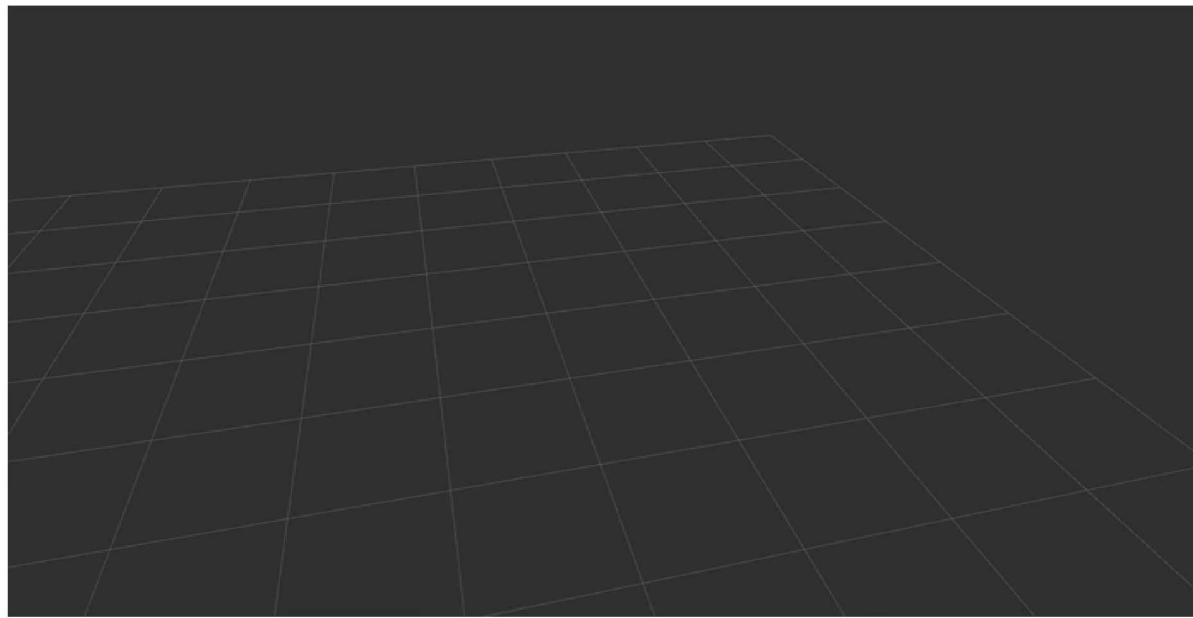
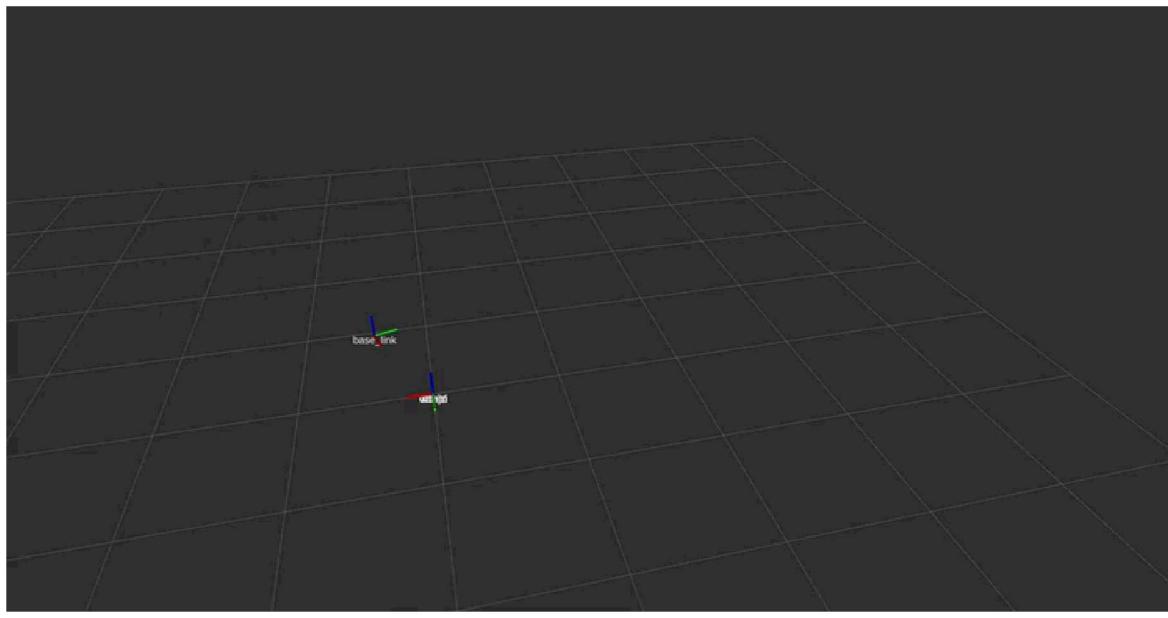
2. Disparate views of objects:

- PCA on object points provides rough size (filter out objects too small/large) and dominate object-relative directions.
- Pick feasible views along dominant directions.

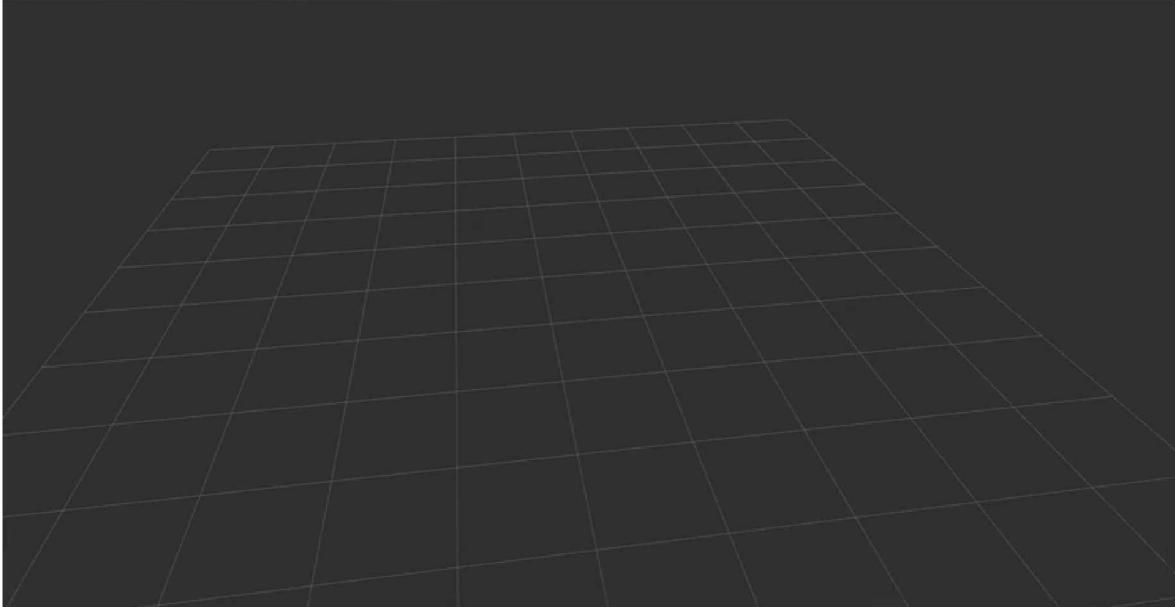
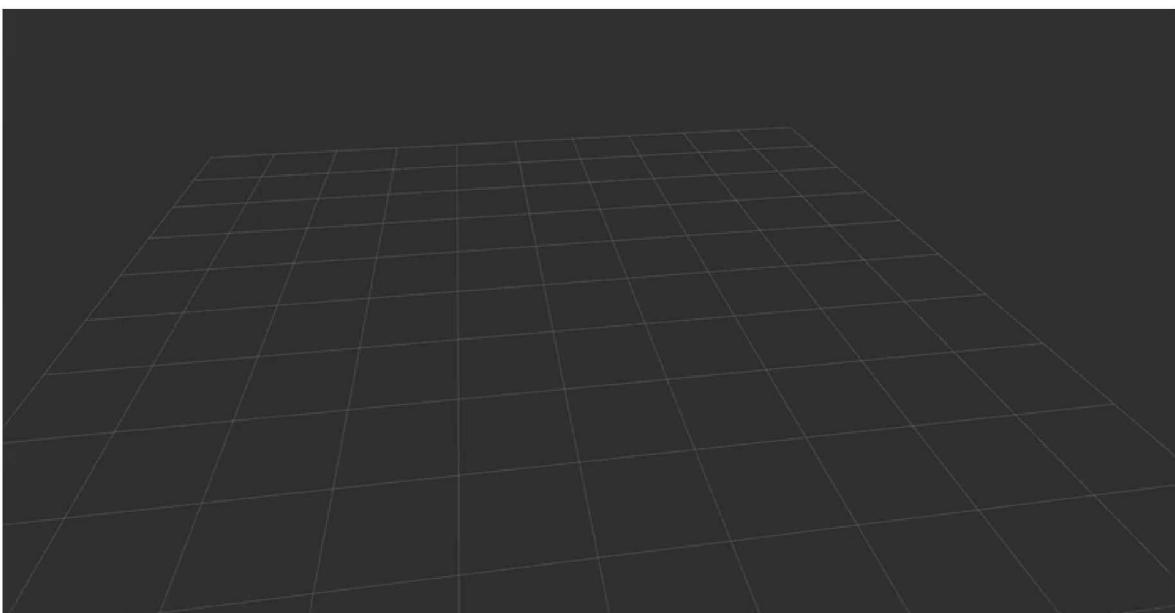
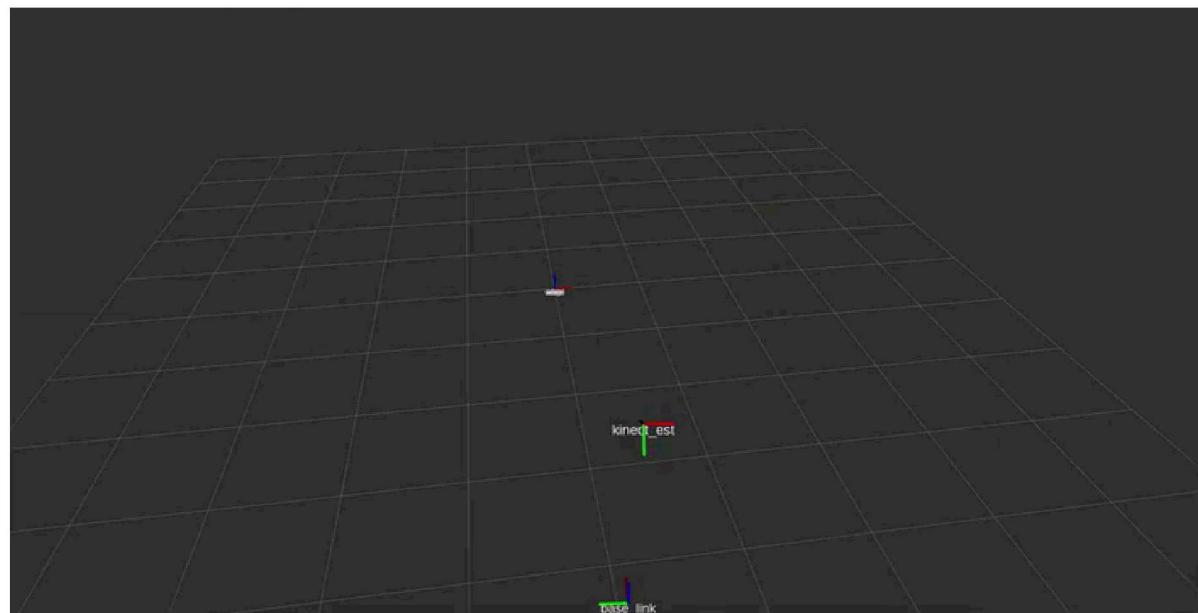


- Stachniss, et. al., "Information Gain-based Exploration Using Rao-Blackwellized Particle Filters", *Robotics: Science and Systems*. Vol. 2. 2005
- Hornung, Armin, et al. "OctoMap: An efficient probabilistic 3D mapping framework based on octrees." *Autonomous Robots* 34.3 (2013): 189-206.

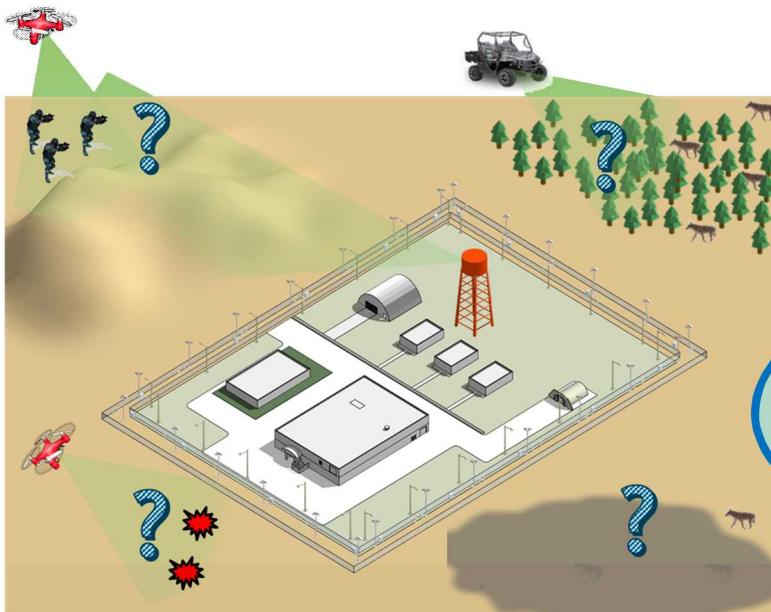
15 Perceiving a single object



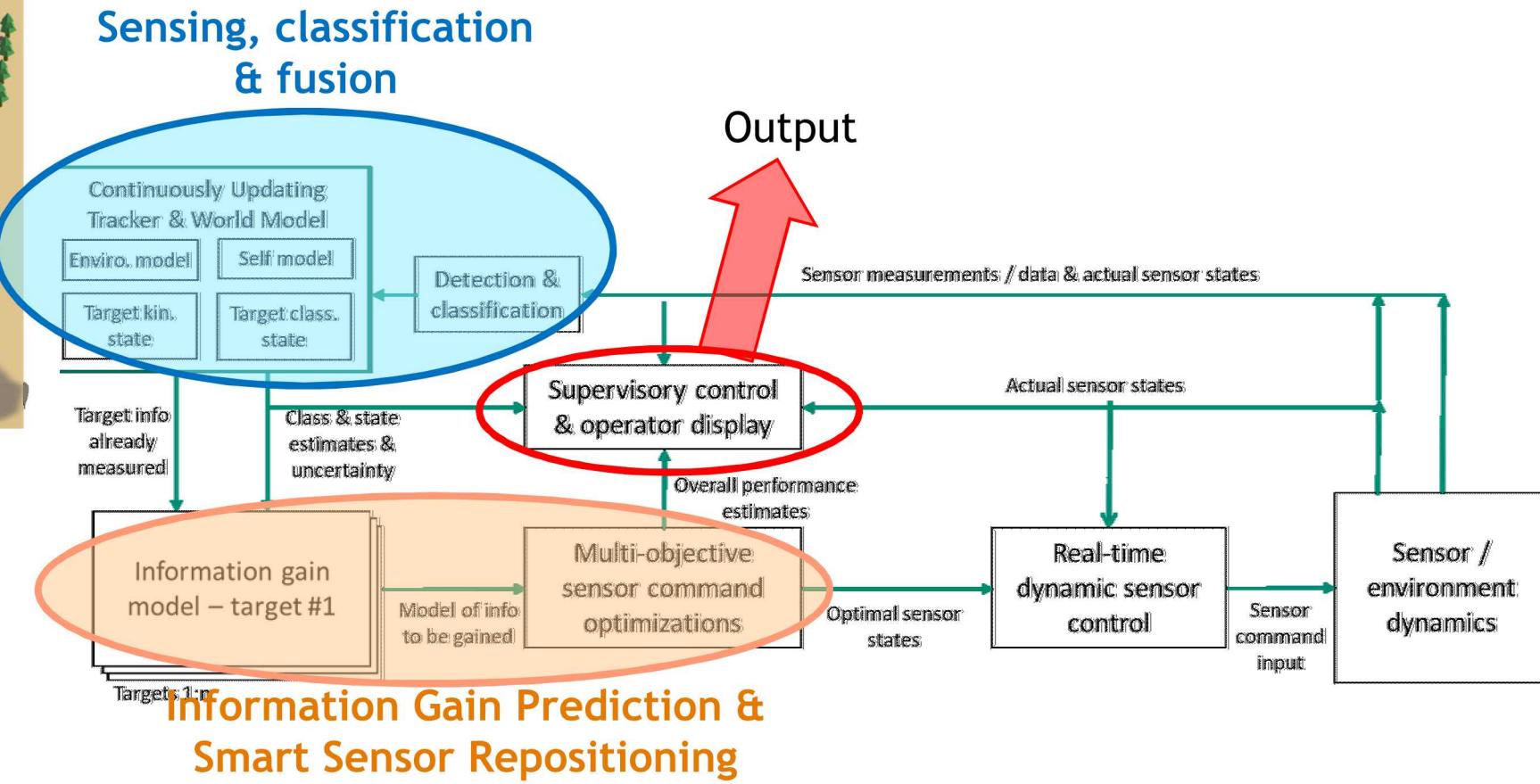
Perception Toolchain in Rich Environment



Autonomous Detection & Assessment with Moving Sensors (ADAMS)



Goal: Find & identify potential threats *before* they reach secure perimeter, without human intervention



- Multi-sensor fusion and integration in tracker
- Multi-objective optimization of sensor actions
- Ground & airborne sensors

Information State & Gain Models (IGMs)

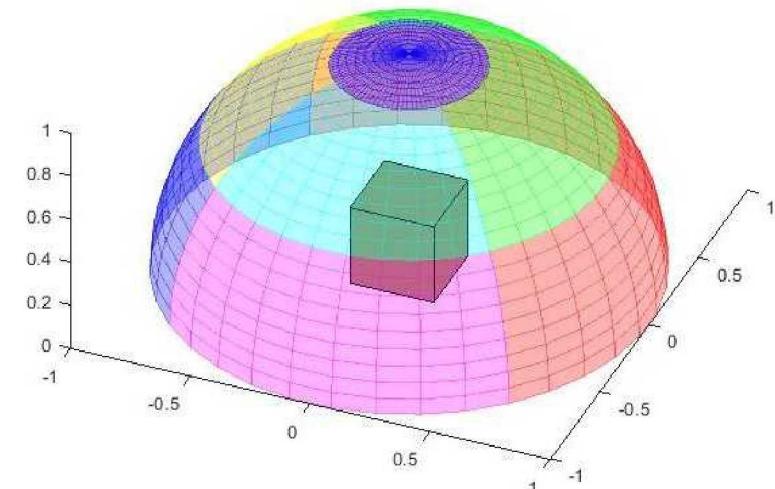
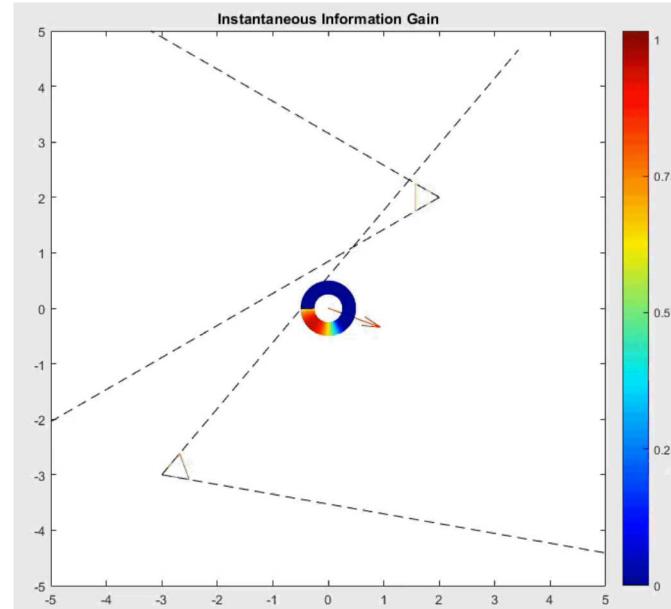
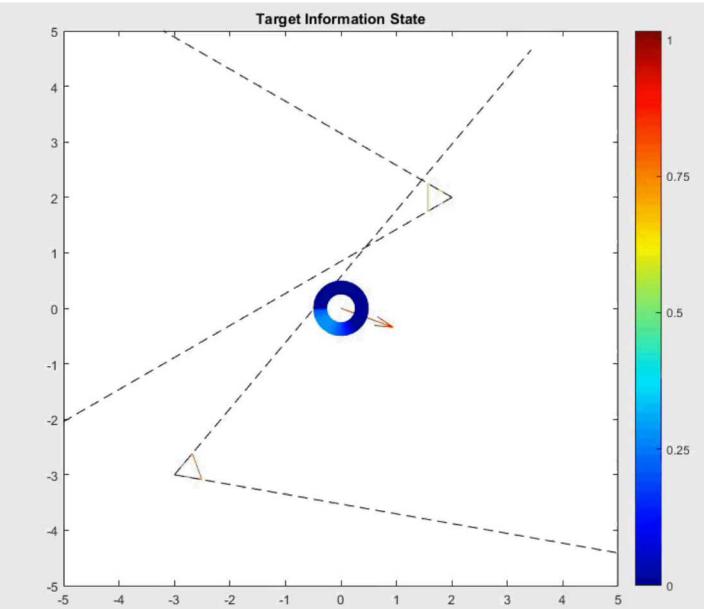
Goal: Predict information gain (or uncertainty reduction) from new sensor views

Challenge:

- Rigorous methods for predicting info gain in kinematic measurements do not directly extend to classifiers
- In particular, behavior of data-driven (e.g. CNN) classifiers is notoriously hard to model

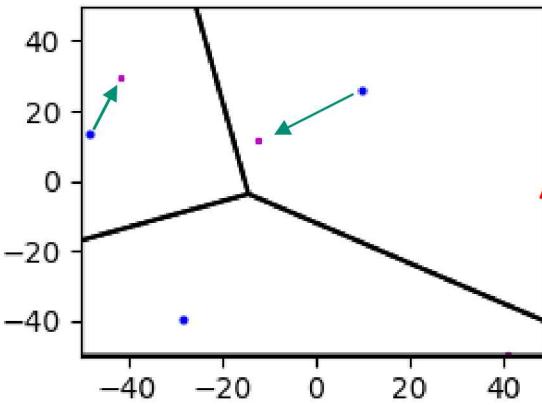
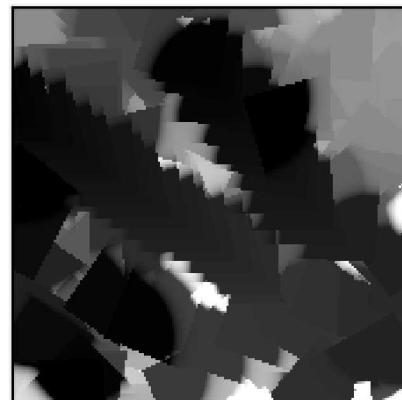
Near-term approach

- Heuristic models based on past data
- E.g. “Novel pixels on target”
 - Novel sensor type or perspective
- (*Approximation of classifier in loop*)

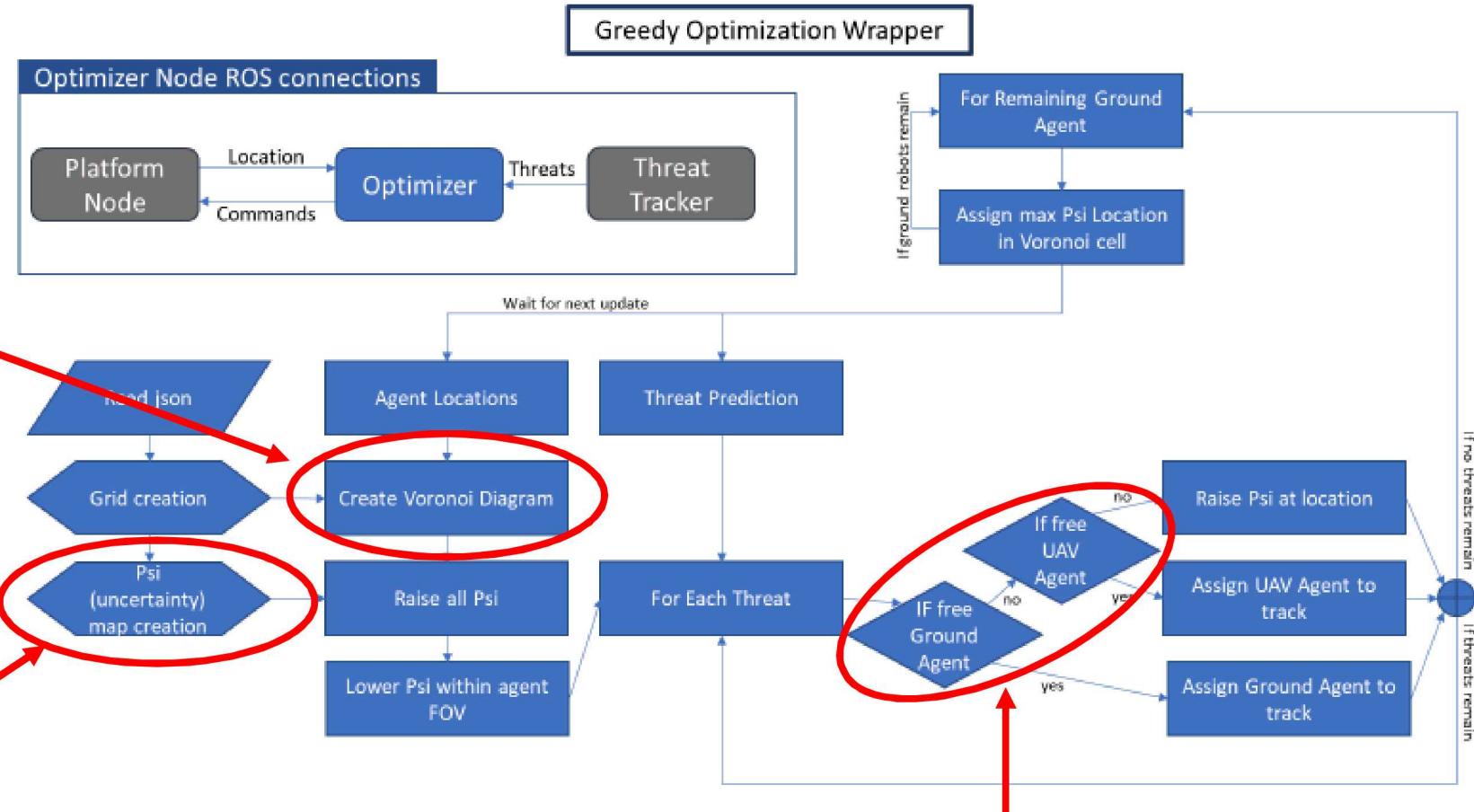


Sensor Placement Optimizer

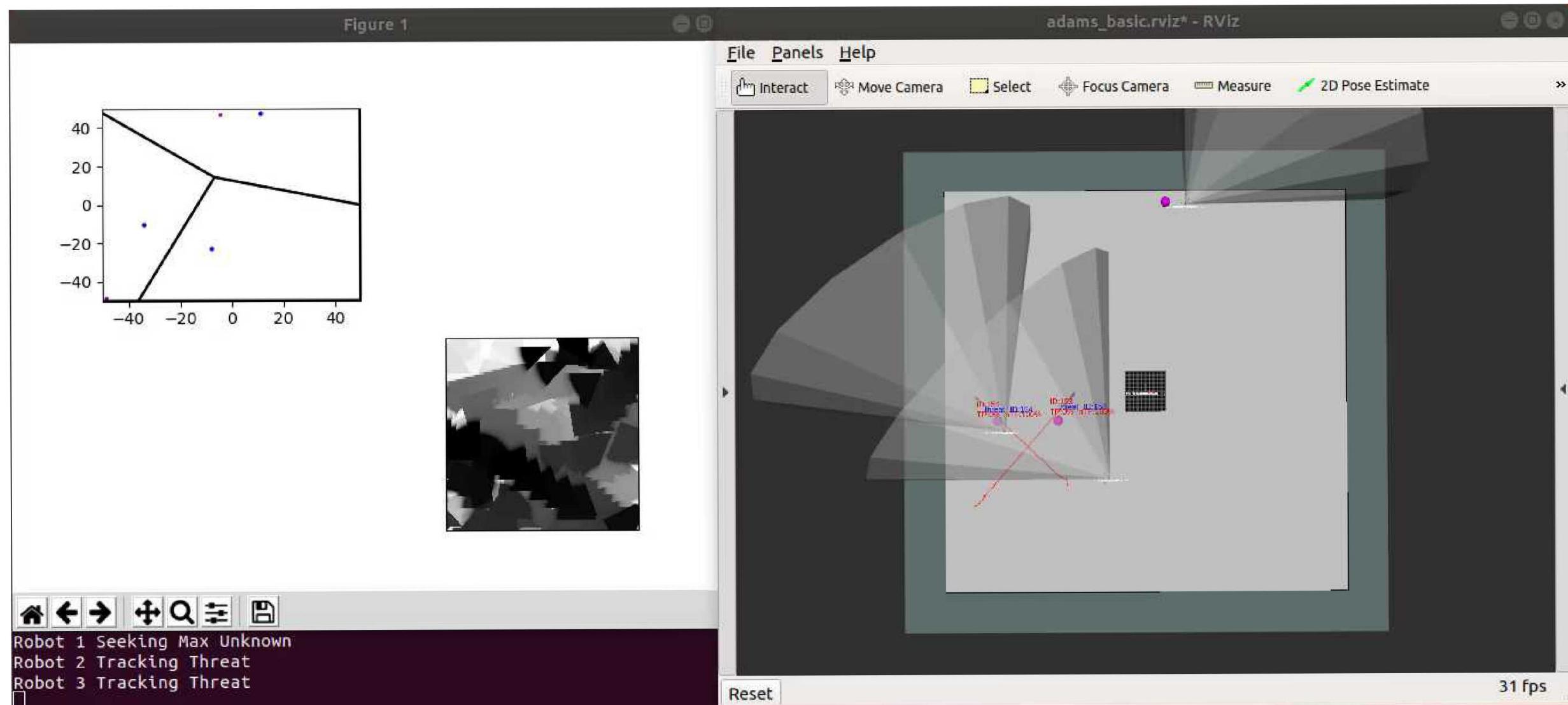
Voronoi diagram: defines instantaneous regions of patrol responsibility



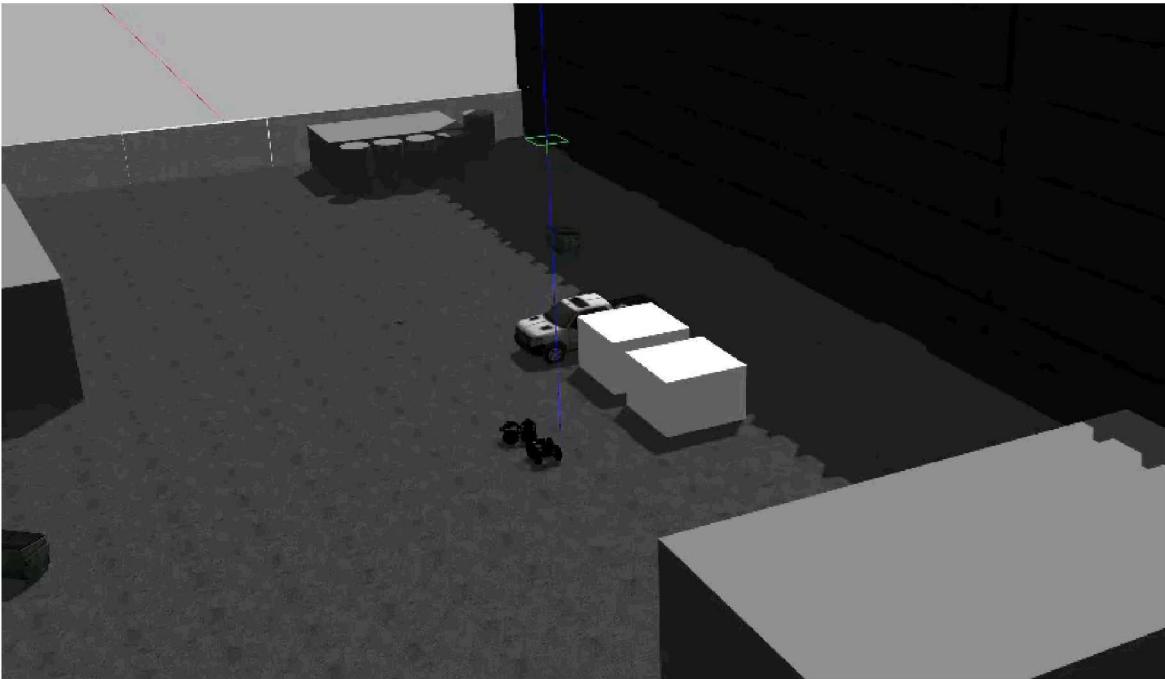
Psi map: uncertainty vs. position
Black is low uncertainty
White is high uncertainty



UGVs & UAVs treated differently due to energy properties (much more to do here)



Simulated Scenarios in Gazebo and Umbra



Sim environments

- Gazebo, for vehicle physics & ROS integration
- Umbra, for multi-agent Monte Carlo scenario sims in realistic sites

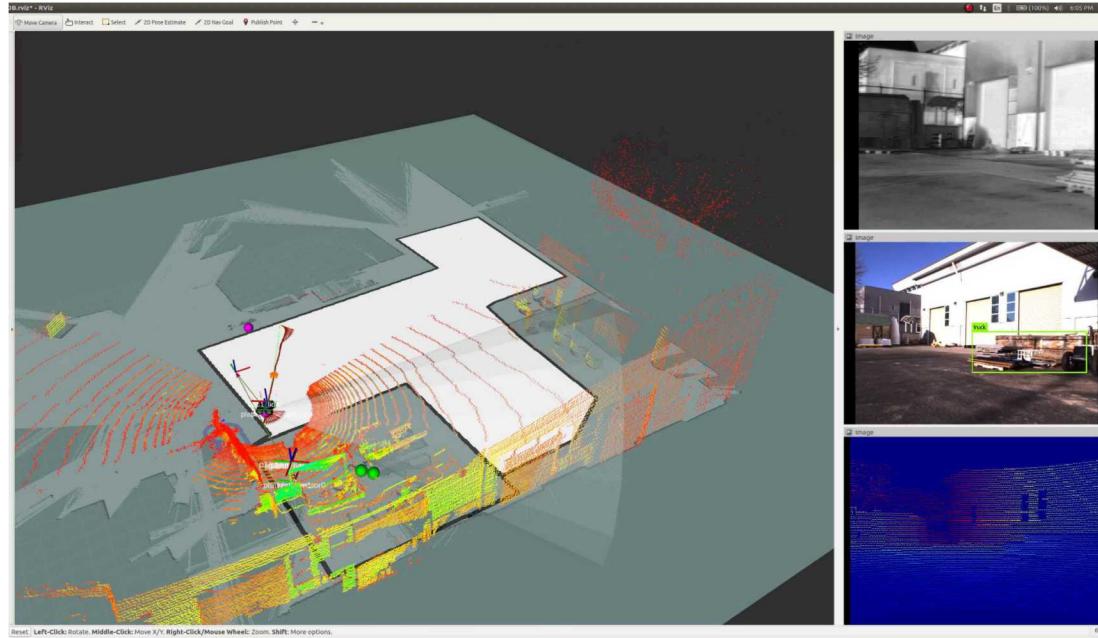
Uncertainty metrics (for sims & experiments)

- Patrol
 - Revisit time
 - Percent time observed
 - Diversity of sensor phenomenologies
 - Etc.
- Targets
 - Time to detect
 - Time to classify

Variables

- Number & types of sensors
 - Mobile
 - Vehicle type
 - Stationary

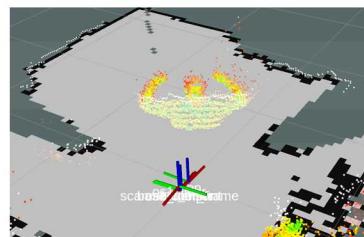
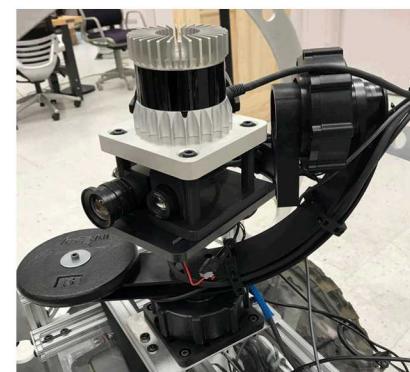
Experiments (Ramping Up)



Multi-sensor fusion

- Visible & thermal detection & classification
- LIDAR detection

Multi-objective (patrol & ID) optimization



Vehicles

- Segway RMP 440
- Semi-custom multirotor

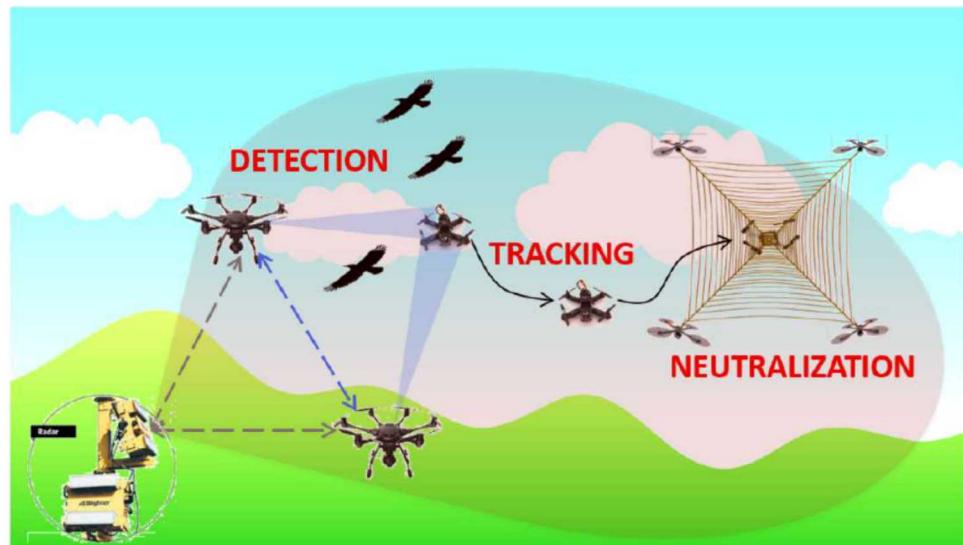
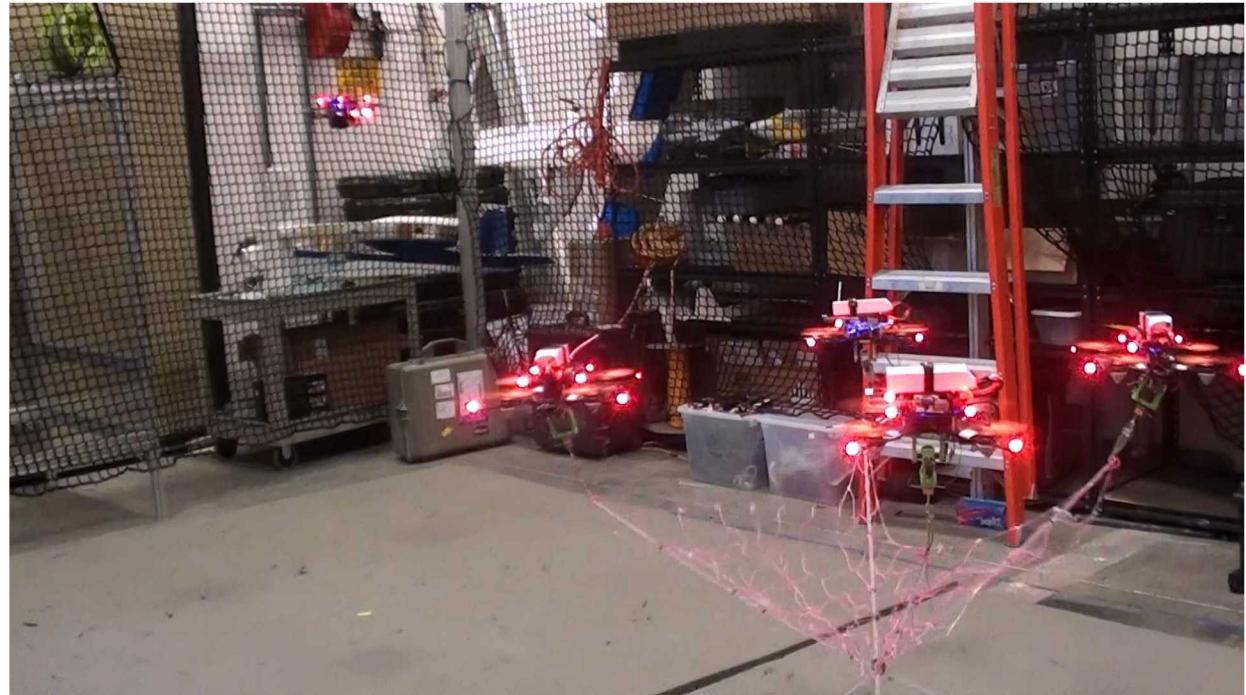
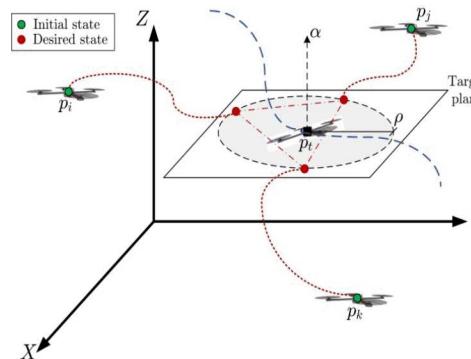
Aerial Suppression of Airborne Threats (ASAP)

What do we do if we find threats?

Example of an end-to-end unmanned security solution

Ground-air multisensory fusion

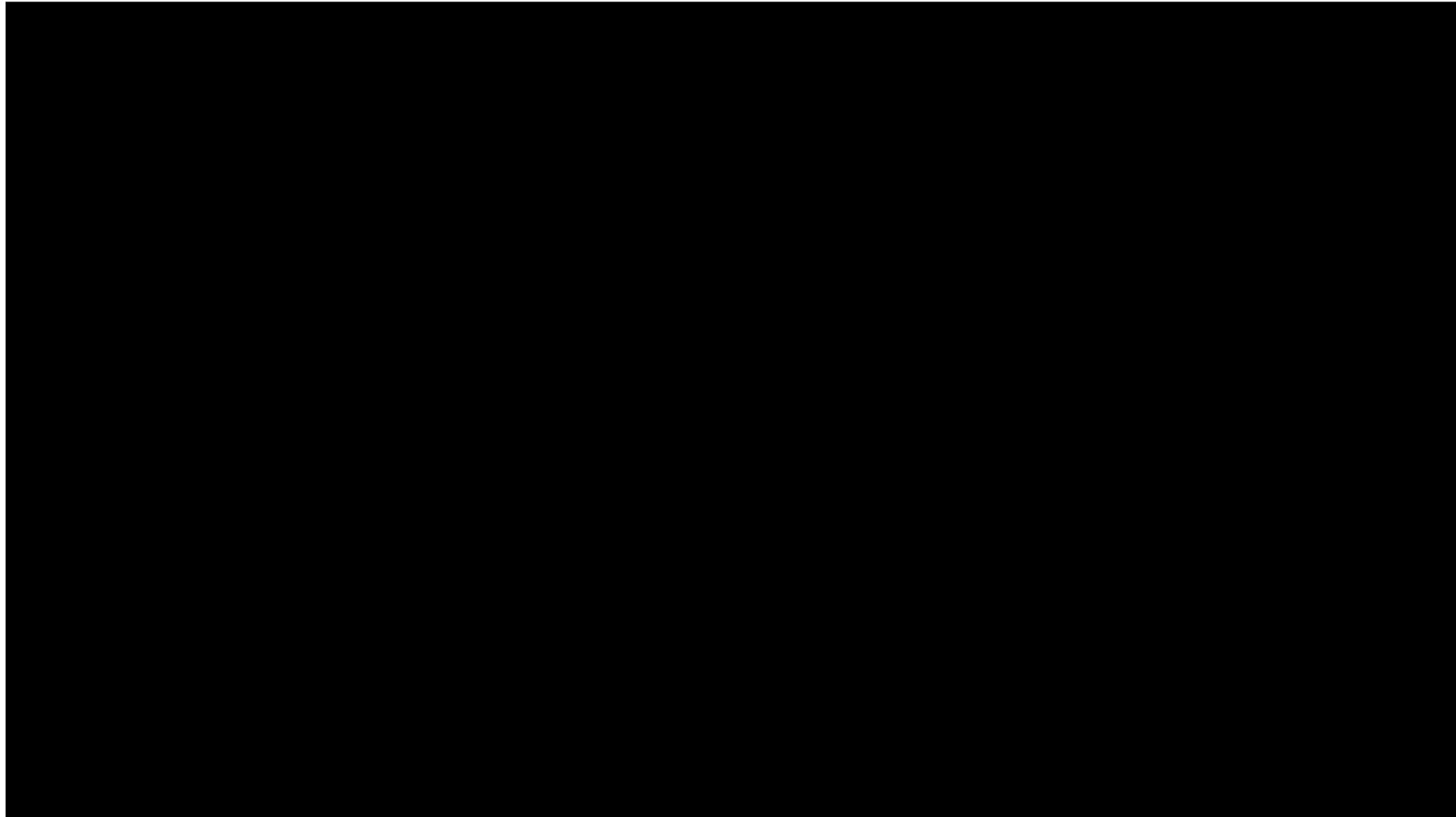
Neutralization with a “SmartNet”



Intercept trajectories via
cyclic pursuit & stochastic
reachability capture planning
(Fierro, Oishi & co. @ UNM)

Robotic Mobility – Gemini Scout Mine Rescue

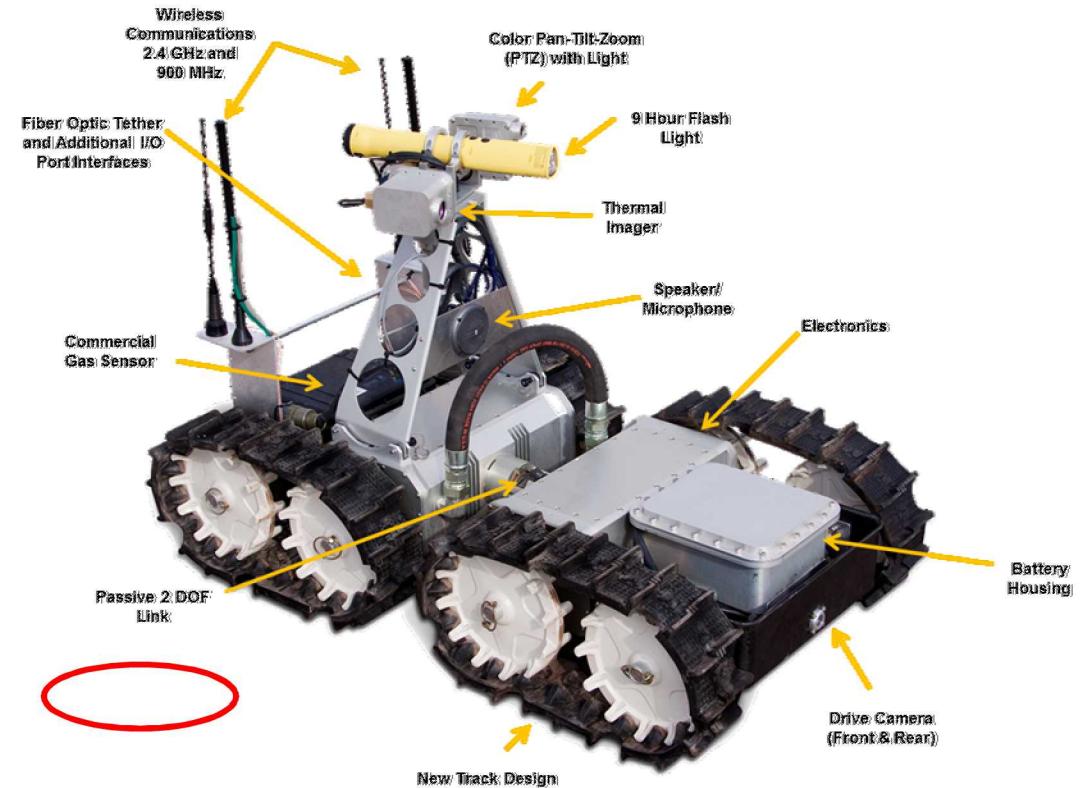
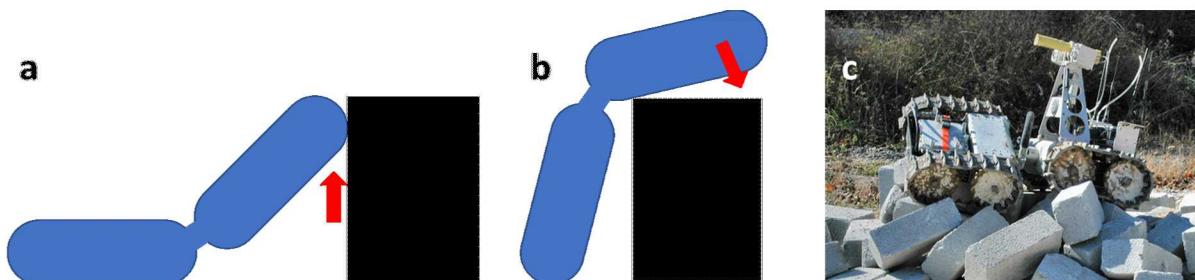
Tactical Autonomy Needs: **MOBILITY - EFFICIENCY - SPEED - COLLABORATION - PERCEPTION - TACTICS**



Pushing the Limits of Tracked Mobility

Gemini: Design derived from mobility analysis for wheeled and tracked vehicles traversing obstacles

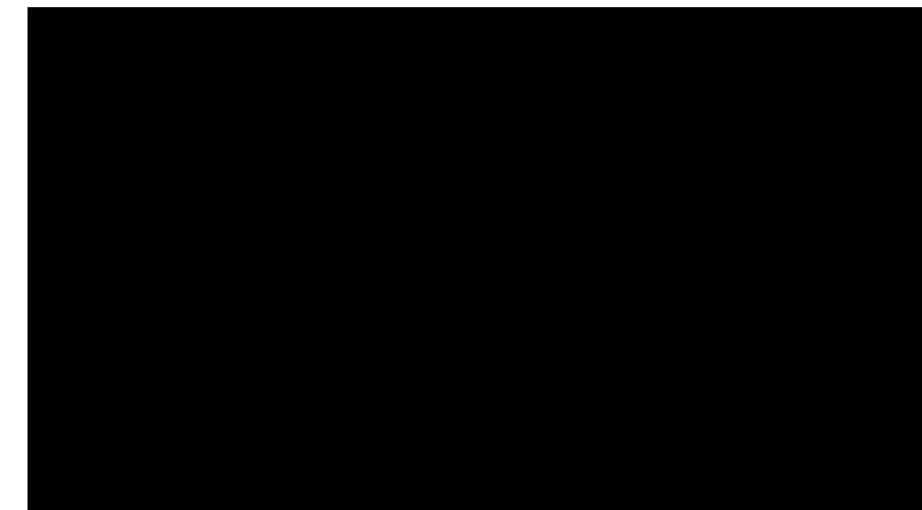
- Dual body ideal for larger obstacles, unstructured terrain
- Ground contact optimization for joint DOFs, track geometry, skid steer
- Passive joint mobility advantages
 - a – maintain traction while starting vertical climb
 - b – regain traction & shift CG over obstacle top
 - c – roll DOF keeps track in ground contact



Max obstacle size is limited to a fraction of body dimensions – unless...

Robotic Mobility – Urban Hopper

Tactical Autonomy Needs: MOBILITY -
EFFICIENCY • SPEED - COLLABORATION -
PERCEPTION - TACTICS - ACTION



Combustion-Powered Hopping

Energy efficiency comparison

- Firm ground hop energy:

Piston efficiency

$$E_{hop} \approx \varepsilon_{piston} M \cdot g \cdot h$$

- Energy to hover:

Reduce energy by increasing propeller area

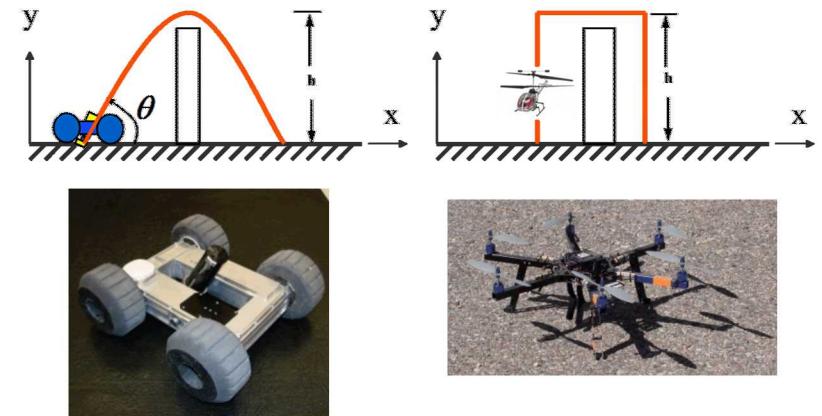
$$E_{hover} = \frac{(1 + \varepsilon_{prop})}{2} \cdot \sqrt{\frac{F}{A \cdot \rho}} \cdot \sqrt{\frac{2 \cdot M \cdot h}{M \cdot g - F}}$$

- Scaling with obstacle height:

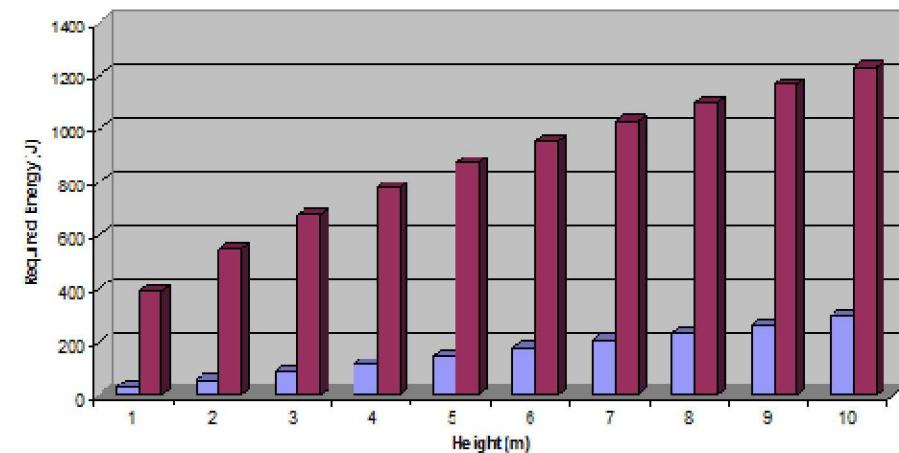
- Piston & prop efficiencies are similar
- Efficiencies cross as height increases
- Hopping is preferred for small obstacles, when ground is hard
- Why?
- Hovering uses (air) mass flow, which creates velocity dependence

To efficiently traverse small obstacles: “Drive when you can, hop when you have to”

Tactical Autonomy Needs: MOBILITY - EFFICIENCY • SPEED - COLLABORATION - PERCEPTION - TACTICS - ACTION



Hopping vs Hovering Energy



Human-Like Mobility: Legged robots

Legs offer great appeal for mobility

- Step over & onto obstacles
- Mobility (somewhat) less dependent on terrain type
- Balancing bipeds: high reach with small footprint (world built for people)

Major challenges

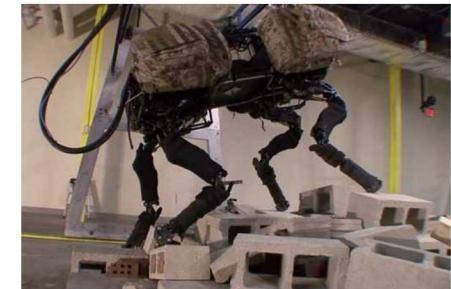
- Walking control is (still) hard
- Endurance
 - Cost of transport (dimensionless)
 - Bicyclist: >0.1; Production car: >0.3 (the wheel was a great idea!)
 - Horse: >0.2; Person: >0.3
 - Legged robots: ~5-30?

Improving endurance

- Supply: better batteries, hydrocarbons, harvesting?
- Consumption: gait efficiency, **drive efficiency**

Goal: Improve endurance without compromising functional behavior (ideally)

BDI Atlas



BDI Big Dog

LS3 - Boston Dynamics

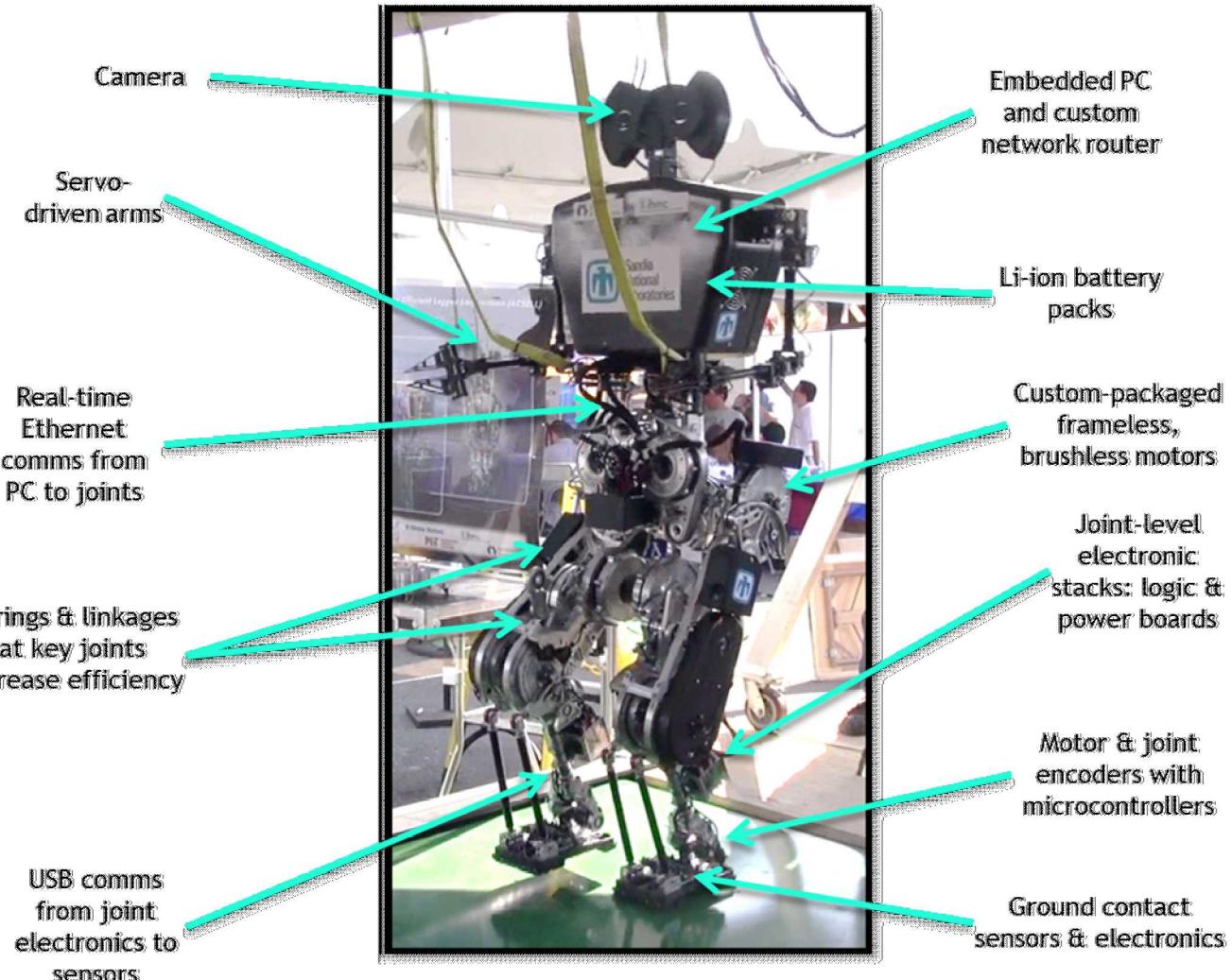
Cornell Ranger

Robotic Mobility – Efficient Legged Locomotion

Tactical Autonomy Needs: MOBILITY -
EFFICIENCY - SPEED - COLLABORATION -
PERCEPTION - TACTICS - ACTION

WANDERER

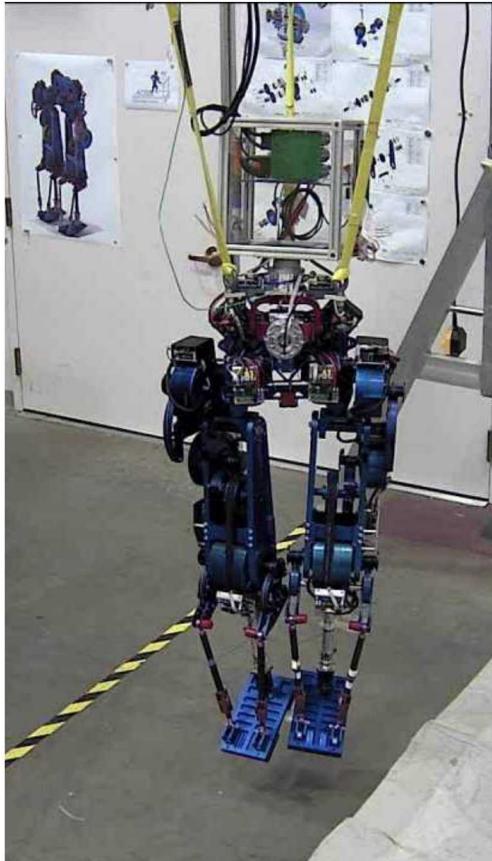
- Walks @ ~270 W locomotive power (420 W total)
- Walks 5+ hrs, 3-4 km per charge (further if not so slow!)
- Versatile mobility (15 locomotive DOF, 29 total)
- All electric, nearly silent



Efficient Mobility: Start With Efficient Drivetrain

Tactical Autonomy Needs: MOBILITY -
EFFICIENCY - SPEED - COLLABORATION -
PERCEPTION - TACTICS - ACTION

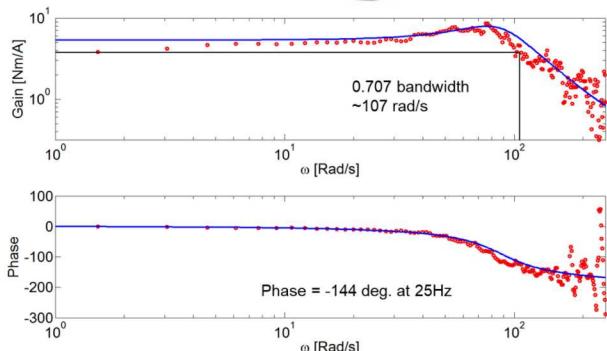
1) Minimal drivetrain & joint friction & inertia (more on inertia later)



Highly backdrivable when unpowered, minimizing friction loss and enabling regeneration

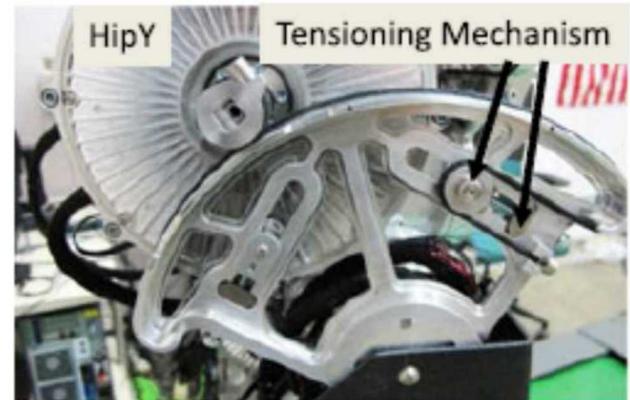
2) Compact, high-efficiency, low-ratio speed reducing transmissions

Rob. Aut. Let. 2017

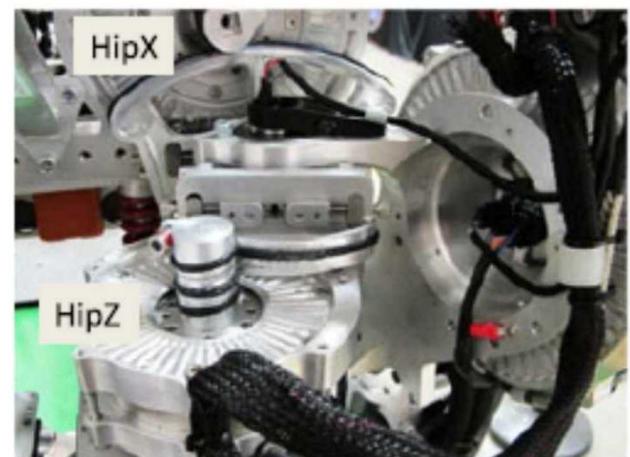


Synthetic Vectran cables provide tighter bend radius per tensile strength vs. steel

- 94% efficiency on walking trajectories, which include high & low torque & speed
- ~28 Hz bandwidth



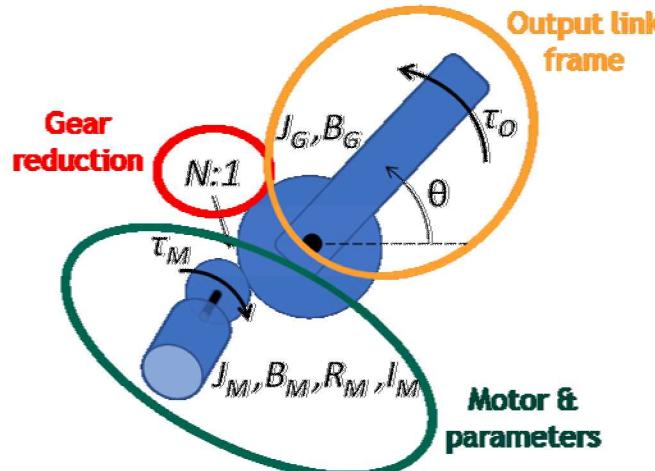
(a)



(b)

Efficient Mobility: Motor & Geartrain Sizing

3) Large motors with as low transmission ratio as possible



EOM in output frame:

$$J_T \ddot{\theta} + B_T \dot{\theta} = N \tau_M + \tau_O$$

Equivalent inertia & damping at output:

$$J_T = J_G + N^2 J_M \quad B_T = B_G + N^2 B_M$$

$$P_M = I_M^2 R_M + N \tau_M \dot{\theta}$$

Electrical Loss Mechanical Work

Average power over cyclic trajectory:

$$P_{avg} = \frac{1}{2} \left(\frac{J_T}{K_m N} \right)^2 \omega^4$$

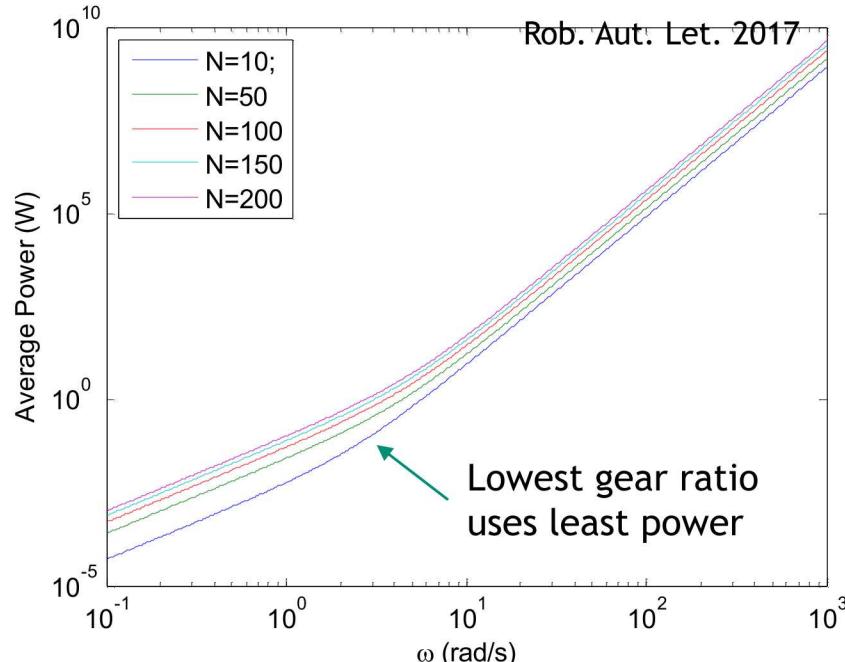
If increasing N and reducing motor size, $K_m N$ stays roughly constant, but J_T increases by $\sim N$

Using small motors and gearing, with torque feedback to achieve desired torque control (low mechanical impedance) behavior, can be inefficient

- As N increases, apparent inertia & damping increase by N^2
- Adding series elasticity does not necessarily reduce energy consumption (and can increase it)

Tactical Autonomy Needs: MOBILITY - EFFICIENCY - SPEED - COLLABORATION - PERCEPTION - TACTICS - ACTION

Target output: zero torque (as exemplar)



There can be a *substantial energy penalty* to using small motors with large gearing and torque feedback for torque control

Efficient Mobility: Thermal Efficiency

Tactical Autonomy Needs: MOBILITY - EFFICIENCY - SPEED - COLLABORATION - PERCEPTION - TACTICS - ACTION

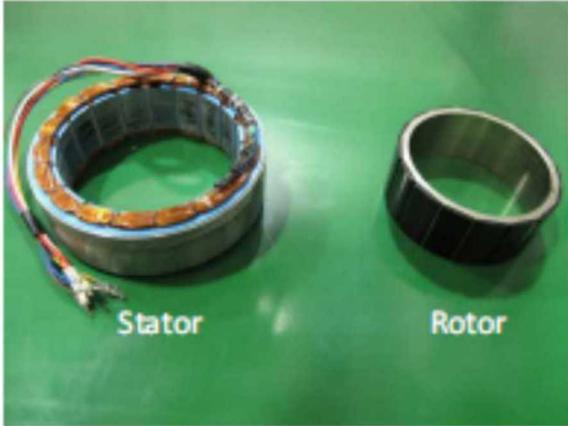
4) Actively cool motors to increase capacity – and gain net efficiency

$$I_M^2 R_M$$

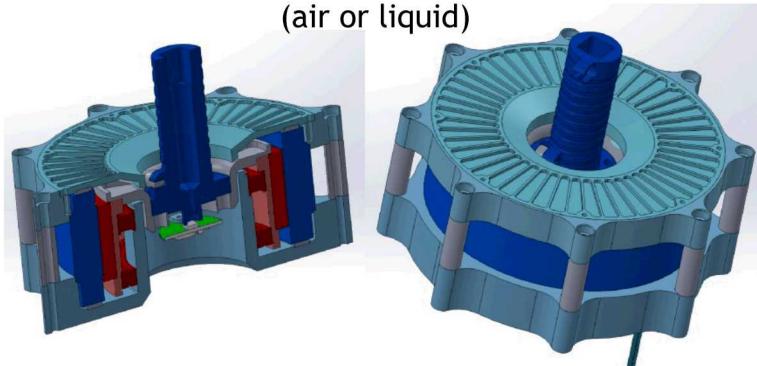
is the enemy!

$$\alpha_{Cu} = 0.4 \text{ \%}/\text{^\circ C}$$

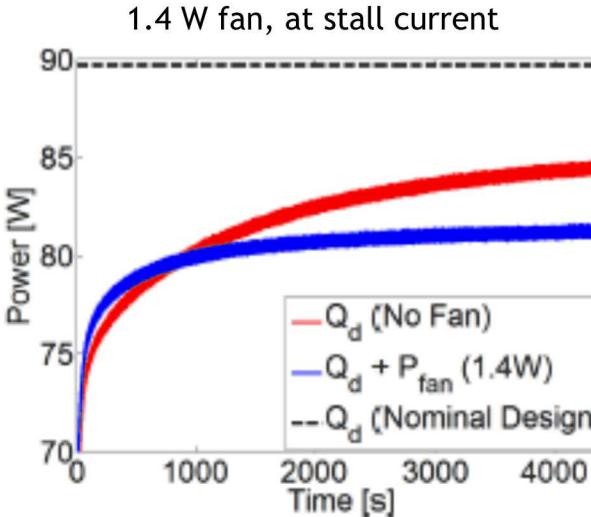
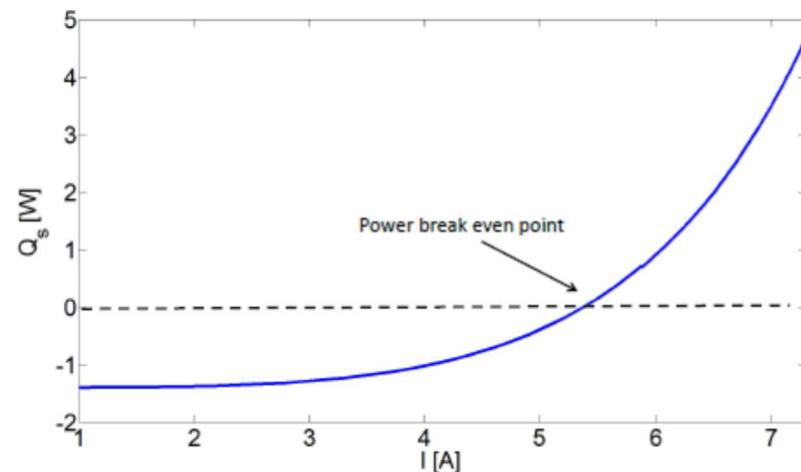
Package frameless motors minimally



Expose stator outer circumference for cooling
(air or liquid)



High heat transfer motor housings

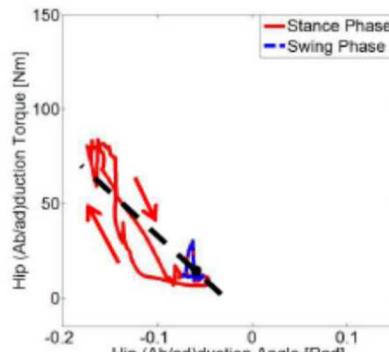
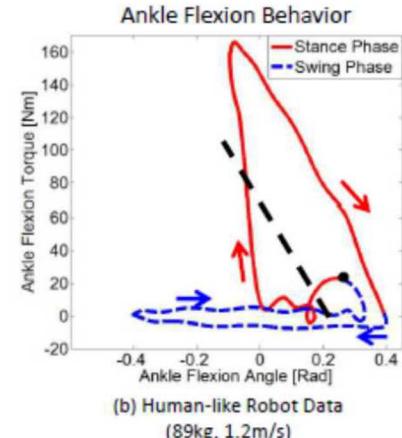
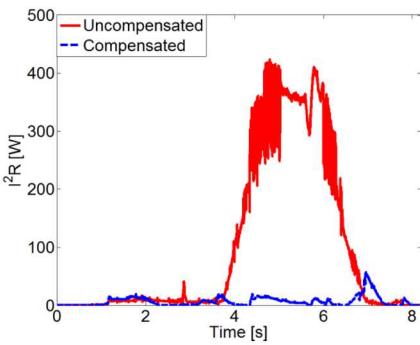
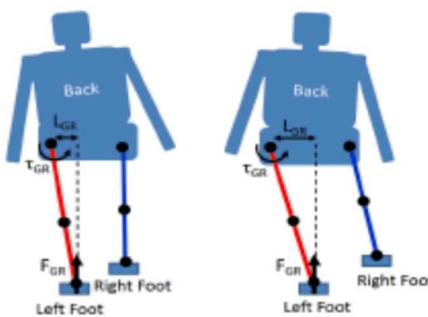


Efficient Mobility: Sculpt Loading for Behaviors

Tactical Autonomy Needs: MOBILITY - EFFICIENCY - SPEED - COLLABORATION - PERCEPTION - TACTICS - ACTION

5) Passive mechanisms (“support elements”) exploit common walking characteristics to optimize energy extraction from motors (& minimize $I_M^2 R_M$)

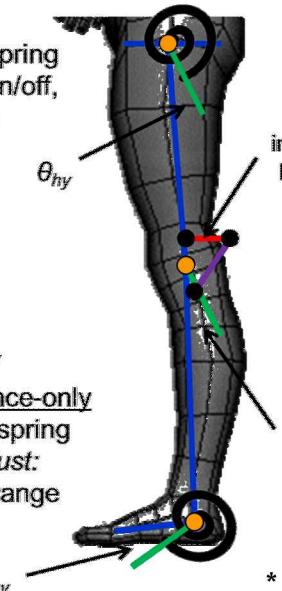
Parallel elasticity at hip & ankle



T. Mech. 2016

Hip Y

SE: parallel spring
Gait adjust: on/off,
 θ_{hy} 38° range

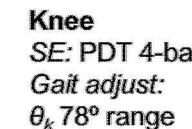


Hip X

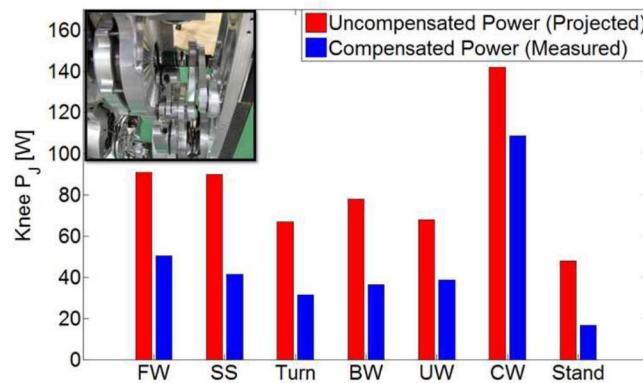
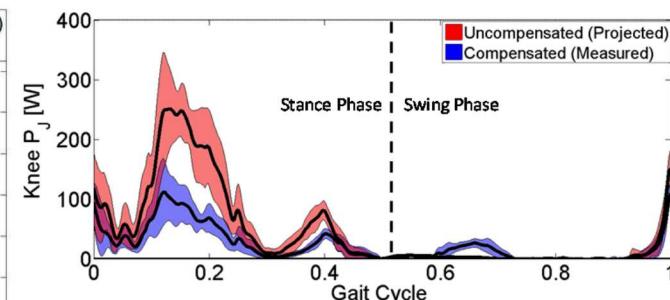
SE: parallel spring, partial range: adduction only
Gait adjust: none

Ankle Y

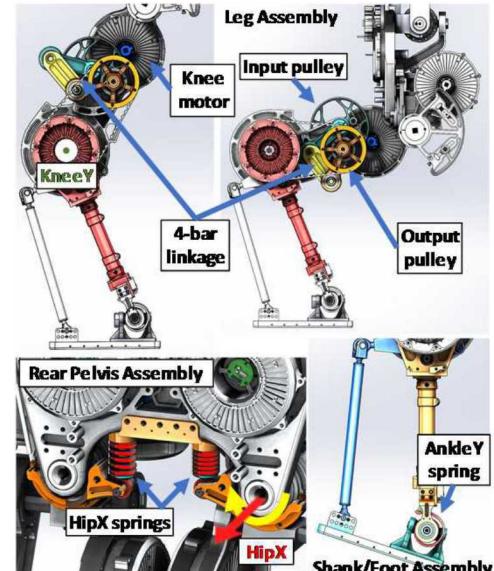
SE: stance-only parallel spring
Gait adjust: θ_{ay} 50° range



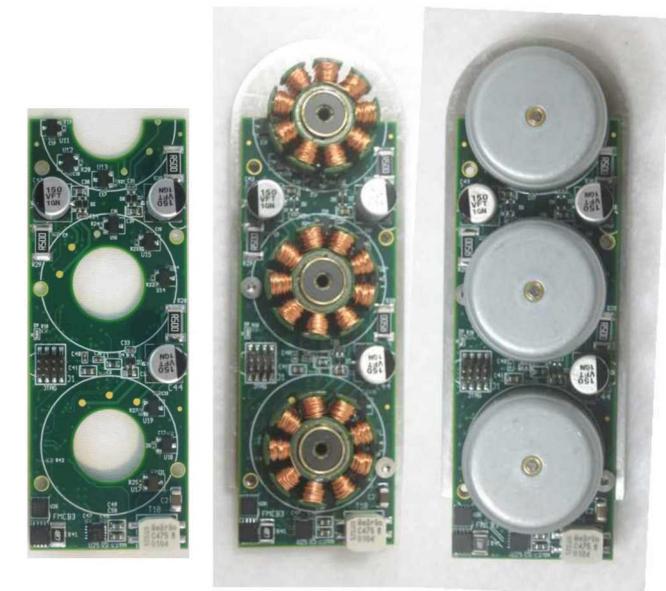
* - PDT = Pose Dependent Transmission



On WANDERER: SE's reduce locomotive power by 43% (!)



Custom Mechatronics and Manipulation (Sandia Hand)



What's Coming? More Effective Interactions with Physical World

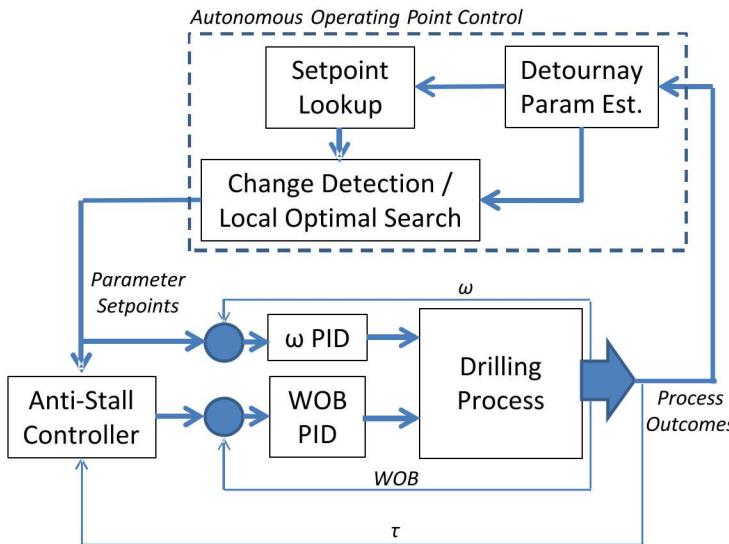
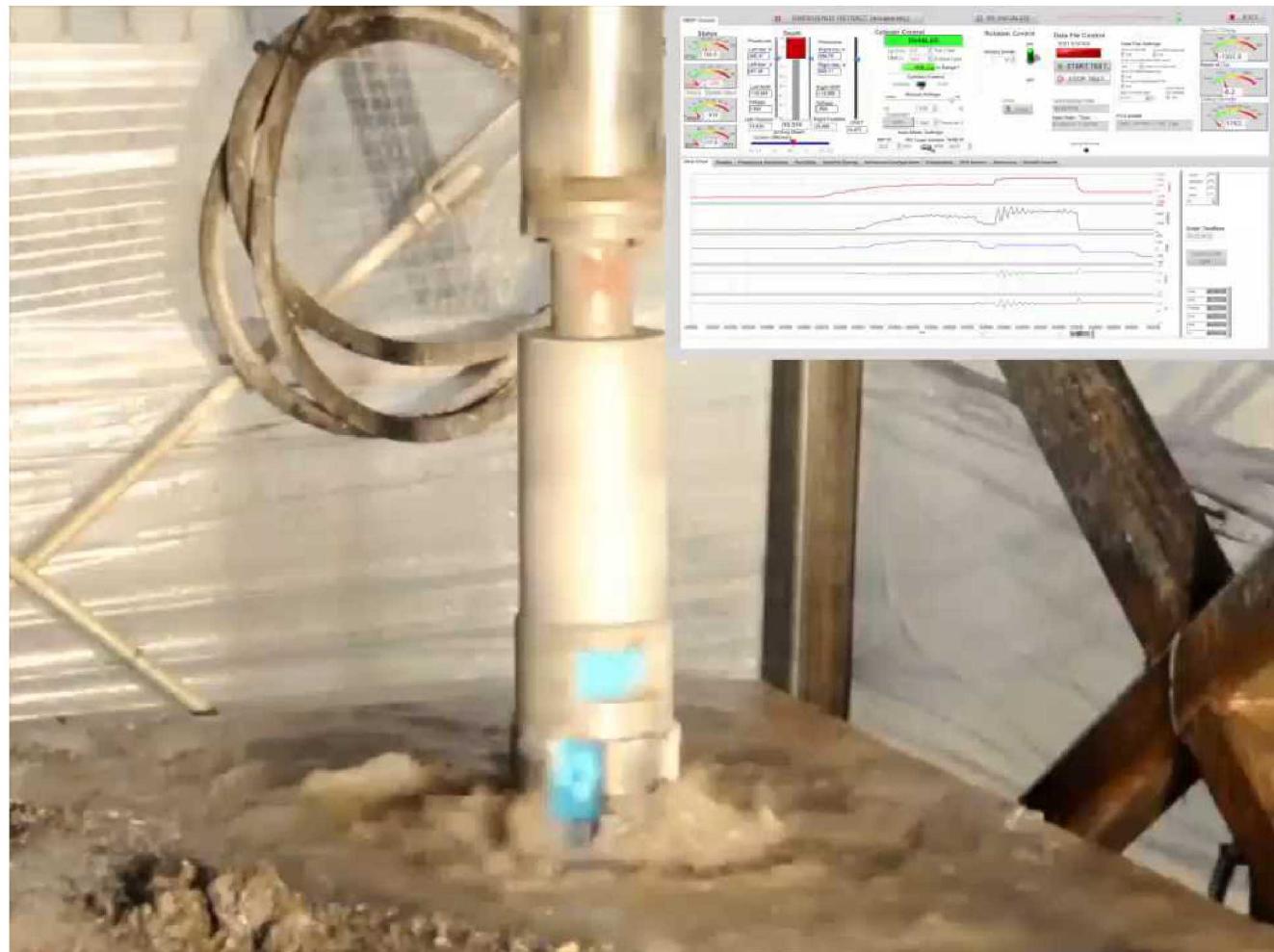
Semi-autonomous door opening (kind....of....slow...)

Novel Effectors for Toughest Applications: e.g. Autonomous Drilling

Hierarchical controller

- Classifies drilling medium via physics-based parameter estimation in real-time
- Local golden-section search for optimal
- Optimize speed or MSE (efficiency)

Working toward highly portable, non expert-operated, fast drilling systems, e.g. for mine rescue or rapid geothermal exploration



Thank You

Core SNL team

Tim Blada
Greg Brunson
Steve Buerger
Nadia Coleman
Clint Hobart
Mike Kuehl
Keith LeGrand
Ani Mazumdar
Anup Parikh
Jon Salton
Steve Spencer

Major SNL Collaborators

Jack Gauthier (Optimization)
Mark Koch (Image / Sig. Processing)
Jason Krein (Embedded Sensing)
Jiann Su (Geothermal Research)

Major External Collaborators

Girish Chowdhary (UIUC)
Rafael Fierro (UNM)
Meeko Oishi (UNM)
Jerry Pratt (IHMC)
Morgan Quigley (OSRF)
Ufuk Topcu (UT)

Questions?

Contact: Anup Parikh, aparikh@sandia.gov
Steve Buerger, sbuerge@sandia.gov

Sandia's High Consequence Automation & Robotics Group

