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2 Sandia at a Glance

Sandia is a multi-mission laboratorywith major R&D responsibilities in national security, energy and
environmental technologies, and economic competitiveness

National Security Mission Areas

Nuclear Weapons
Energy & Climate
Information Operations
Surveillance & Reconnaissance
Remote Sensing & Verification
snarp

Integrated Military Systems
Global Security & Homeland Defense
Cyber & Infrastructure Security
Science & Technology Products

Sandia develops advanced technologies to ensure global peace

♦



3 High Consequence Automation and Robotics
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Tactical Operations with Unmanned Systems (UMS): Operate UMS teams
toward goals at human (or faster) speeds, with human (or better) 

effectiveness, against dynamic environments & adversaries 

Physical Security:
Detecting, Assessing, and Delaying Threats

• 11 laGewrg.

• to.
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Future dismounted operations:
Migrating UMS from support to peers
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Abandoned Facility Recon:
Unknown compound, potential adversaries

Mine Rescue / Disaster Response:
Denied, uncertain, complex environments

Need: MOBILITY -
EFFICIENCY - SPEED
- COLLABORATION -

PERCEPTION -
TACTICS - ACTION



5 Moving up the Tactical UMS "Autonomy Ladder"

Level of Instruction

"Go win the battle / war"

Capabilities Technologies

- - - Al / Strategic Reasoning / ???

"Secure the squad while it
moves around"

"Find all the (tanks) in there
and (swab) them."

Dynamic tactical engagements

Take action in unknown env.

"Go through that facility, bring  
back a map and pictures"

Drive / fly with joystick

Navigate unknown / denied env.

---- Tactical Reasoning

--- Rapid Abstract Perception

-1:SLAM (Simult. E>

Local. & Map.)

GPS, path
Navigate known environments

planning

IROS 2014 Kinect Challenge
Github - RTAB-map



6 I What do we mean by intelligent perception?

Elements:

Possible separate room:
People might be in there

Possible machine shop:
Chemicals may be nearby What's back there?

Can't tell what these are but
they might be interesting

i

Intelligently drawing higher-
level conclusions (e.g. semantic
classification) from sensor data

To autonomously drive down semantic uncertainty:
° Effectively requires placing a classifier, or an approximation of one, inside a control loop

If I move to this spot, I should
get a good view of all 3

Controlling a sensor to autonomously
drive down uncertainty by getting the
best data in real-time 
• Not just tip-and-cue; continuous (or large-

space discrete) problem in space and time

Big challenge: putting pieces together into something that works in real world



7 Autonomous Threat Awareness

Place sensors to "minimize uncertainty in the threat environment"

Presence, location (geometry) & identity (semantics) of objects of interest (or non-interest)

Balance search (new detections) vs. characterization (prior detections

Solve this problem
continuously Et
indefinitely



8 Why Moving Sensors?:The Benefits of Perspective Change
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9  "The Right Way"
Info-Driven Control to Minimize Uncertainty: Challenges of Doing it

An ideal approach: treat everything probabilistically
o Compare current distribution (prior) to expected
posterior based on predicted measurements
o Select measurement that maxirnizes info gain via, e.g. direct optimal

control

. (Some of the) sources of uncertainty:
o Sensor state uncertainty

. Probability of detection (with variations: spatial, geographic, target
type, state, etc.)

. False alarm rate (with variations as above...)

. Multi-target data association uncertainty

. Cardinality uncertainty (number of targets)
o

o Frameworks exist to handle this (e.g. FISST tracking),
but there are challenges
° Real-world classifier output form (not pdf / pmf)

o Scaling & computational challenges (real models are nonlinear)

. Challenges particular to distributed systems (double counting, etc.)
o

*
False Alarm
Distribution

Entropy = X

0

Sensor State
Uncertainty
Projected to

Scene

*

Spatial Pd
Distribution

Entropy = Y

*

Data Association
Uncertainty

What can we implement now?

Buonviri / LeGrand



10 I Rapid Abstraction in Confined Environments (RACE)

Autonomously: Swab all gas
cylinders in chemistry labs or
welding facilities. Map the whole
space and locate any of the new
MQ-3000 sensors.

o Semantic & geometric mapping

• Find rare objects

• Explore intelligently

EdgeBox
Detection

Object

Classification 

2D
processing

ntegration

Exploration / Info Gain k
Motion Planner )

Smart Sensor
Repositioning

3D
processing

Output1/



11 SLAM with segmentation

Surfel-based SLAM approach

o Adaptation of [1, 2]

Real-time surface-normal
based segmentation

o GPU adaptation of [3] for full
resolution segmentation in real-
time (-201-1z)

Distinct
objects

•

1. Keller, et. al., "Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion", Int. Conf. 3D Vis., 2013

2. Whelan, et. al., "ElasticFusion: Real-Time Dense SLAM and Light Source Estimatioe, Int. J. Robot. Research, 2016

3. Tateno, et. al., "Large scale and long standing simultaneous reconstruction and segmentation." Computer Vision and Image

Understanding 157 (2017): 138-150.



12 Object Detection and Classification

Apply YoloV3 [1] frame-by-frame
• RGB image CNN-based detector
• Provides bounding box and classification at —20Hz
• Pretrained on common objects: computing (keyboard,
mouse, laptop, display, etc), furniture (chair, table, etc.),
household (refrigerator).

• Retrained with doors, cabinets, and other items of
interest

Bayes update classification for every point
• Fuse information from multiple views, multiple

sensors
• Compensate for false positives/negatives

•

Colors indicate class labels (frame by frame)

1. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv:1804.02767, 2018.



13 Uncommon Object Detection and Classification (I)

Retraining Deep Net Classifiers

o For objects that
are common
but not in
standard
training sets

pull_rnetal 88%

door_handle: 87%

61

Low-Shot Methods Text Et Logos



14 Exploration & Information Gain

• Estimate the information gain of a new view by:
1. Getting better views of objects

• Instantaneous info content estimated by a heuristic considering distance and
relative face normal

2. Decreasing uncertainty in map occupancy [1]

• Probabilistic occupancy grid (octree representation for efficient storage in 3D [2])

I (a) = tvi0aH+2v20a/C

H (m) = — p (c) logp(c) (1 — p (c)) log (1 — p (c))
cEm

(0) = 1v, i (xt,i vt,i (0))max {—rt,j (0) - (0) , Olexp (—À1 (max { llxt,i — xs,z II dmin } dmin))

Point in view Surface facing camera Distance to surfel

But how to decide views to consider?
1. Random sampling of space (for exploration)
2. Disparate views of objects:

1. PCA on object points provides rough size (filter out objects too small/large)
and dominate object-relative directions. 1. Stachniss, et. al., "Information Gain-based Exploration Using Rao-

Blackwellized Particle Filters", Robotics: Science and Systems. Vol. 2. 2005
2. Pick feasible views along dominant directions. 2. Hornung, Armin, et al. "OctoMap: An efficient probabilistic 3D mapping

framework based on octrees." Autonomous Robots 34.3 (2013): 189-206.

0.9
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1 5 Perceiving a single object



16 Perception Toolchain in Rich Environment
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17 I Autonomous Detection & Assessment with Moving Sensors (ADAMS)

Goal: Find Et identify potential
threats before they reach secure
perimeter, without human
intervention

Sensing, classification
Et fusion
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Target: Mfd
already
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Information gain
model - target #1

Del erbium

•

Output

Supervisury f .
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Actualsensorstates

Iperforrrxance

Mu Iii-oblective
SCrisor emmand

Nformation Gain Prediction a
Smart Sensor Repositioning

Multi-sensor fusion and integration in tracker

Multi-objective optimization of sensor actions

Ground & airborne sensors

emir
dly/namics



18 I Information State & Gain Models (IGMs)

Goal: Predict information gain (or uncertainty reduction) from new
sensor views

Challenge:

• Rigorous methods for predicting info gain in kinematic measurements
do not directly extend to classifiers

• In particular, behavior of data-driven (e.g. CNN) classifiers is
notoriously hard to model

Near-term approach

o Heuristic models based on past data

o E.g. "Novel pixels on target"
0 Novel sensor type or perspective 

o (Approximation of classifier in loop)
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19 Sensor Placement Optimizer

40

20

0

—20

—40

Voronoi diagram: defines

instantaneous regions of

patrol responsibility

—40 —20 0 20 40

Optimizer Node ROS connections

Platform

Node

Location

Commands

Greedy Optimization Wrapper

Optimizer
Threats Threat

Tracker

Witt for next update

Agent Locations

4 Create Voronoi CPiagra m

Raise all Psl

Lower Psi vulthIn agent
FOV

Psi map: uncertainty vs. position

Black is low uncertainty

White is high uncertainty

Threat Prediction

For Each Threat

For Remaining Ground
Agent

Assign max Psl Locatkon
In Voronoi cell

1

Ram Psi at location

Assign UAV Agent to
track

Assign Ground Agent to
track

UGVs & UAVs treated differently

due to energy properties (much

more to do here)

3

•



20 Sensor Placement Optimizer •

Figure 1 adams_bask.rvie - RVI2

—1:) 0 2b

4-4] elP AliEd
Robot t Seeking Max Unknown
Robot 2 Tracking Threat
Robot 3 Tracking Threat

0

File Panels Help

Interact Move Camera LJ Select + FaCus Camera rmal Measure el 2D Pose Estimate },

Reset 31 fps



21 I Simulated Scenarios in Gazebo and Umbra

•

mid

Sim environments
o Gazebo, for vehicle physics & ROS integration

o Umbra, for multi-agent Monte Carlo scenario sims in
realistic sites

Uncertainty metrics (for sims & experiments)
o Patrol

O Revisit time

O Percent time observed

O Diversity of sensor phenomenologies

O Etc.

o Targets

O Time to detect

O Time to classify

Variables
o Number & types of sensors

O Mobile

0 Vehicle type

O Stationary



22 I Experiments (Ramping Up)

Multi-sensor fusion
- Visible & thermal detection & classification

LIDAR detection

Multi-objective (patrol & ID) optimization

Vehicles

Segway RMP 440

Semi-custom multirotor



23 I Aerial Suppression of Airborne Threats (ASAP)

What do we do if we find threats?

Example of an end-to-end unmanned security
solution

Ground-air multisensory fusion

Neutralization with a "SmartNet"

DETECTION _.A0e

TRACKING

c3

NEUTRALIZATION
• Initial state
• Desired state

'

• e
.. /' 

.......

Pt, —

Target
plane

...

Pk

 Y

'
I

• -AIM c a
"41111114141 t.ha

. .

Intercept trajectories via
cyclic pursuit Et stochastic
reachability capture planning
(Fierro, Oishi Et co. @ UNM)



24 Robotic Mobility — Gemini Scout Mine Rescue
Tactical Autonomy Needs! MOBILITY -
EFFICIENCY - SPEED - COLLABOKAI iON -

PERCEPTION - TACTICS



Pushing the Limits of Tracked Mobility

Gemini: Design derived from mobility analysis for
wheeled and tracked vehicles traversing obstacles

• Dual body ideal for larger obstacles, unstructured
terrain

a

Ground contact optimization for joint DOFs, track
geometry, skid steer

Passive joint mobility advantages
a — maintain traction while starting vertical climb
b — regain traction & shift CG over obstacle top

c — roll DOF keeps track in ground contact
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andlAdditibnall ITO
IThrSfhthrthr.ev

C.Ommorcild
61131SIMBOF

Wiheibm
COnitnuraluitibrogs etAtor

9.IM Mk/. frftftft1111 it 1
2AGNIcenull

Knob?.
LLihBt

he
-Paw Aee

Mx* Mak DbOrli

gin bur FIMTii
wpryii

Thema
linappr

Opihigore
• • Mittroprimm

PYIM CAmorm
(ffront8,114ax))

Bideerc
Htanfikli

Max obstacle size is limited to a fraction
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26 Robotic Mobility — Urban Hopper

TartirAl Autonnmv Needs: MOBILITY ----
EFFICIENCY - SPEED - COLLABOKm iON -

vEkLEPTION - TACTICS - ACTION

1



27 Combustion-Powered Hopping

Energy efficiency comparison

• Firm ground hop energy:

Piston efficiency

O Energy to hover:

Reduce energy by
increasing propeller area

Ehop gpistonM • g • h

(1+ prop 
E hover 

—

2

• Scaling with obstacle height:

• Piston & prop efficiencies are similar

• Efficiencies cross as height increases

• Hopping is preferred for small obstacles, when ground is hard

O Why?

o Hovering uses (air) mass flow, which creates velocity dependence

F

A • p

2 • M • h
1 1

M • g F

To efficiently traverse small obstacles: "Drive
when you can, hop when you have to"

R
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g
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TartirAl Autonnmv Needs: MOBILITY ----
EFFICIENCY - SPEED - COLLABOKm iON -

vEkLEPTION - TACTICS - ACTION

x

Hopping vs Hovering E nerg y

2 3 4

FIE igl-rtin:



Human-Like Mobility: Legged robots

Legs offer great appeal for mobility

. Step over & onto obstacles

. Mobility (somewhat) less dependent on terrain type

. Balancing bipeds: high reach with small footprint (world built for people)

Major challenges

. Walking control is (still) hard

. Endurance
. Cost of transport (dimensionless)

O Bicyclist: >0.1; Production car: >0.3 (the wheel was a great idea!)
O Horse: >0.2; Person: >0.3
O Legged robots: —5-30?

Improving endurance
O Supply: better batteries, hydrocarbons, harvesting?

O Consumption: gait efficienc

COT =
E

m • g • d

Goal: Improve endurance without
compromising functional behavior (ideally) LS3 - Boston Dynamics

BDI Atlas

BDI Big Dog

Cornell Ranger



29 Robotic Mobility — Efficient Legged Locomotion

Semw
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WANDERER
• Walks @ —270 W locomotive power (420 W total)

• Walks 5+ hrs, 3-4 km per charge (further if not so slow!)

• Versatile mobility (15 locomotive DOF, 29 total)

• All electric, nearly silent

Tactical Autonomy Needs: MOBILITY -
EFFICIENCY - SPEED - COLLABOKm iON -

iaERLEPTION - TACTICS - ACTION

Ellobetted

and custom
'work router
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30 I Efficient Mobility: Start With Efficient Drivetrain

1) Minimal drivetrain & joint friction &
inertia (more on inertia later)

Highly backdrivable when unpowered, minimizing
friction loss and enabling regeneration

E
z

10°

Thrtif7Al Autonomy Needs. MOBILITY -
EFFICIENCY - SPEED - COLLABOKAI iON -

vEKLEPTION - TACTICS - ACTION

2) Compact, high-efficiency, low-ratio speed reducing
transmissions

Rob. Aut. Let. 2017

101

0.707 bandwidth
—107 rad/s

1 °

100 

0 

-100

-20

-300 0
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101
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Phase = -144 deg. at 25Hz

•

101 102

[Rad/s]

Synthetic Vectran cables provide tighter bend
radius per tensile strength vs. steel
• 94% efficiency on walking trajectories,

which include high Et low torque Et speed
• -28 Hz bandwidth

HipY 
N

r r Tensioning Mechanism

(a)

1



31 Efficient Mobility: Motor & Geartrain Sizing

3) Large motors with as low transmission ratio as possible

Gear
reduction

Motor Et
parameters

Using small motors and gearing, with
torque feedback to achieve desired
torque control (low mechanical
impedance) behavior, can be
inefficient
• As N increases, apparent inertia Et

damping increase by N2
• Adding series elasticity does not

necessarily reduce energy
consumption (and can increase it)

EOM in output

14+ = Atrif +To

Equ r d 'n a output:

+

Pm = IkRit4 + NTA46
1_1_1

Electrical Mechanical
Loss Work

Average power over cyclic trajectory:

Pavg

If increasing N and reducing motor
size, KmN stays roughly constant,
but ../7- increases by -N

TartirAl Autonomy Needs: MOBILITY -
EFFICIENCY - SPEED - COLLABOKm iON -

vERLEPTION - TACTICS - ACTION

Target output: zero torque (as exemplar)

10
10

io5
a)

O

a)
0-)

> 1 0
• 0

10
5

10
-1

10
o

N Lowest gear ratio
uses least power

101
(rad/s)

102 1 0
3

There can be a substantial energy
penalty to using small motors  with
large gearing  and torque feedback 

for torque control 

DSCC 2018



32 1 Efficient Mobility:Thermal Efficiency

4) Actively cool motors to increase capacity — and gain net efficiency

IM RM

is the enemy!

acu = 0.4 %/oc

Package frameless motors minimally

Expose stator outer circumference for cooling
(air or liquid)

90

85

'6 BO
o

75

Tactical Autonomy Needs. MOBILITY -
EFFICIENCY - SPEED - COLLABOKAI iON -

PERCEPTION - TACTICS - ACTION

1.4 W fan, at stall current

700 1000 2000 3000 4000
Time [s]

High heat transfer motor housings

5

4

3

E 2
ce

-1

Net power savings: keeping
coils cool saves more power
than spent on fans

Cid (No Fan)

—Qd ♦ P tan (1.4W)
Qd (Nominal Desogn)

Power break even point

-21 2 3 4 5 6 7
I [A]

1
1

H ip Pitch Ankle

DSCC 2016



33 1 Efficient Mobility: Sculpt Loading for Behaviors
Tactical Autonomy Needs.. MOBILITY -

EFFICIENCY - SPEED - COLLABOKAI ION -
PERCEPTION - TACTICS - ACTION

5) Passive mechanisms ("support elements") exploit common walking characteristics to
optimize energy extraction from motors (& minimize giRit4)

Parallel elasticity at hip Et ankle

150 Ankle Flexion Behavior
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34 I Custom Mechatronics and Manipulation (Sandia Hand)
F3 link

F2 link

F1 link

permanent
magnets

spring

electrical

contacts

F3 circuit board

F2 circuit board

bearing

/

outrunner
brushless
motor

finger motor
control board

planetary
gearhead

capstan



35 What's Coming? More Effective Interactions with Physical World

Semi-autonomous door opening (kind....of....slow...)



36 I Novel Effectors for Toughest Applications: e.g.Autonomous Drilling

Hierarchical controller
o Classifies drilling medium via physics-based
parameter estimation in real-time

o Local golden-section search for optimal
o Optimize speed or MSE (efficiency)

Working toward highly portable, non
expert-operated, fast drilling systems, e.g.
for mine rescue or rapid geothermal
exploration

Autonomous Operating Point Control

Setpoint

Lookup

IParameter
Setpoints

Change Detection /

Local Optimal Search

Detournay
Param Est.

>4110>1 w PID

Anti-Stall hipH WOB

Controller PID

WOB

Drilling
Process Process

Outcomes



37 Thank You

Core SNL team
Tim Blada
Greg Brunson
Steve Buerger
Nadia Coleman
Clint Hobart
Mike Kuehl
Keith LeGrand
Ani Mazumdar
Anup Parikh
Jon Salton
Steve Spencer

Major SNL Collaborators 

Jack Gauthier (Optimization)

Mark Koch (Image / Sig. Processing)

Jason Krein (Embedded Sensing)

Jiann Su (Geothermal Research)

Major External Collaborators 

Girish Chowdhary (UIUC)

Rafael Fierro (UNM)

Meeko Oishi (UNM)

Jerry Pratt (IHMC)

Morgan Quigley (OSRF)

Ufuk Topcu (UT)

Questions?

Contact: Anup Parikh, aparikh@sandia.gov 
Steve Buerger, sbuerge@sandia.gov
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