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2 | Sandia at a Glance

Sandia 1s a multi-mission Iaboratory with major R&D responsibilities in national security, energy and
environmental technologies, and economic competitiveness

Sandia develops advanced technologies to ensure global peace

National Security Mission Areas

Nuclear Weapons

Energy & Climate

Information Operations
Surveillance & Reconnaissance
Remote Sensing & Verification

Integrated Military Systems

Global Security & Homeland Defense
Cyber & Infrastructure Security
Science & Technology Products
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High Consequence Automation and Robotics

High Consequence Automation e Unique Mobility e Advanced
Manipulation e Advanced Control Systems e Unmanned
Systems Autonomy e Custom Mechatronics e Cybernetics e
Simulation-Based Training, Response, & Operations
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Tactical Operations with Unmanned Systems (UMS): Operate UMS teams
toward goals at human (or faster) speeds, with human (ot better)
effectiveness, against dynamic environments & adversaries

Physical Security: Abandoned Facility Recon:
Detecting, Assessing, and Delaying Threats Unknown compound, potential adversaries

Need: MOBILITY -
EFFICIENCY - SPEED

- COLLABORATION -
PERCEPTION -
N e IEE TACTICS - ACTION
Future dismounted operatlons: Mine Rescue / Disaster Response
Migrating UMS from support to peers Denied, uncertain, complex environments
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Moving up the Tactical UMS “Autonomy Ladder”

Level of Instruction Capabilities Technologies

“Go win the battle /war” ------===-====--==-------

I - /oo reosoning /77

_— _— —_— —_— = I = I = —_— = _— — —_— L _— —_— —_— = I = I = —_— = _— — —_— I —_— _—
“Secure the squad while it -------------------
moves around”

Dynamic tactical engagements |---- Tactical Reasoning

“Find all the (tanks) inthere ™y
and (swab) them.”

Take action in unknown env.  |--G- Rapid Abstract Perception

“Go through that facility, bring - - - - - o o ____._

back a map and pictures” — — J
Navigate unknown / denied env. |-Y-- SLAM (Simult. |::>
| Local. & Map.)

Navigate known environments 14
planning

Drive / fly with joystick -------------------

IROS 2014 Kinect Challenge
Github - RTAB-map
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What do we mean by intelligent perception?

Elements:

Possible machine shop: Can’t tell what these are but
Chemicals may be nearby What’s back there?  they might be interesting

Possible separate room:

If | move to this spot, | should
get a good view of all 3

Intelligently drawing higher- Controlling a sensor to autonomously
level conclusions (e.g. semantic drive down uncertainty by getting the
classification) from sensor data best data in real-time

* Not just tip-and-cue; continuous (or large-

i . i space discrete) problem in space and time
To autonomously drive down sezzantic uncertainty:

o BEffectively requires placing a classifier, or an approximation of one, inside a control loop

Big challenge: putting pieces together into something that works in real world



7 | Autonomous Threat Awareness

Place sensors to “minimize uncertainty in the threat environment”

Solve this problem

continuously &
° Balance search (new detections) vs. characterization (prior detections indefinitely

> Presence, location (geometry) & identity (semantics) of objects of interest (or non-interest)




8 I Why Moving Sensors?: The Benefits of Perspective Change

Classification Confidence vs. Frame

300 350 400 450 500 550 600 650 700




Info-Driven Control to Minimize Uncertainty: Challenges of Doing it |
9 I “The Right Way” ‘ |

False Alarm
An ideal approach: treat everything probabilistically Distribution
> Compare current distribution (prior) to expected
posterior based on predicted measurements
> Select measurement that maximizes info gain via, e.g. direct optimal -
control
> (Some of the) sources of uncertainty:
o Sensor state uncertainty Entropy = X Entropy =Y

> Probability of detection (with variations: spatial, geographic, target
type, state, etc.) ‘
o False alarm rate (with variations as above...)

> Multi-target data association uncertainty ?
o Cardinality uncertainty (number of targets) @
> Frameworks exist to handle this (e.g. FISST tracking),
but there are challenges
° Real-world classif tput fe t pdf :
ea. wortld classi 1er‘ output form (not pdf / pmf) | Lansor State spatial P, I
° Scaling & computational challenges (real models are nonlinear) Uncertainty Distribution Data Association
° Challenges patticular to distributed systems (double counting, etc.) Projected to Uncertainty |
3 Scene

What can we implement now?

Buonviri / LeGrand



10 | Rapid Abstraction in Confined Environments (RACE)

Autonomously: Swab all gas
cylinders in chemistry labs or
welding facilities. Map the whole
space and locate any of the new
MQ-3000 sensors.

° Semantic & geometric mapping
> Find rare objects

° Explore intelligently

RGB+D
Sensor

processing

Exploration / Info Gain i

Motion Planner

Smart Sensor
Repositioning

Clustering /
Segmentation

3D
processing

Output




11 I SLAM with segmentation

Surfel-based SLAM approach
° Adaptation of [1, 2]

Real-time surface-normal
based segmentation
> GPU adaptation of [3] for full

resolution segmentation in real-
time (~20Hz)

Distinct
objects

0000.0 FPS

Keller, et. al., “Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion”, Int. Conf. 3D 1is., 2013

2. Whelan, et. al., “ElasticFusion: Real-Time Dense SLAM and Light Source Estimation”, Int. |. Robot. Research, 2016
Tateno, et. al., "Large scale and long standing simultaneous reconstruction and segmentation." Computer Vision and Image
Understanding 157 (2017): 138-150.




12 I Object Detection and Classification

Apply YoloV3 [1] frame-by-frame
> RGB image CNN-based detector
° Provides bounding box and classification at ~20Hz

° Pretrained on common objects: computing (keyboard,
mouse, laptop, display, etc), furniture (chair, table, etc.),
household (retrigerator).

° Retrained with doors, cabinets, and other items of
interest

Bayes update classification for every point

° Fuse information from multiple views, multiple
SeNsors

> Compensate for false positives/negatives

1. J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv:1804.02767, 2018.

Colors indicate class labels (frame by frame)



13 I Uncommon Object Detection and Classification (1)

Retraining Deep Net Classifiers Low-Shot Methods Text & Logos

° For objects that
are common
but not in
standard
training sets

door_knob: 95%




14 | Exploration & Information Gain

* Estimate the information gain of a new view by:
1. Getting better views of objects

* Instantaneous info content estimated by a heuristic considering distance and
relative face normal

2. Decreasing uncertainty in map occupancy [1]

* Probabilistic occupancy grid (octree representation for efficient storage in 3D [2])
I(a) = w1 AgH + waAJIC
H (m) == p(c)logp(c) + (1 =p(c))log (1 —p(c))
cem

L E\0) = 1y, (%35 + Vi z ((gﬁ)zfnax {—V¢; (@) - %ij (9) O}exp( A1 (max {||x¢

= Xs,i”

kinedt_est

s dlnin} S dmin) )J 08

-~ ~"

Point in view Surface facing camera

* But how to decide views to consider?
1. Random sampling of space (for exploration)

2. Disparate views of objects:

1. PCA on object points provides rough size (filter out objects too small/large)
and dominate object-relative directions. L.

2. Pick feasible views along dominant directions. 5

Distance to surfel

~

=

Instantaneous Info Content
o o o o o
w - o

o
N

[=]

=]

0 0.5 1 15 2 25 3 35 4 45 5
Distance along normal [m]

Stachniss, et. al., “Information Gain-based Exploration Using Rao-
Blackwellized Particle Filters”, Robotics: Science and Systems. Vol. 2. 2005

. Hornung, Armin, et al. "OctoMap: An efficient probabilistic 3D mapping

framework based on octrees." Autonomons Robots 34.3 (2013): 189-2006.



Perceiving a single object




Perception Toolchain in Rich Environment




17 I Autonomous Detection & Assessment with Moving Sensors (ADAMS)

Sensing, classification
& fusion

Output

Continuously Updating
Tracker & World Model

Envire. mede! I] Sl model i‘ 3 Detection & Sensor measurernents: / data & actuel sensor states
Target kin, Tangeticlass. E classification# ¥ 3
slate siate
| Supervisory control \ Actual sensor stakes
Targetinfo | Cass & state & operator display |
. . . ) already estimates & k‘ kil
Goal: Find & identify potential measured| uncertainty e
| I — —— Overall performance:
threats before they reach secure —— o — ,,__g@;mmf
perimeter, without human T information gain Multi-objective Real-time Sensor /
. . | »  sensor command ) dynamic sensor »  environment:
intervention - del — target #1 Viodel offinfo I Jopi , : )
© ’ Y OSE T erEe @?ﬁ;’;ﬁ;‘;ﬁ? optimizations _ Optimal sensor control oemsor | dynamies
i Tt

"=fiformation Gain Prediction &
Smart Sensor Repositioning
° Multi-sensor fusion and integration in tracker

° Multi-objective optimization of sensor actions

o Ground & airborne sensors



Information State & Gain Models (IGMs)

Goal: Predict information gain (or uncertainty reduction) from new
Sensor views

Challenge:

° Rigorous methods for predicting info gain in kinematic measurements
do not directly extend to classifiers

o In particular, behavior of data-driven (e.g. CNN) classifiers is
notoriously hard to model

Near-term approach T o T ' : P

> Heuristic models based on past data | 4
af ~ , 3 . A

> E.g. “Novel pixels on target” 2 \\/\; 2 \/,{)

> Novel sensor type or petspective il /////// 1 P ///’/

o (Approximation of classitier in loop) Al ‘ . | .
1 //’/ /// i //// ///
2//// //// z/// //’/
. L/N\\ b 3 "‘/1"\\




19 | Sensor Placement Optimizer

Voronoi diagram: defines

instantaneous regions of Greedy Optimization Wrapper

Far Remaining Ground
Agent

patrol responsibility

Platform Lotaugn o Threats Threat
Nod EPAIE Tracker
ode Commands =

Wadt for next update

Assign max Psl Location
in Viaronol cell

fground robots rermain

Agent Locations Threat Prediction

el

‘ Create Voronoi Diagram ’ > Raise Psi at location

Psi : .
L — ‘ e . Assign LAY Agent to
[uncertainty) » Raise all Psi ; For Each Threat IF free : Sk

map creation G
i Agent
Lower Psi within agent § s Asclgn Ground Agent to
FOW track

B %]Emi]l‘ LR LU SR B O |

UGVs & UAVs treated differently
due to energy properties (much
more to do here)

Psi map: uncertainty vs. position
Black is low uncertainty
White is high uncertainty




20 I Sensor Placement Optimizer

T G s e R e 6 e

File Panels Help

") Interact | 3 Move Camera  [_JSelect <&~ FocusCamera ™= Measure .~ 2D Pose Estimate »

#€> Q= B

Robot 1 Seeking Max Unknown
Robot 2 Tracking Threat

Robot 3 Tracking Threat
: Reset 31 fps




21 I Simulated Scenarios in Gazebo and Umbra

R

N

Sim environments
> Gazebo, for vehicle physics & ROS integration

> Umbra, for multi-agent Monte Carlo scenario sims in
realistic sites

Uncertainty metrics (for sims & experiments)
° Patrol
° Revisit time
° Percent time observed
> Diversity of sensor phenomenologies
° Etc.
° Targets
> Time to detect

° Time to classify

Variables
> Number & types of sensors
° Mobile
> Vehicle type

° Stationary




22 I Experiments (Ramping Up)

Vehicles
> Segway RMP 440

o Semi-custom multirotor

Multi-sensor fusion
o Visible & thermal detection & classification

o LIDAR detection

Multi-objective (patrol & ID) optimization
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Aerial Suppression of Airborne Threats (ASAP)

What do we do if we find threats?

Example of an end-to-end unmanned security

solution
Ground-air multisensory fusion

Neutralization with a “SmartNet”

>
DETECTION _o#% ;TF e <
/4 . A Tmcge P ,
¢ \ &{ '

/ \ NEUTRALIZATION

Intercept trajectories via
cyclic pursuit & stochastic

reachability capture planning
(Fierro, Oishi & co. @ UNM)




Tactical Autonomy Needs: MOBILITY -
Robotic Mobility — Gemini Scout Mine Rescue EFFICIENCY - SPEED - COLLABORATION -

PERCEPTION - TACTICS




Pushing the Limits of Tracked Mobility

Wireless)

““’;’E{’éﬁ;‘ﬁﬁﬁ?‘“ apmganmrtlmonm
.me] Nllllkf. \ \ (P watnLiha
Gemini: Design derived from mobility analysis for Sl | ’3‘- SO
. . (<} CRY 1
wheeled and tracked vehicles traversing obstacles R
%ok i 1 Imager
* Dual body ideal for larger obstacles, unstructured ra ot
. - Wisrophone:
terrain Commerncial / h Elgctrorics:

Gas Sensor

* Ground contact optimization for joint DOFs, track
geometry, skid steer

* Passive joint mobility advantages

Batieny
. . . . . . . : \DOF Housing
° a — maintain traction while starting vertical climb |
* b — regain traction & shift CG over obstacle top o
@ Drive € l
* ¢ —roll DOF keeps track in ground contact Fromt 6 onr)
New Track: Design
Wheeled NFracked
| i J b
@ “ Wheel diameter \ 0.5 x Body length
L——T -
|

|

Max obstacle size is limited to a fraction
of body dimensions — unless...




Tactical Autonomv Needs: MOBILITY -

Robotic Mobility — Urban Hopper EFFICIENCY - SPEED - COLLABOKAIION -
PERCEPTION - TACTICS - ACTION




27 I Combustion-Powered Hopping

Energy efficiency comparison

° Firm ground hop energy:

Ehop ~ gpistonM ‘g h
Piston efficiency /
> Energy to hover: E,.= (1+8P”’P). F o, | Mh
over 2 A . p 1

M-g
Reduce energy by

increasing propeller area

° Scaling with obstacle height:

> Piston & prop efficiencies are similar

° Efficiencies cross as height increases

> Hopping is preferred for small obstacles, when ground is hard
> Why?

> Hovering uses (air) mass flow, which creates velocity dependence

To efficiently traverse small obstacles: “Drive
when you can, hop when you have to”

|

Ko ared Enangy J]

1400

g

g

B0

=)
=1

40017

Tactical Autonomv Needs: MOBILITY -
EFFICIENCY - SPEED - COLLABOKAIION -
PERCEPTION - TACTICS - ACTION

Hopping vs Hovering Energy




Human-Like Mobility: Legged robots

Legs offer great appeal for mobility
> Step over & onto obstacles
> Mobility (somewhat) less dependent on terrain type
> Balancing bipeds: high reach with small footprint (world built for people)

Major challenges
> Walking control is (still) hard

o Endurance

> Cost of transport (dimensionless)
> Bicyclist: >0.1; Production car: >0.3 (the wheel was a great ideal)

°  Horse: >0.2; Person: >0.3 E
°  Legged robots: ~5-30? COT =

Improving endurance
> Supply: better batteries, hydrocarbons, harvesting?

> Consumption: gait efficienc

{ Goal: Improve endurance without J

compromising functional behavior (ideally)

Cornell Ranger




Tactical Autonomy Needs: MOBILITY -

EFFICIENCY - SPEED - COLLABOKAIION -

29 I Robotic Mobility — Efficient Legged Locomotion SIENE
PERCEPTION - TACTICS - ACTION

Embedded PC
# and custom
- petwork router

Servo-
driven anms

_____ Li-ion battery
I s
Real-time Custom-packaged|
Ethernet I T G ‘ e frameless,
comms from © SRR PR el " brushless motors
PC to joints ]
Joint-level
 electronic:
_ ¥y V1 _#"stacks: logic &
Springs & linkages i Bl 1 #  power boards
at key joints o= 1 T s LS ‘ ‘
increase efficiency
Motior & ioint
e, encoders with
= microcontrollers

WANDERER USB comms
. from joint . g Ground contact
° Walks @ ~270 W locomotive power (420 W total) clectronics o™ | | sensors & electronics

> Walks 5+ hrs, 3-4 km per charge (further if not so slow!) sensors
> Versatile mobility (15 locomotive DOF, 29 total)
> All electric, nearly silent I



Tartical Autonomy Needs<: MOBILITY - |
30 I Efficient Mobility: Start With Efficient Drivetrain EFFICIENCY - SPEED - COLLABORAIION -

PERCEPTION - TACTICS - ACTION

1) Minimal drivetrain & joint friction & 2) Compact, high-efficiency, low-ratio speed reducing
inertia (more on inertia later) transmissions Rob. Aut. Let. 2017

Gain [Nm/A]

» 0.707 bandwidth Y]
10 ~107 rad/s e

10
o [Rad/s]
100

3 =
8 -100- L
200+ Phase = -144 deg. at 25Hz Ve it
1]

-300
10°

Pl

‘
10 10
o [Rad/s]

Synthetic Vectran cables provide tighter bend

radius per tensile strength vs. steel
Highly backdrivable when unpowered, minimizing * 94% efficiency on walking trajectories,

friction loss and enabling regeneration which include high & low torque & speed
» ~28 Hz bandwidth
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Efficient Mobility: Motor & Geartrain Sizing

3) Large motors with as low transmission ratio as possible

Using small motors and gearing, with

torque feedback to achieve desired

torque control (low mechanical

impedance) behavior, can be

inefficient

* As Nincreases, apparent inertia &
damping increase by N2

« Adding series elasticity does not
necessarily reduce energy
consumption (and can increase it)

EOM in output frame:

Jr8 + Bp6 = N1y + 1

Equivalent inertia & damping at output:

Jr=le M By = Bg +{N

Py = I4Ry + N1y6

Electrical Mechanical
Loss Work

Average power over cyclic trajectory:

2
1
Pavgzz( ) w*

If increasing N and reducing motor
size, KN stays roughly constant,
but J; increases by ~N

Tacti
EFFICI

~al Autonomy Needs: MOBILITY -
ENCY - SPEED - COLLABOKAIION -

PERCEPTION - TACTICS - ACTION

Target output: zero torque (as exemplar)

10 : an ' Rob.Aut. tet. 2017
——— N=10; y
'N=50 y 4
“N=100
N=150
g 105 -N=200
o
=
O
o
o
()]
o
T
z 10 e
\ Lowest gear ratio
uses least power
5
10 n PR S S | L PR S S U S W 3 L L PR A L PN T N S I S
10" 10’ 10’ 10° 10°

o (rad/s)

-~

There can be a substantial energy
penalty to using small motors with
large gearing and torque feedback

\

for torque control

4

DSCC 2018



Tactical Autonomy Needs<: MOBILITY -

2 I Efficient Mobility: Thermal Efficiency EFFICIENCY - SPEED - COLLABOKAIION -
PERCEPTION - TACTICS - ACTION

4) Actively cool motors to increase capacity — and gain net efficiency

11\2/1 B Package frameless motors minimally 90_-__1_.:1_\:\/_,fir.]:it.s_tilifffi .......
is the enemy!
85 Net power savings: keeping
acy = 0.4 % /o s coils cool saves more power
C 280 than spent on fans
o i) » (No Fan)
75

—Q, +P_ (1.4W)
- R (Nominal Design)

700 1000 2000 3000 4000
Time [s]

Expose stator outer circumference for cooling
(air or liquid) High heat transfer motor housings

Power break even point

4
I [A]

DSCC 2016



33 | Efficient Mobility: Sculpt Loading for Behaviors

Tactical Autonomy Needs: MOBILITY -

EFFICIENCY - SPEED - COLLABOKRAIION -
PERCEPTION - TACTICS - ACTION

5) Passive mechanisms (“support elements”) exploit common walking characteristics to

optimize energy extraction from motors (& minimize I Ryy)

Hip Y
. . SE: parallel spring
Parallel elasticity at hip & ankle Gait adjust: on/off,
150 S Ankle Flexion Behavior QW 38° range
= ==Swing Phase 160 - Stance Phase »
3 L =seng e 6y
§ 100 2130
’E g 100 \
g c %
g \ g L 40
a 2 Ankle Y
T o . 22 - SE: stance-only
92 up (Abiadyduction Angle [Rad] - 4-—4: ; ---o-— -;2_ -v:oa @?%Spmm@
I o Ankle Flexion Angle [Rad] ‘ﬂiﬁ:
(f) Crouched Robot Data (b) Human-like Robot Data @ayﬁﬂ@ range

(69ke 0 11m/s)

S00r= Uncompensated
== Compensated

400

(89%g, 1.2m/s)

, gt
/ link

6.

Hip X
SE: parallel spring, partial
range: adduction only

Gait adjust: none

Knee

SE: PDT 4-bar
Gait adjust:

8, 78° range

* - PDT = Pose Dependent Transmission

—300

[MUncompensated Power (Projected) 400

1 M Uncompensated (Projected)
Compensated (Measured)

o
— 200

100

%

4
Time [s]

T. Mech. 2016

FW SS  Tum

M Compensated Power (Measured)

BW UW CW Stand

Stance Phase | Swing Phase

0.4 0.6
Gait Cycle

On WANDERER: SE’s reduce
locomotive power by 43% (!)
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Custom Mechatronics and Manipulation (Sandia Hand)

F3 circuit board

F3 link
. F2 circuit board
F2 link
bearing
F1 link

outrunner
brushless
motor

permanent __ finger motor

magnets —p& d control board
planetary
gearhead

spring

electrical capstan

contacts




35 | What’s Coming? More Effective Interactions with Physical World

Semi-autonomous door opening (kind....of....slow...)
= 1




36 I Novel Effectors for Toughest Applications: e.g. Autonomous Drilling

Hierarchical controller

o Classifies drilling medium via physics-based
parameter estimation in real-time

> Local golden-section search for optimal
> Optimize speed or MSE (efficiency)

Working toward highly portable, non
expert-operated, fast drilling systems, e.g.
for mine rescue or rapid geothermal
exploration

Autonomous Operating Point Control

- e e e e e = o —y

1 .
Setpoint Detournay | _1
1 i <
: Lookup | Param Est. | ,
1
: v .
1| Change Detection / :
1| Local Optimal Search !
e o = e o o s
Parameter w
Setpoints
v Drilling

Anti-Stall 3 . 3 WOB Process Process
Controller T PID Outcomes

WoB




37 I Thank You —
Core SNL team Major SNL Collaborators Major External Collaborators
Tim Blada Jack Gauthier (Optimization) Girish Chowdhary (UTUC)
Greg Brunson Mark Koch (Image / Sig. Processing) Rafael Fierro (UNM)
§e§§ %lelrgni rn Jason Krein (Embedded Sensing) Meeko Oishi (UNM) BV
Cl?ntaHO({)Zrta Jiann Su (Geothermal Research) Jerry Pratt (IHMC) 1: & :
Mike Kuehl Morgan Quigley (OSRF)
Keith LLeGrand Utuk Topcu (UT) |
Ani Mazumdar
Anup Parikh
Jon Salton
Steve Spencer

Questions?

Contact: Anup Parikh, aparikh@sandia.gov
Steve Buerger, sbuerge@sandia.gov







