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Important characteristics of SNL approach

« Data Science feeds Decision Science
o See MatrixDS: https://tinvurl.com/DAAG19-MatrixDS

o Data Science provides statistical estimates of risks and uncertainties, inputs to Decision Science

o Decision Science uses interview techniques based on “wisdom of crowds”, essentially “bookmaker odds” for other
risks and uncertainties

» Bayesian assimilation engine is at the core
o Uses all experimental information, with optional simulation constraints
o MLDL surrogates for physics of diagnostics
o Estimates risks and uncertainties (covariance)
o Estimates value of information (sensitivities of outputs to inputs, cross variance)
« Focus on deficiency in model
o Largest uncertainty, probable bias, and significant distortion of PDF
o Monitor diagnostics
o Use of Mallat Scattering Transformation to keep “on manifold”, topological curvature
o Research on causal statistics (CMU)
« Python based, leveraging expertise of petroleum industry
» Researching fast surrogates for rad-MHD simulations (ASC funding of CMU)
o cGAN and MST (state and transition kernel)
» Recognize need for “data lake” in the cloud
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5 1 Status Quo and Future
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s | Realized petroleum and mining technology
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7 | Early, proof-of-concept for NGPPF
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Uses of value of information

» decisions, metrics for making the decisions

o diagnostics?
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- what instruments?

- design of instruments? Postetior pdf
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» lines of sight? w/o n-Img
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» spectral ranges? .
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9 I A Bayesian calibration framework has been developed for interpreting DMP experiments

L experiments are designed to be accurately modeled through 1D MHD simulations
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10 ‘ Challenges unique to this calibration

How do you account for
correlation between number

of velocity points (times)?

Autocorrel%g:ion time:

t=1+2 ) v(k)

Amount of information

contained in a given

profile: n
ES

T

How do you efficiently |
sample the posteriors using
MCMC?

Solution: build a surrogate model
to emulate the hydrocode

1. Run ~100,000 simulations sampling the
parameter space to generate training data
» Massively parallel Monte Carlo |

2. Construct an emulator based on training data
« We Gaussian Process (GP) surrogate

3. MCMC on the GP to sample posteriors
« Usual metrics on chain mixing and
convergence

Brown et al., Journal of the Royal
Statistical Society Series C, 67, 4 (2018)



11 I Application focus

« Stagnation conditions for Magnetic Direct Drive Fusion experiments
» Analysis of pulsed power driven DMP experiments

e Analysis of MagLIF preheat experiments at NIF

» Z power tlow data analysis

o Model calibration through focused physics experiments (plasma transport, non-linear instability
growth, etc.)



