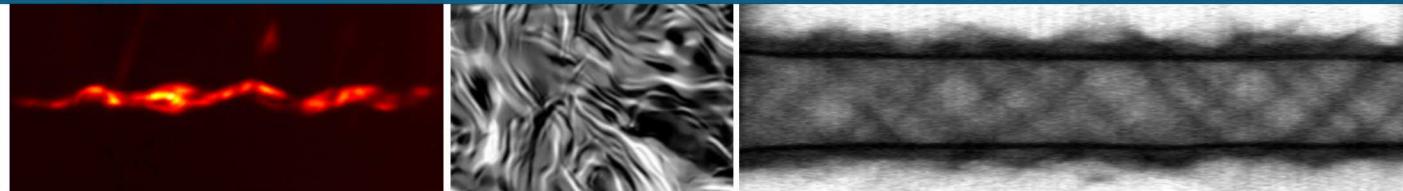


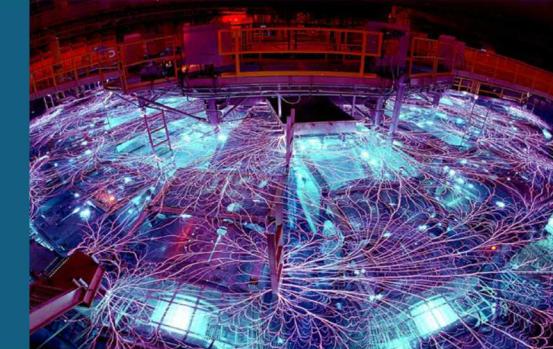
Data and Decision Science at Sandia National Labs



PRESENTED BY

Michael Glinsky

SAND2019-13763PE



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

People involved:

- Michael Glinsky (0.5 FTE)
- Pat Knapp (0.3 FTE)
- Marc-Andre Schaeuble (0.25 FTE)
- Will Lewis (1 FTE)
- Evstati Evstatiev (0.25 FTE)
- Nikki Bennet (0.25 FTE)
- James Gunning (CSIRO, 0.15 FTE)
- Taisuke Nagayama (0.1 FTE)
- Chris Jennings (0.1 FTE)
- Brandon Klein (0.25 FTE)
- Amir Barati Farimani (ASC/CMU, 1 grad student, 1 undergrad student)
- Matt Martinez (0.25 FTE)
- Justin Brown (0.5 FTE)

Important characteristics of SNL approach

- Data Science feeds Decision Science
 - See MatrixDS: <https://tinyurl.com/DAAG19-MatrixDS>
 - Data Science provides statistical estimates of risks and uncertainties, inputs to Decision Science
 - Decision Science uses interview techniques based on “wisdom of crowds”, essentially “bookmaker odds” for other risks and uncertainties
- Bayesian assimilation engine is at the core
 - Uses all experimental information, with optional simulation constraints
 - ML DL surrogates for physics of diagnostics
 - Estimates risks and uncertainties (covariance)
 - Estimates value of information (sensitivities of outputs to inputs, cross variance)
- **Focus on deficiency in model**
 - Largest uncertainty, probable bias, and significant distortion of PDF
 - Monitor diagnostics
 - Use of Mallat Scattering Transformation to keep “on manifold”, topological curvature
 - Research on causal statistics (CMU)
- Python based, leveraging expertise of petroleum industry
- Researching fast surrogates for rad-MHD simulations (ASC funding of CMU)
 - cGAN and MST (state and transition kernel)
- Recognize need for “data lake” in the cloud

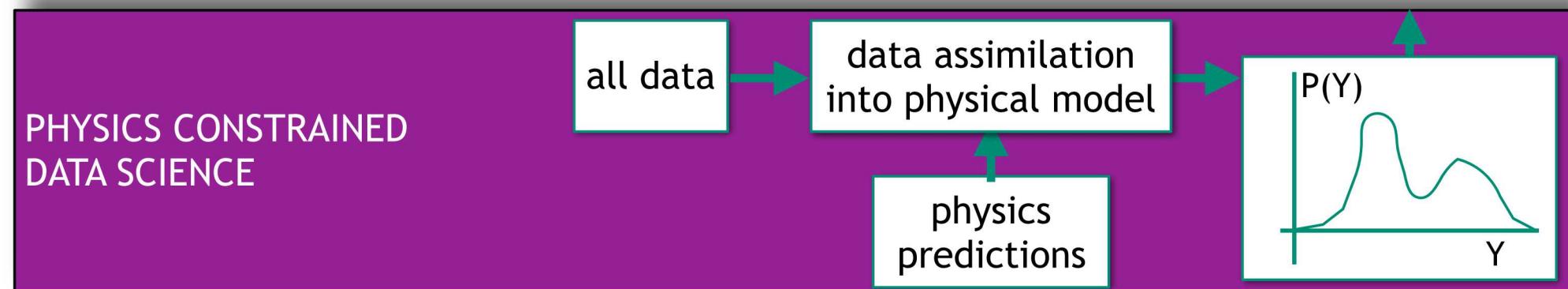
The layers of the paradigm

decision



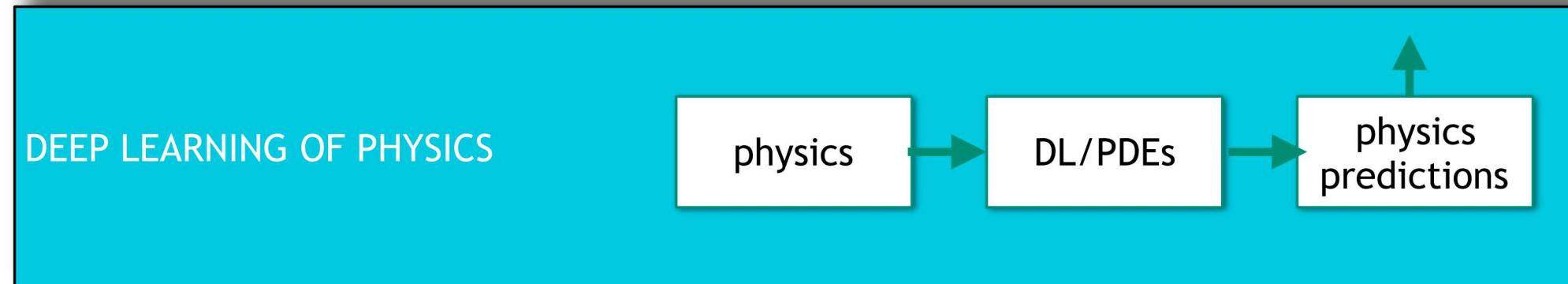
=

experimental data



+

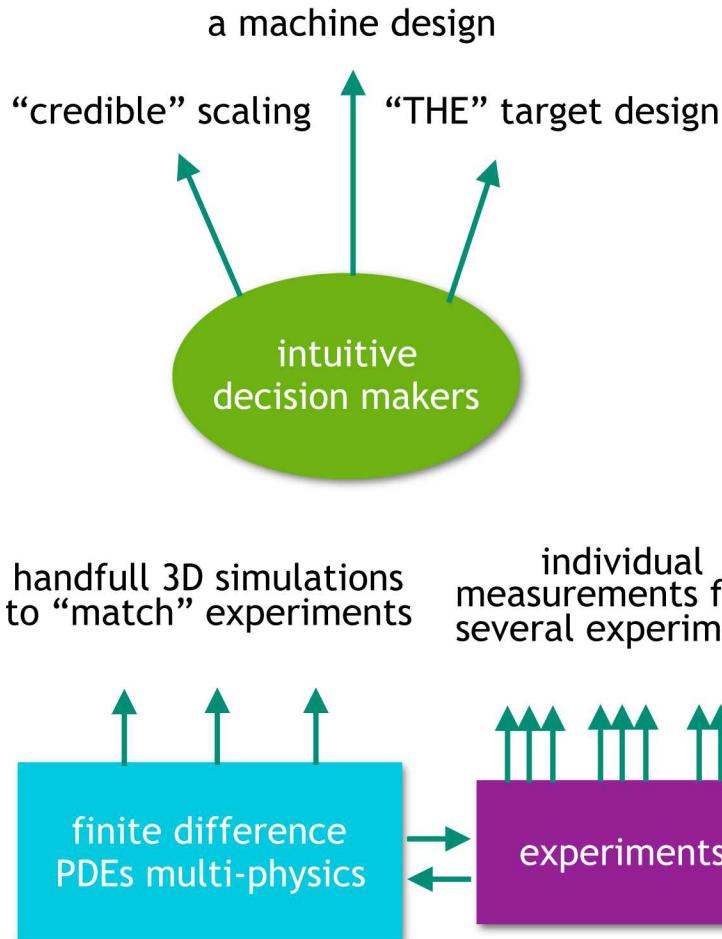
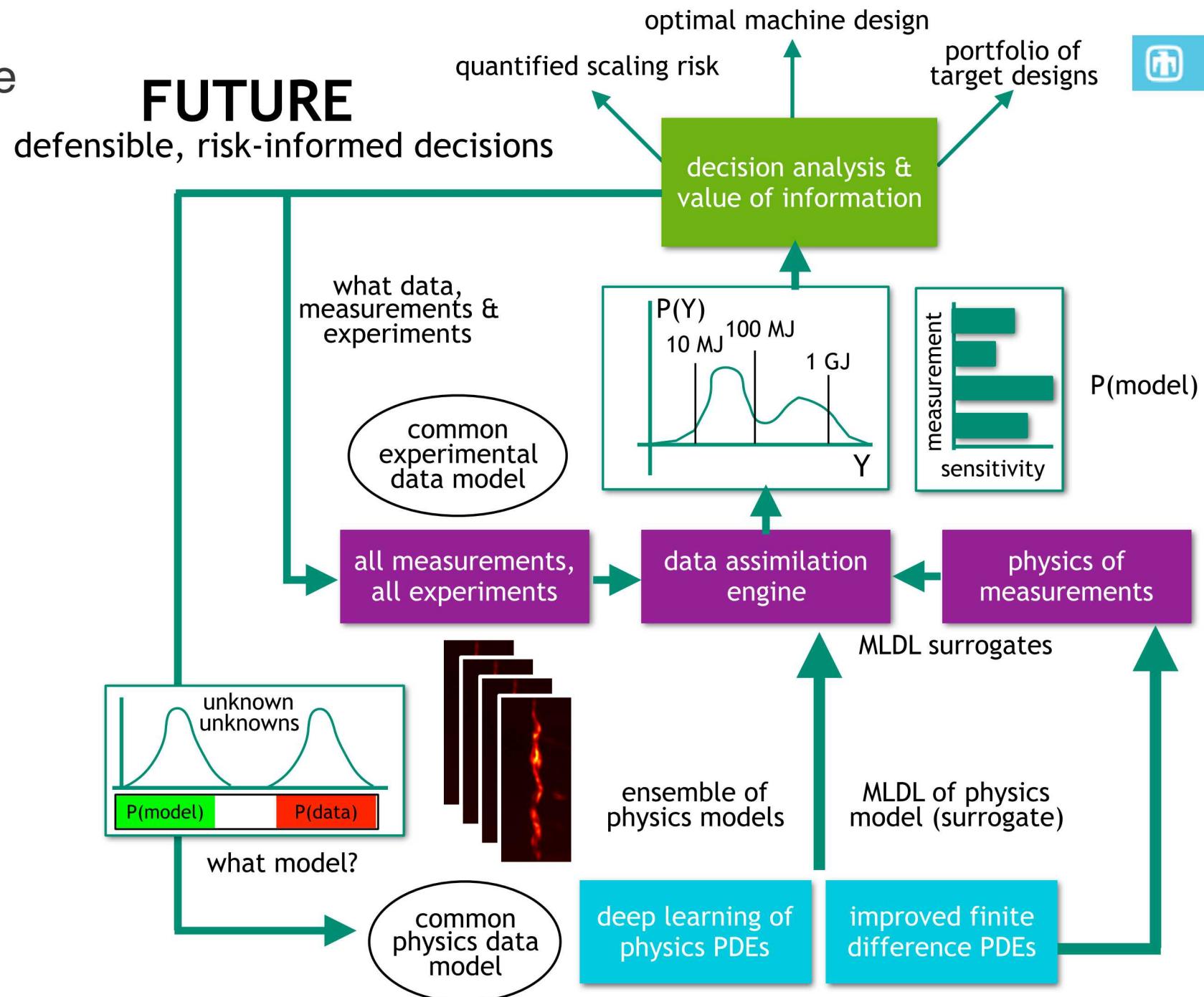
theoretical physics



Status Quo and Future

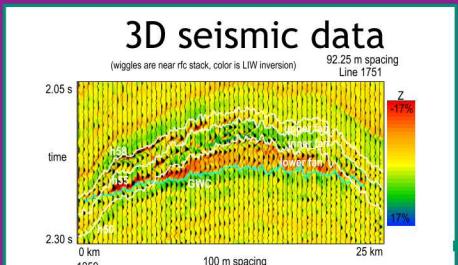
STATUS QUO

somewhat arbitrary, largely unsubstantiated decisions

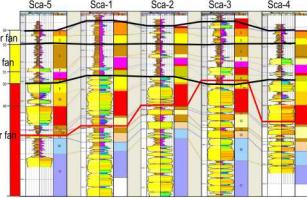


6 Realized petroleum and mining technology

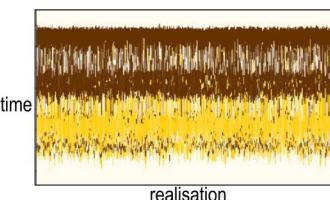
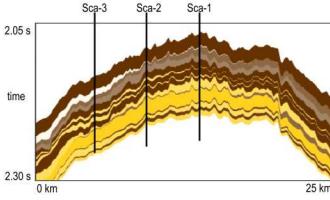
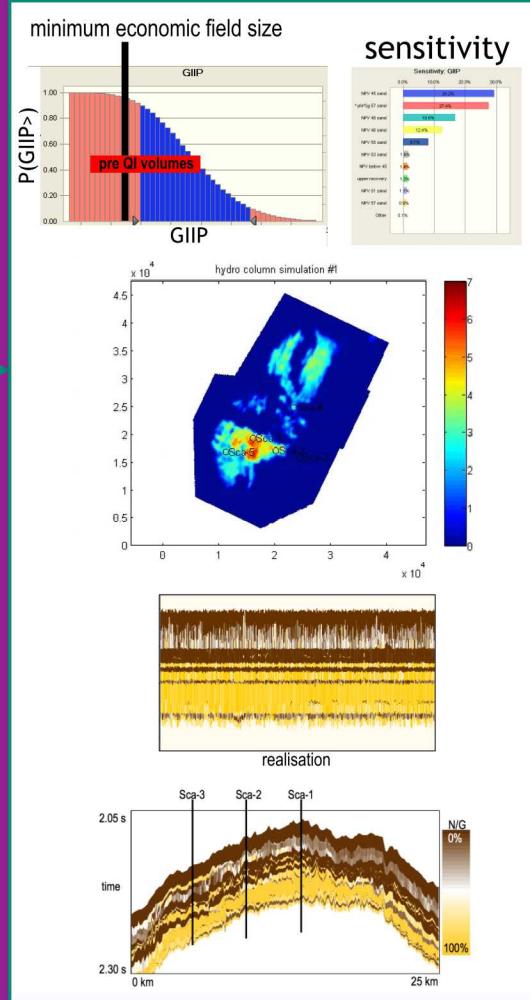
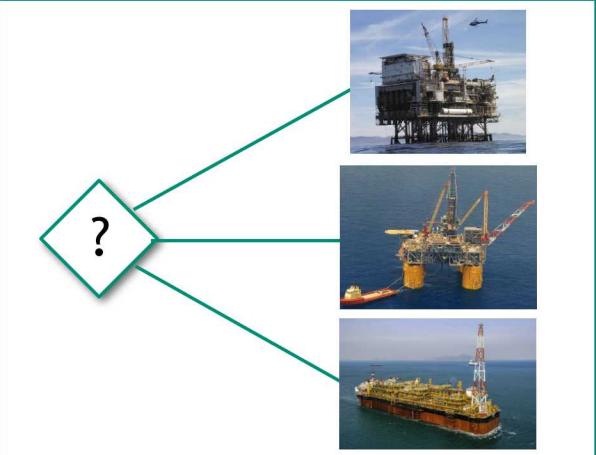
PHYSICS CONSTRAINED DATA SCIENCE



well log data

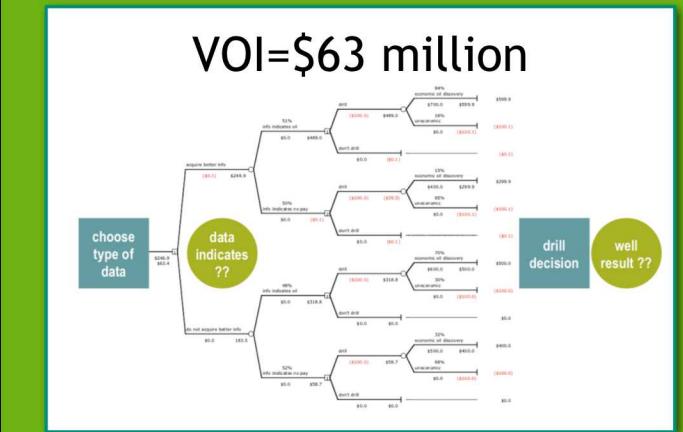


DELIVERY Bayesian
inversion



PHYSICS INFORMED DECISION SCIENCE

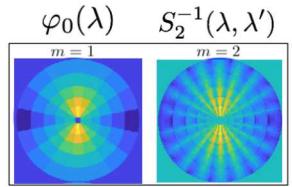
VOI=\$63 million



7 Early, proof-of-concept for NGPPF

DEEP LEARNING OF PHYSICS

MST transformation that conserves physical diffeomorphism & group symmetries



finite difference solution

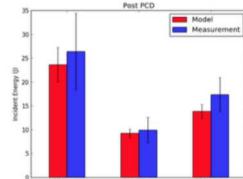
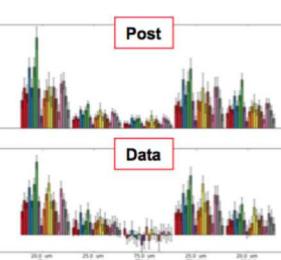
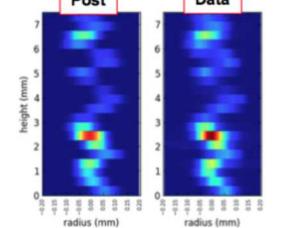


machine learning solution

Kuramoto-Sivashinsky equation
Pathak et al., PRL 120, 024102 (2018)

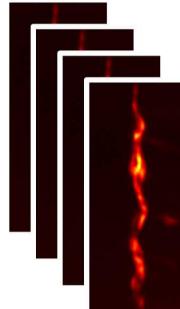
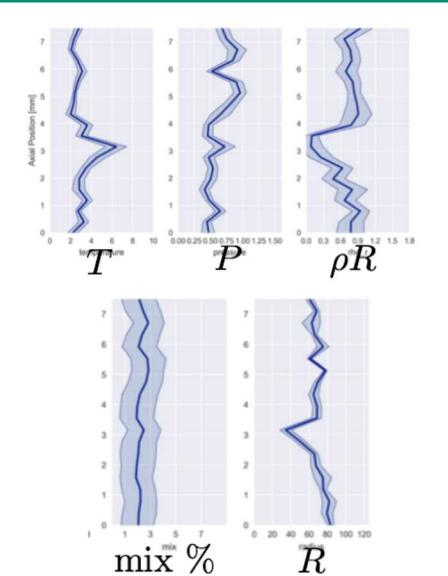
PHYSICS CONSTRAINED DATA SCIENCE

$$Y_{DD}^{\text{meas}} = 3.2 \times 10^{12} \pm 20\% \\ Y_{DD}^{\text{post}} = 3.1 \times 10^{12} \pm 10\%$$



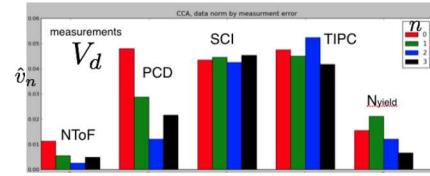
Bayesian inversion

3D Gorgon

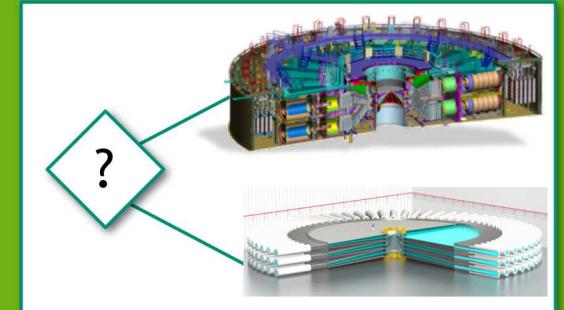


$$E_{HS} = 10.8 \pm 1.1 \text{ kJ} \\ \langle P \rangle = 0.63 \pm 0.17 \text{ Gbar}$$

experimental sensitivity



PHYSICS INFORMED DECISION SCIENCE

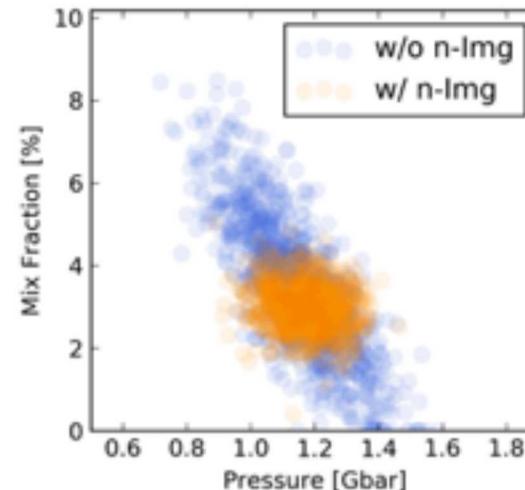


8 | Uses of value of information

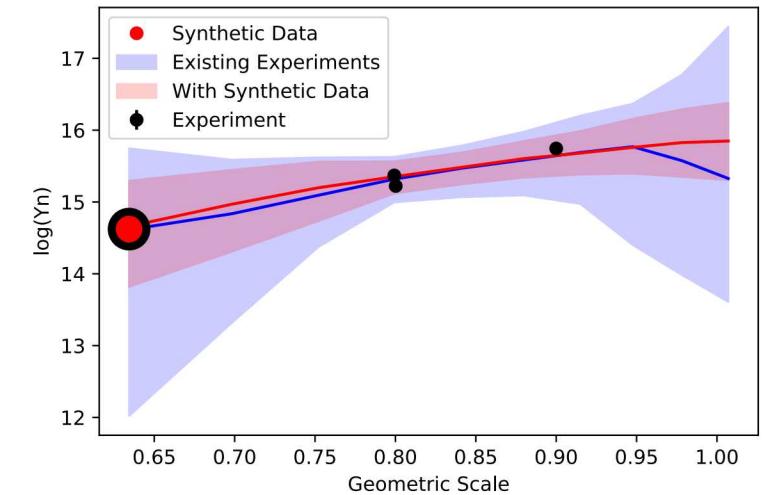
- decisions, metrics for making the decisions
 - diagnostics?
 - what instruments?
 - design of instruments?
 - » lines of sight?
 - » spectral ranges?
 - » what needs to be improved?
 - what calibrations?
 - what is relevant physics?
 - are we neglecting something?
 - what experiments should we do?
 - how does physics extrapolate?
 - what models should be used in the analysis?

value of additional diagnostic

Posterior pdf

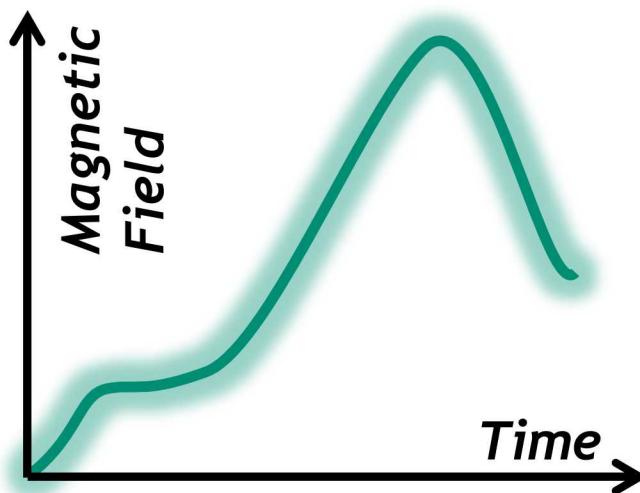
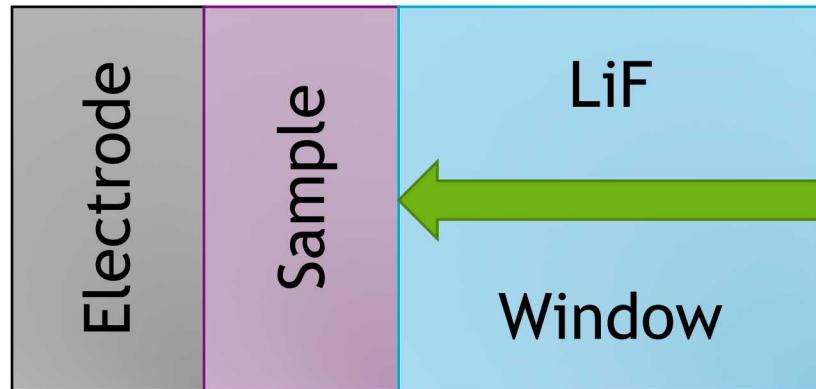


value of experimental point



9 A Bayesian calibration framework has been developed for interpreting DMP experiments

Z experiments are designed to be accurately modeled through 1D MHD simulations

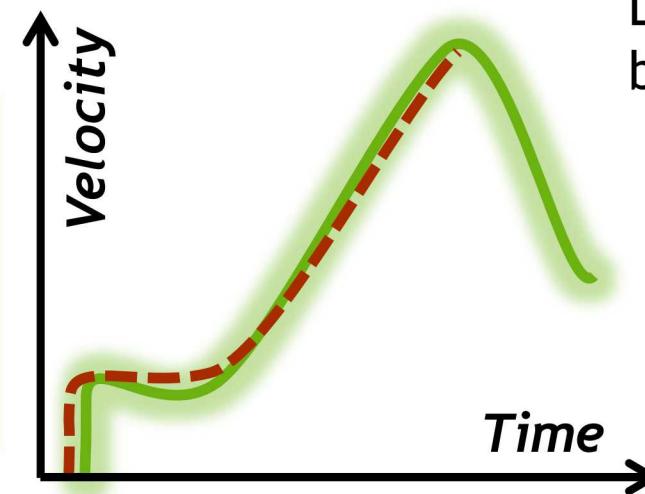


Experimental observable:
Velocity of Pu/LiF interface

Standard statistical model:

$$V(t) = \eta(t, \theta) + \epsilon(t)$$

Observed velocity Hydrocode simulator Experimental uncertainty



Likelihood reflects difference
between simulation and experiment:

$$l(V|\theta) = \prod_{i=1}^n \frac{1}{\sqrt{(2\pi)^n |\Sigma_d|}} \exp\{-r^T \Sigma_d^{-1} r\}$$

Velocity uncertainty

Vector of residuals

Challenges unique to this calibration

1

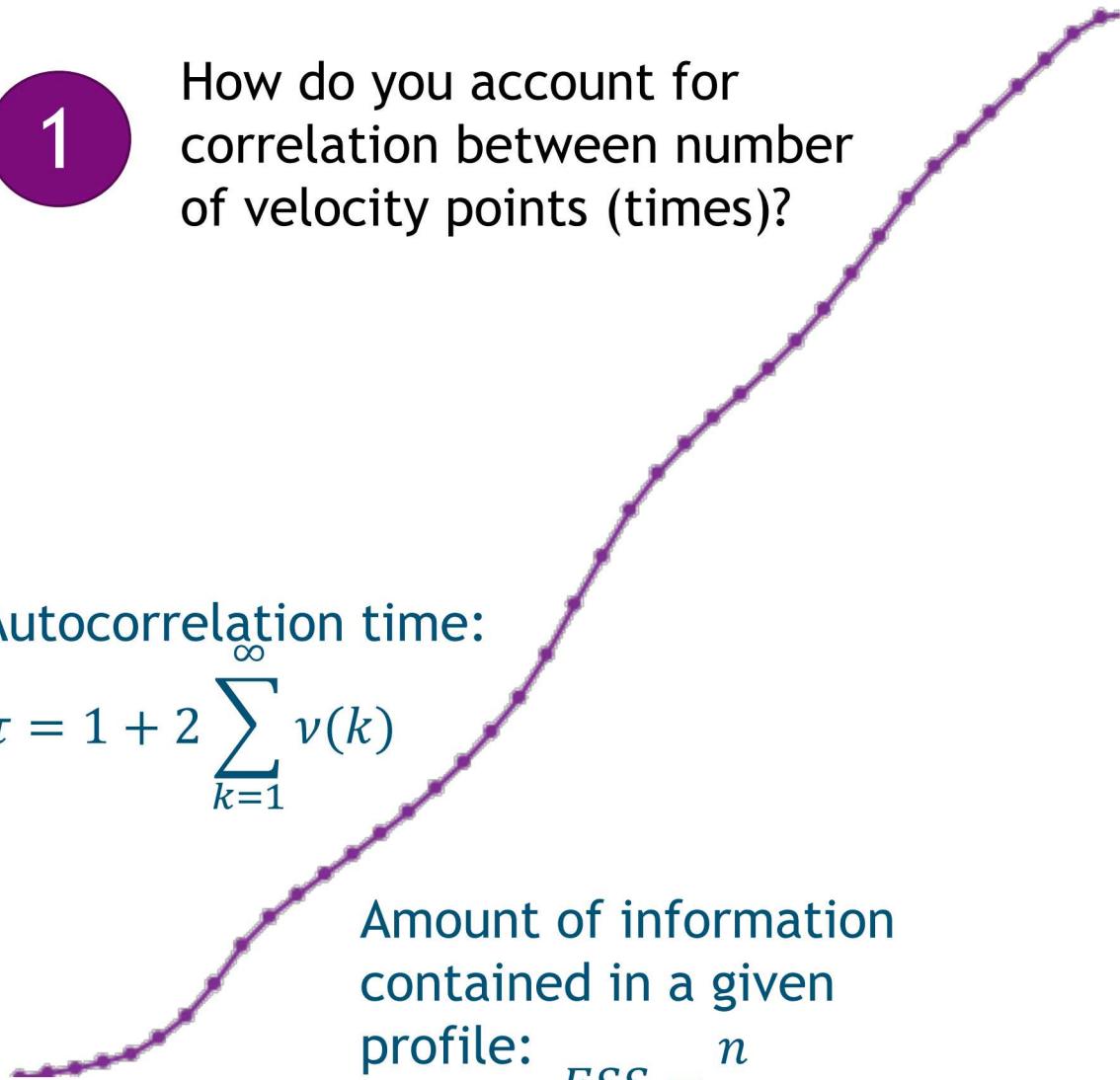
How do you account for correlation between number of velocity points (times)?

Autocorrelation time:

$$\tau = 1 + 2 \sum_{k=1}^{\infty} \nu(k)$$

Amount of information contained in a given profile:

$$ESS = \frac{n}{\tau}$$



2

How do you efficiently sample the posteriors using MCMC?

Solution: build a surrogate model to emulate the hydrocode

1. Run ~100,000 simulations sampling the parameter space to generate training data
 - Massively parallel Monte Carlo
2. Construct an emulator based on training data
 - We Gaussian Process (GP) surrogate
3. MCMC on the GP to sample posteriors
 - Usual metrics on chain mixing and convergence

- Stagnation conditions for Magnetic Direct Drive Fusion experiments
- Analysis of pulsed power driven DMP experiments
- Analysis of MagLIF preheat experiments at NIF
- Z power flow data analysis
- Model calibration through focused physics experiments (plasma transport, non-linear instability growth, etc.)