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3 I Important characteristics of SNL approach

• Data Science feeds Decision Science

0 See MatrixDS: https://tinyurl.com/DAAG19-MatrixDS

• Data Science provides statistical estimates of risks and uncertainties, inputs to Decision Science

o Decision Science uses interview techniques based on "wisdom of crowds", essentially "bookmaker odds" for other
risks and uncertainties

• Bayesian assimilation engine is at the core
• Uses all experimental information, with optional simulation constraints

o MLDL surrogates for physics of diagnostics

• Estimates risks and uncertainties (covariance)

• Estimates value of information (sensitivities of outputs to inputs, cross variance)

• Focus on deficiency in model

• Largest uncertainty, probable bias, and significant distortion of PDF

o Monitor diagnostics
• Use of Mallat Scattering Transformation to keep "on manifold", topological curvature

o Research on causal statistics (CMU)

• Python based, leveraging expertise of petroleum industry

• Researching fast surrogates for rad-MHD simulations (ASC funding of CMU)
• cGAN and MST (state and transition kernel)

• Recognize need for "data lake" in the cloud



4 The layers of the paradigm
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5 I Status Quo and Future
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6 Realized petroleum and mining technology
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7 I Early, proof-of-concept for NGPPF
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8 I Uses of value of information

• decisions, metrics for making the decisions
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design of instruments?
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9 A Bayesian calibration framework has been developed for interpreting DMP experiments

Z experiments are designed to be accurately modeled through 1D MHD simulations

•
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10 Challenges unique to this calibration

O
How do you account for
correlation between number
of velocity points (times)?

Autocorrelation time:

t = 1 + 2 v(k)
1

k=1

0 How do you efficiently
sample the posteriors using
MCMC?

Solution: build a surrogate model
to emulate the hydrocode

1. Run -100,000 simulations sampling the
parameter space to generate training data
• Massively parallel Monte Carlo

2. Construct an emulator based on training data
• We Gaussian Process (GP) surrogate

Amount of information 3. MCMC on the GP to sample posteriors
contained in a given • Usual metrics on chain mixing and
profile: n convergence

ESS = -
T Brown et al., Journal of the Royal

Statistical Society Series C, 67, 4 (2018)



11 I Application focus

Stagnation conditions for Magnetic Direct Drive Fusion experiments

• Analysis of pulsed power driven DMP experiments

Analysis of MagLIF preheat experiments at NIF

• Z power flow data analysis

• Model calibration through focused physics experiments (plasma transport, non-linear instability
growth, etc.)


