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Magnetization and preheat reduce peak velocity
required for ignition compared to traditional ICF i
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Magnetization confines 3.5
MeV a-particles at lower pR

Preheating + magnetization
allows ignition temperature to
be reached at a lower implosion
velocity[1]

Calculations show MagLIF
scales to high yield and gain[1,2]
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[1] S. A. Slutz, et al., Phys. Plasrnas 17 056303 (2010)
[2] S. A. Slutz. and R.A. Vesey, PRL 108, 025003 (2012)
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quantities required to infer bulk stagnation pressure and mix
fraction
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quantities required to infer bulk stagnation pressure and mix
fraction
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quantities required to infer bulk stagnation pressure and mix
5 fraction
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quantities required to infer bulk stagnation pressure and mix
6 fraction
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quantities required to infer bulk stagnation pressure and mix
7 fraction
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*Hansen et al., Phys. Plasmas 22, 056313 (2015)



By sampling the space of uncertain input parameters we determine
8 the maximum likelihood solution for pressure and mix

X-ray Yield
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The likelihood is defined as the probability of observing
the measurement given a particular set of model
parameters and our prior knowledge of the system

•This method allows us to efficiently sample a wide range
of parameter values, constrained by additional
measurements

*Correlations are contained in the likelihood distribution
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Bayesian inference allows us to use more data by employing a physics
9 model and synthetic diagnostics

Bayes' Theorem
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Outputs/Benefits:

• most likely parameter values

• confidence intervals

• correlations

• Value of information



We have developed a forward model that allows direct, quantitative
10 comparison of the data with synthetic diagnostics
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• Each slice has its own independent parameters characterizing a

static, isobaric hot spot surrounded by a liner
• Ideal gas EOS: PHS = (1 + (Z))nikBT
• All elements have same burn duration
• Electron and ion temperatures are equal
• X-ray emission is dominated by continuum (BF & FF)
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11 I This method allows us to infer axially varying stagnation parameters
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Currently this method is most
reliable for coarse variations

When increasing the resolution
the 3D structure of the column
begins to significantly impact
the inference

E.g. the 2D nature of the model
introduces bias into the solution

We are evaluating the limits of
this method using 3D MHD
simulations

We are currently developing a
more sophisticated model to
employ in this analysis



X-ray spectroscopy gives a strong independent opinion on stagnation
parameters and deeper insight into mix

High-resolution spectra of dopants from
liner, window, and fuel give Te, ne, Et

mix fractions (z3057 Et z 3123)
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We have measured Te and ne by performing detailed fits to highly-
1 3 resolved x-ray spectra. Gradients (AT, and AN) were observed.*

MagLIF shot z3057
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Important Results
The Co "fuel" plasma has Teave-2.6 keV with
ATe-2 keV and is hotter than the liner plasma.

• Fe liner plasma is has Teave —1.8 keV. On similar
shot, z2977, ATe — 1 keV .

Co ne is lower than Fe ne (>2x). Fe ne is typically
1.5 - 2e23 cm-3 (measured using Hefl)

Axial Te Distribution for z3057
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"Work done in collaboration with the Weizmann Group (Maron et. al.)



14 There is much work left to do

We are developing a GRH for Z (in conjunction with LANL) to make nuclear burn history
measurements

We have a 1D neutron imager that is operational, but is low resolution. We are investigating options
for 2D imaging with DD and DT neutrons


