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Problem Space and Use Case

* Review of NGSS surveillance data by IAEA inspectors
is mundane and tedious

* Look for anomalous activity (unknown unknowns)

* Frame by Frame

*Common monitored activity is transfer of spent fuel to
storage and transportation casks

*Assumptions:
* No labelled training data (cannot enumerate all anomalies)
* Data cannot leave facility
* Non ML expert users

* Environments and processes change significantly across
facilities




3 | Solution: Deep Predictive Coding Networks for Video Prediction
and Unsupervised Learning (PredNet) I
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PredNet Architecture

° Each layer in PredNet consists of:
° R;: representation neurons
o A}: layer-specific predictions at each time step
° A;: layer-specific target

o Ey: layer-specific error term

Prediction

C/ +,- ReLU

Representation subtract

input

o Information flow within 2 layers ° Module operations
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Long Short Term Memory (LSTM)

Hidden state from previous time step is passed in to the neuron
> Allows state to be built up
° The neuron can remember previous inputs
> Maintains several states/gates
° Porget gate: What is relevant from prior steps
o Input gate: Which inputs are relevant in the current step

o Cell state: Combine output from input gate and forget gate to get new cell state

° Output gate: Computes what the hidden state should be

forget gate cell state
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Convolution Neural Network (CNN)

Best approach for working with images
o Hach layer acts a set of filters extracting important features

o Generally, after passing through several convolutional layers, the output passed through a
fully connected dense network

Convolution Neural Network
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7 I Sequence-to-sequence prediction

Many problems involving sequences and predicting sequences:
> Machine translation

> Question and answering systems
Generally use LSTMs to capture temporal dependencies

Can we cast video prediction as a sequence to sequence problem?

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
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s | Sequence-to-sequence prediction

Typically involve an encoder portion and a decoder portion
° Rather than reconstruct the same input, predict the next sequence of outputs
> Encoder: Take the input sequence and learn a representation of the inputs

> Decoder: Take output from the encoder and predict next sequence of outputs

W | fine <EQL>

How are you <EOL>

LSTM Encoder LSTM Decoder




s | Extending sequence-to-sequence to video

Use spatial patches in images to replace words
> rNN: uses a single patch. Treats neighboring patches independently
o rCNN: also feed in the neighboring patches. Helps to with spatial correlations

o Parameters are shared over time

Change loss function

NN | - X
_ Xt—l ﬁ_‘.’ht
ﬁi}u X :_t=ht],:‘ :
NN Ea/ An M|
(Y B U e ALY
t-2a vmut

E;:l ghm

ht

A

nd
E*:l

B o

Quant.

t-3

See: M. A. Ranzato, A. Szlam, |. Bruna, M. Mathieu, R. Collobert, S. Chopra Video (language) modeling: a baseline for generative models of natural videos.
https://arxiv.org/abs /1412.6604




Fully connected LSTM

Combine CNN and LLSTM
> Has been used for captioning:

o ... 1t 1s natural to use a CNN as an image “encoder”, by first pre-
training it for an image classification task and using the last hidden
layer as an input to the RNN decoder that generates sentences

Problems with this approach:
> Convolutions and LSTMs are modelled separately
o CNNs do not have recurrence
> Only operate on spatial features
> LSTMs do not capture spatial features
o N-tensor is flattened to a 1-D vector

> What about convolutional layers connected to LSTM layers?

° The major drawback is that convolutional layers are connected to LSTMs and
recurrent weights are fully connected (dense)

° Lots of parameters and redundancy
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What do we have!

LSTM: Recurrent neural networks that capture temporal relationships
CNN: State-of-the-art in computer vision for spatial relationships

Sequence-to-sequence models: use of LSTMs to process and generate sequences

CNN/LSTM network

Precipitates the generation of the convolutional LSTM neuron

> Convolutional LSTM Network: A Machine Learning Approach for Precipitation
Nowcasting (https://arxiv.org/abs/1506.04214) 2015

o Predict weather

° “Give a precise and timely prediction of rainfall intensity in a local region over a relatively

short period (0-6 hours)




2 I ConvLSTM -- Pictures

Models spatio-temporal relationships in the data
° Integration of CNN and LSTM
° Recurrent layer (like and L.STM)
° Internal standard matrix multiplications exchanged with convolution operations

° Retains multiple-dimension data (LSTM is one dimensional)

ConvLSTM
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3 I ConvLSTM — Shown another way

Everything is now stored spatially as a 3-D tensor rather than a vector
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Review: Convolution

Recall: convolution 1s an integral that expresses the amount of overlap (or inner
product) of one function gas it is shifted over another function f

° Blends one function with another
> Operates in multi-dimensional spaces

° Output 1s multi-dimensional

Center element of the kemel is placed over the (0 % 0)
source pixel. The source pixel is then replaced 0x0
with a weighted sum of itself and nearby pixels. (0 *©)

Source pixel

Convolution kernel L | =
(emboss) | I =i ,.;

New pixel value (destination pixel) b1 1 e




s I ConvLSTM -- MATH L
LSTM l

it = 0(Waixy + Whihi—1 + Wei0ci—1 + by)
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& represents the convolution operator

Variables are capitalized in ConvL.STM because they are 3D tensors I



PredNet results
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7 I Calculating image differences

Compare Predicted Image to Actual Image
1. Convert both images to grayscale
2. Calculate Squared Error, E, for each pixel
P = Predicted Image A = Actual Image

E;= (P, —4p)*

Predicted Image Actual Image Squared Error Image




sl Data

*Sandia developed a proxy use-case to transfer a large (approx. 5ft. tall by 3 ft. wide)
container into and out of a floor vault

*Sandia deployed two NGSS cameras in the Gamma Irradiation Facility (GIF)

* Collected down-time data and active scripted container movements over multiple days

* Collections include both full (water) and empty floor vault scenarios
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Scenarios for Data Analysis Plan

Evaluate what the PredNet algorithm determines as “anomalous” and its relevance to
safeguards

Test four categories of potentially anomalous scenarios:

1. Unintentional Anomalies — examine anomalies that are identified in “normal”
operational scenarios

2. Intentional Anomalies — intentionally insert anomalous frames to determine
algorithm response

3. Operational Anomalies — change operational activities within a facility, including
types of containers present, appearance of containers, areas in which container are
located

4. Safeguards scenarios — experiment with scenarios that are determined to be of
high safeguards interest, e.g. greyscale images, longer time lapse, and play-back
loops
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Results

Experiment trained only on containers leaving the facility
Significantly larger irregulatity scores for containers entering the facility

Calculate Mean Squared Error for images in a series
|. Convert both images to grayscale

2. Calculate Squared Error, E, for each pixel i

P = Pixel values from predicted image 800 —

A = Pixel values from actual image 700 — Container Entering

N = Number of pixels

N
1 2
NZ(Pi —4;)
i=1

600 —

Irregularity Score

; ; Container Exitin
| |

| | |
0 5 10 15 20 25
Frame Number



21 I Video showing the sequence of containers entering and
exiting the facility

Container
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2 | Further results

Water behavior is hard to predict:

> Water reflection is out weighted by movement anomaly




23 | Conclusions and Future Work

PredNet 1s a viable solution for detecting spatio-temporal anomalies
> Does not require labelled data (which can be time consuming and labor intensive)
> Does not require (potentially sensitive) data to leave given facilities
> Demonstration of detection of normal objects and people doing anomalous
activities
° Can detect spatial anomalies (people walking in new areas)
° Can detect spatio-temporal anomalies (moving in the wrong direction)

> Hard to predict water behavior

Cons:

° Time consuming (in computational time) to train (but alleviates human burden)

Future work

> Examine PredNet on more extensive analyses
° What does PredNet detect in day to day activities
> Does PredNet overly detect anomalies?

> Extend to work with supervised approaches

° Anomalous activities near objects of interest

° Can the supervised and unsupervised share weights?




