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Dictionary Data Structures

Operations for a dictionary

* Insert, say (key, value)
* Delete

* Point query:
— Is key k in the dictionary? (return pair)
 Range query:
— Tell me all the keys in the dictionary between 100 and 1000.

In databases, these operations arrive one after the other (usually
quickly) in a stream.
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Binary Search Trees

« Abalanced binary tree with N elements has depth about log, N
« Dictionary: insert, delete, search, range query
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» Disks, SSD (solid-state drives)
» Data transferred in blocks of size B
« Efficient algorithms ensure most of the block is used

 When possible, delay block transfers to fill blocks
» Theoretical analysis uses B, M, and data size N
— Analysis counts only block transfers

External Memory
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O(|OgBN)

- Larger branching factor. B is block size

logg N =

1 S Tt T

« |f B is about 1024, this is log, B = 9x fewer levels than binary trees

— Fewer I/0s when lower levels are on disk/SSD
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Write Optimization

0 Target of opportunity
J
g B-tree \
L @ Optimal Curve
7, Insertions improve by 7\\
2 |0x-100x with Write-Optimized
) almost no loss of point-
5 query performance Data Structures
- (WODS)
k=
O
a- 3
9
%0 Logging
w
>
Slow Fast
Inserts

« The basis for TokuDB
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Write-Optimized Data Structures

Write optimized data structures like COLA, cascade filters, etc. (WODs)
let you do fast inserts and B-tree like queries

Amortized complexity: for a data structure with N elements

Optimal Insert Optimal Query

0(PER)  O(logsN)
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4_ Modern External Memory: SSDs

Random accesses are
Sequential access on slow, but fine if not

modern SSDs ~ Random bottleneck
access in RAM!

- R

External Storage (SSD)
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Cyber Streams and Analysis

Standing Queries
On-demand Queries

Query responses
(key, value) || (key, value)

>

e.g. Bro logs, netflow,
relationships

 Stream is fast

* Interesting events can have multiple pieces that are spread in time and can hide
among non-interesting pieces
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Standing Queries

database

“Stream” small

Full stream ' A *- enough for

Slower human inspection
**ﬂ & m -= “ *E- *)E

automated
ﬂ*-

analysis of ‘ ‘ ‘
puzzle wﬁ
matches

| “" ] .‘ Analysts

>

Database requirements:

* No false negatives

« Limited false positives

* |Immediate response preferred

» Also relevant to other monitoring problems: power, water utilities
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Firehose

 Benchmark that captures the essence of cyber standing queries
— Sandia National Laboratories + DoD

* |nput: stream of (key, value) pairs aii

« Report a key when seen 24t time.

How much working space do we need
relative to the active set size?

- —

Infinite key space

l

http://firehose.sandia.gov/ Expiration
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Critical Data Structure Size

» Testing with benchmark reference implementation in Waterslide
— 50M keys (varying counts)
— Stable window
« Accuracy of cyber-analytics depends on keeping enough data
» Difficult to determine what to throw away
— Most keys act the same at their start
Keep as much data as we can!

Reportable
keys

2720 2720 94,368 62,317
2720 2721 63,673 15,168 0
2720 2722 17,063 9 0

https://github.com/waterslideLTS/waterslide
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What is Happening?

« Waterslide uses ‘d-left hashing’

— Two rows of buckets
— Constant-size :. N
— Fast
— Waterslide adds LRU
expiration per bucket I I

Broder, Andrei, and Michael Mitzenmacher. "Using multiple

e 1/16 of all data is always SUbjeCt hash functions to improve IP lookups." INFOCOM 2001

to immediate expiration in
steady state

Even when window size is only
* As active generator window 4x data structure size, most
grows, FIREHOSE accuracy reportable data are lost before
quickly goes to zero It is reported.
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' Write optimization:
Cascade filter

[Bender et al. 12, Pandey et al. 17]

\
)

FLASH

log(N/M)— 2

N
e FEach level is an efficient hash table with counts e.g. N=1T
M =8B
e [t greatly accelerates insertions at some cost to queries. g levals
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log(N/M)—

Ingestion “cascades”

September 2019

FLASH
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Cascade filter Performance

y

— —

logN/My— 2
- | i |
Number of I/Os per 1tem: o Insertion:
Look up: 0(log(%)) (log( )/B)
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Time Stretch

o Can’t afford multiple look ups per element
o« Compromise: allow a little delay

Delay
Time in system ¢ *
Timeline '
' EEEEEEEREE " momoE o EoE R EoEoE R R E R R EE R EoEoEow .............4::} ........... °®
Birthtime 24-th occurrence Report time
(1) (24 (Ig)

delay < a * time in system

National
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Time-stretch filter

RAM
FLASH

log(N/M)y— 1

| i | N

e Arrays at each level split into / = (a+1)/a equal-sized bins. Here / =2 and a = 1.
e Flushes at bin granularity on fixed round-robin schedule.

e Will always see the oldest element in time to report

e Bounded delay time, factor (a+1)/a slower ingestion

e This example: 1 hour for 24 instances to arrive =) report up to 24 hours late

and system runs 2x slower than when we gave no promises on delay
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Popcorn filter: immediate reporting

e Avoid unnecessary I/Os if we can upper bound the total instances on disk

Lookup if RamCount = 24 — Zf':l Ti
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Popcorn filter

* |Immediate reporting
works if keys have power-
law distribution

» Delay gives a count
stretch: bounded extra
counts

Number of keys
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A little math

« Power-law distribution: Counts of keys follow a power-law
distribution with exponent € if the probability an item has
count c is proportional to c(8-1)

 Theorem: If a stream has N elements with counts following a
power-law distribution with 2 < 8< 2.96, T is the reporting
threshold, and o\

Then our algorithm gives a count stretch of (1 + w) with

amortized I/0 complexity of (llog ﬁ) per item w.h.p
B°M

Number of keys
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}‘ Multithreading and Deamortization

o Data structures run well on average, but some
operations take a long time
o Do a little work for each arriving element

R T e FLASH
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Time stretch

Time stretch
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Data structures

e Time-stretch filter has the smallest empirical time stretch.

e Deamortization and multithreading had negligible effect on empirical time
stretch.
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Count stretch

Count stretch
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Data structures

e Count-stretch filter has the smallest empirical count stretch.
e Deamortization and multithreading had negligible effect on empirical count
stretch.
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Scalability — count stretch

16 threads

—.— Ratio: 16
A Ratio: 32

—— MG in-memory
| | |

0 20 40 60
Number of threads

Throughput (Million inserts/sec)

e This runs faster than Waterslide (10M insertions/sec) and reports all

reportable keys
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Additional Challenge

« Systems sacrifice security for |/0 efficiency
— Example: Microsoft Word “fast save” appends edit log
— Adversaries can recover old versions of documents

« Hide the history of a data structure on disk
— Order of arrival
— No idea if there has ever been a deletion
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History-Independent Data
Structures

* An added level of protection for data on disk

« An adversary who acquires the disk and examines memory cannot
determine anything more than APl would give

« |If the adversary can examine the disk cannot determine:
— Order elements arrived
— If any data has been deleted

* Order information can reveal sources, policy, etc.

« One potential motivation: drones

\‘u

14
¥

From: Wikipedia
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History-Independent Data Structures s reageon

[Blelloch & Golovin '07] [Buchbinder & Petrank '03] [Bajaj, Chakrabati, Sion '15] [Bajaj & Sion '13] [Molnar, Kohno, Sastry, Wagner
'06] [Moran, Naor, Segev '07] [Naor, Segev, Wieder '08] [Roche, Aviv, Choi '15] [Tzouramanis '12] [Golovin '08, '09, '10]

 Bit representation reveals no additional info about past

states of the data structure
Observer cannot infer sequence of

 Example:
operations leading to current state
{A, B, C} 1.Insert A 1.Insert C
2.Insert B 2.Insert B
3. Insert C 3.Insert A
4.Insert D
5.Delete D

Sandia
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History Independence (HI)

« Strong history independence gives guarantees if the adversary sees
the data representation multiple times

— Requires a canonical representation
— Expensive
* Provably cannot achieve amortized o(N) operation cost whp
«  Weak history independence protects against a one-time theft
— Representation is drawn uniformly at random from a given large
structured set
— Can be much more efficient
— The right model if a disk can only be stolen once
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} History-Independent Dictionaries

« Skip lists. External memory block size B, n items
— Insert, delete, search: O(logg n)
— Range search with k items in range: O(logg n + k/B) block
— Amortized, with high probability: ; _ o (ni>
— Optimal

* Previous work for HI skip lists: insert ©(log n)

» Cache-oblivious B-trees
— Same bounds except inserts are (optimal) O(ZOQBZ”
— 0O(n) space
— Experiments show small slowdown

* Oblivious adversary for analysis: sets order of operations, but does
not know the random tosses of the data structure

+logp n)
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[ — N

O(logsN)
1 P Pt ot

« All the elements are in the leaves (on disk)
 Randomization involves how many elements in each leaf

To start, though size/storage allocation
— For N elements, allocate array size |A| from N to 2N-1 uniformly

— For any insert/delete reallocate with probability e (\%I)
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Key ideas

Recursive stick breaking

‘Leader

Candidate Set

/

Leaves have log N elements
Always packed left

September 2019 CO School of Mines Math Seminar 33 Sk

National
Laboratories

(=)




eservoir Sampling with Joins and
Leaves [Vitter ‘85]
* Two goals: 8 8

— Maintain a club leader uniformly
randomly from all current club
members

— Make leader changes rare as members
join and leave

1. Elect new member w/ prob 1/(n+1)
2. Elect new leader when leader leaves

Prob[leader changes]| = 1/n nn+l nntl  nel
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A 4

HI PMA: Handling Inserts
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HI PMA: Handling Inserts2 0

- o an(iidate set / Depth
Input elements | 1 ‘ 4 7 9 11 1 =0
. ) | N B
Candidate set size: 0 r
2" log N d=1
: 2%log N
— — B
Pr[rebuild at level d]=0 N ] 19 R4 l 30 4=

—PMA size at level d: O(N/Z ) E[insert cost]=6 (10g2 N)

—E[work for rebuild at level d]= 0 log N )
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Validation

« HI data structures cost something (but only a constant factor in
theory and about 7x on initial experiments

« |f there is any error in the implementation, could lose HI property
— History independence is delicate
 How to validate an implementation
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} Validation

1) Pick an arbitrary element yeS,
2) Build an HIPMA from scratch on S-{v},
3) Insert y into the PMA.

LetY be the distribution of the PMA layout after this procedure.
Finally consider the following procedure: 1) Pick an arbitrary element
Z[e S, 2) build an HI PMA from scratch on S U {z}, and 3) delete z from
the HI PMA. Let Z be the distribution of the HI PMA layout after this
procedure. If insertion and deletion are implemented correctly, then
all three distributions X, Y, and Z should be identical.

Kullback-Leibler Divergence (like testing for a fair die)
« Smallest size non-trivial data structure
« Trials in parallel
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Final Thoughts

Online event detection:

« Algorithms and data structures allow rapid stream monitoring using
“normal” architecture such as SSDs

« Compromise between fast ingestion and queries, but can
approximately have both

« Store as much as you can to get the best information

Open research questions (firehose):

* Intentional data expiration in dictionaries for infinite streams
— Theory and practice (larger tests)

History-independence:

« Can have weak HI at no asymptotic cost

« Applications?
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Bonus Time

« Suppose we want to find any element in a stream of size N that has
a constant fraction (say 1/5) of the elements

« There can be at most 5 such elements

* |If we find a count from 5 different elements, we can throw them
away

— Can do that fewer than N/5 times if don’t throw all out

— So any element with count at least N/5 still has a
representative
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Mra Gries (MG) Algorithm

« Maintain 1/&€ counters in memory
« When an item arrives
o if there is a counter for it, increment the counter

o if thereis no counter for it
- and there is space, add a counter and setto 1

- otherwise, decrement all counters




e
Mra Gries (MG) Algorithm
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Mra Gries (MG) Algorithm
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Mra Gries (MG) Algorithm
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Mra Gries (MG) Algorithm
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Mra Gries (MG) Algorithm

ltem not in the list and there’s no space
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Mra Gries (MG) Algorithm

Decrement all counters

2 |8 )] 2 0 ‘
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'
Mra Gries (MG) Algorithm

Remove if zero
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External-Memory Misra Gries

Structure

* A sequence of geometrically increasing Misra-Gries tables

* The smallest table is in memory and is of size M, the last
table is of size 1 /¢

e Total levels = 0(logl/eM)

Algorithm

® The top level receives its input from the stream
® Decrements from one level are inputs to the level below

® Decrements from the last level leave the structure
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Final Thoughts

Online event detection:

« Algorithms and data structures allow rapid stream monitoring using
“normal” architecture such as SSDs

« Compromise between fast ingestion and queries, but can
approximately have both

« Store as much as you can to get the best information

Open research questions (firehose):

* Intentional data expiration in dictionaries for infinite streams
— Theory and practice (larger tests)

History-independence:

« Can have weak HI at no asymptotic cost

« Applications?
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