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3 
1 Constitutive Model

• 'A constitutive equation demonstrates a
relation between two physical quantities that is
specific to a material or substance and does
not follow directly from physical laws" (J.
Fish, 2014, Practical Multiscaling, Wiley)

• Essential for the solution of structural
boundary value problems

• Provides closure relations
o Mathematically
o Introduces material physics
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1 Constitutive Modeling in FEA

• Constitutive model implementation in
Sierra/SolidMechanics via Library of Advanced
Materials for Engineering (LAME)

• LAME consists of large set of models covering
different responses, cost, and fidelity

• Require flexible, robust, and verified numerical
implementation

• Models span:
o Deformation mechanisms (e.g. plasticity, viscoelasticity,)
o Dependencies (e.g. rate, temperature)
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1 Constitutive Calibration

Model of Tensile Test w/ anisotropic plasticity model w/ and

w/out rate-dependence
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• Calibration is essential for constitutive
model utilization

o Different fits to same data can result from
various choices

o Increasing fidelity requires increased fit
parameters

o Efficient approaches represent enabling
capability

• Need to be able to parse different
phenomenology

o Model form selection
o Some response characteristics can be produced
via multiple fits
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6 1 Model Form Issues
• Parsing impact of different model forms and appropriate identification important in calibration

0 "Under resolved" data to model form (AKA "non-unique" fits)
o Correctly identifying these issues essential for structural prediction
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Calibration Workflow
Overview

Matt Kury, Sandia National Laboratories
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I Material Model Calibration Process
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I Material Model Calibration Process
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I Material Model Calibration Process
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11 I Material Model Calibration Process

25

5

- f(

behavior

cP 0 0 o o 00 00000 00 0000 000 00

0

—o
yield stress

Parameters can bl
calculated
analytically

o 
0

Vu V vs s so • • Sin

multiaxial stress

Requires inverse
problem

o experimental data

1 2 3 4 5

Displacement (mm)

NSE CROSS-SITE MEETING ON CALIBRATED M

•

P1, P2, • • Pn

o experimental data
simulation



12 1 Workflow to get a Calibration Result
1. Gather and process experimental data

2. Decide on a material model form for calibration

3. Create my mesh & input deck to simulate each experiment

4. Create my input script for my optimization library

5. Create my analysis tool to translate my simulation results to a residual
or objective function for my optimization library

6. Run my optimization

7. Debug errors I made somewhere along the way
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13 1 Workflow to get a Calibration Result

1. Gather and process experimental data

2. Decide on a material model form for calibration
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14 1 Workflow to get a Calibration Result
1. Gather and process experimental data

Decide on a material model form for calibration

Create my mesh & input deck to simulate each experiment

Create my input script for my optimization library

Create my analysis tool to translate my simulation results to a residual
or objective function for my optimization library

6. Run my optimization
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15 1 Workflow to get a Calibration Result with MatCal

1. Gather and process experimental data

2. Decide on a material model form for calibration

3. Create my mesh & input deck to simulate each experiment

4. Create my input script for my optimization library

5. Create my analysis tool to translate my simulation results to a residual
or objective function for my optimization library

6. Run my optimization

7. Debug errors I made somewhere along the way
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16 1 Workflow to get a Calibration Result with MatCal

1. Gather and process experimental data

2. Decide on a material model form for calibration

3. Create my mesh & input deck to simulate each experiment

4. Create my input script for my optimization library

5. Create my analysis tool to translate my simulation results to a residual
or objective function for my optimization library

Run my optimization

7. Debug errors I made somewhere along the way

tMatCal
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17 1 Workflow to get a Calibration Result with MatCal

1. Gather and process experimental data

2. Decide on a material model form for calibration

3. Create my mesh& input deck to simulate each experiment

4. Create my input script for my optimization library

5. Create
or objective

my analysis
function

tool
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18 1 Workflow to get a Calibration Result with MatCal

1. Gather and process experimental data
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19 1 Workflow to get a Calibration Result with MatCal

1. Gather and process experimental data

2. Decide on a material model form for calibration

3. Create my mesh& input deck to simulate each experiment

4. Create my input script for my optimization library

5. Create
or objective

my analysis
function

tool
for
to translate
my optimization

my simulation
library

results to a residual

Run my optimization

NSE CROSS-SITE MEETING ON CALIBRATED MATERIAL MODE

1—MatCal

I

111



MatCal Features Overview

Matt Kury, Sandia National Laboratories

NSE CROSS-SITE MEETING ON CALIBRATED
MATERIAL MODELS



1Simple and Powerful Unified Interface for Material Calibration
• Leverages various Sandia computing tools

• Written in Python

• Leverage the power of scripting

• Verification testing suite to ensure correctness of methods

• Built in plotting tools to easily monitor the progression of calibrations

• Written with extensibility in mind

pythonlm

D A K OTA 
Explore and predict with confidence.

NSE CROSS-SITE MEETING ON CALIBRATED MATERIAL MODELS



22 1 Traceability Built Into The Workflow.
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23 1 Traceability Built Into The Workflow.
'Experimental Data
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24 1 Traceability Built Into The Workflow.
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I Calibrated Model>

###################################
# Calibrated by: mwkury
# Calibration Finish Date:
# Day: 19 Month: 9 Year: 2019
# YS = { YS = 80 }
# YRE = { YRE = 5 }

begin property specification for material matcal
density = 7920
begin parameters for model j2_plasticity

youngs modulus = 200e9
poissons ratio = 0.27
yield stress = {YS*1e6}

hardening model = decoupled_flow_stress
16 isotropic hardening model = power_law
17
18 hardening constant = 753261652.4
19 hardening exponent = 0.7643868271
20
21 yield rate multiplier = power_law_breakdown
22
23 yield rate coefficient = {10̂ (-4)}
24 yield rate exponent = {YRE}

25
26 hardening rate multiplier = rate_independent
27
28 max_ls_iter = 1e3
29 max_rma_iter = 1e3
30 end
31 end
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25 1 Built-in Standardized Tests
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1 Built-in Standardized Tests
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Built with Experimental States in Mind

Experimental
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Built with Experimental States in Mind
28

i

Experimental
Data

I 

-=DOK 

.1. MI_ 

Ilk_ T = 400K 

T = 500K T = 600K 

T = 7] 
h ]
l _J "

Data0.dat

1 -I

It

[Data2.dat

II

J IN
Datar.dat 1 Data4.dat

II

iI Data5.dat
_01

•

Data6.dat Data7.dat

l

Data8.datj

NSE CROSS-SITE MEETING ON CALIBRATED MATERIAL MODELS



_ _ _.-rEIL

MatCal Stories

Matt Kury, Sandia National Laboratories
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1Determining Cause of Laser Weld Mechanical Variability

Experimental Setup

Experimental data provided by John Madison, Helena Jin NSE CROSS-SITE MEETING ON CALIBRATED MATERIAL MODELS



31 
1Determining Cause of Laser Weld Mechanical Variability

Experimental Setup
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1Determining Cause of Laser Weld Mechanical Variability

Experimental Setup
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1Determining Cause of Laser Weld Mechanical Variability

Experimental Setup
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1Determining Cause of Laser Weld Mechanical Variability

Experimental Setup Laser Weld Mechanical Response
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35 1 Material Parameter Calibration: Plasticity Calibration
Plasticity
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I
Material Parameter Calibration: Plasticity Calibration

Plasticity
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37 Material Parameter Calibration: Plasticity Calibration

Plasticity
Model Chosen
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38 Material Parameter Calibration: Plasticity Calibration

Plasticity
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39 Material Parameter Calibration: Plasticity Calibration

Plasticity
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40 Material Parameter Calibration: Plasticity Calibration

Plasticity
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41 Material Parameter Calibration: Plasticity Calibration

Plasticity
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42 I Material Parameter Calibration: Plasticity Calibration 
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43 Material P

Plasticity
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MatCal to accelerate their calibration efforts.
v._ 0.3 0.4 0.5 0.6
Engineering Strain

[f = ti 1 + C — Rdk Eeq
K

Cit (ClIt) = h( W "

MatCal
Pointed to

Experimental
Data

Push Go
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Material
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Experiments were performed using a rounded tension (1/s)
(1/s)
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:Ls
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Predict Variability Attributable to only Geometry

0
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S33 sim

o S33 exp o 

— S32 sim

S32 exp

S25 sim

o S25 exp

S24 sim
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►
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Displacement (mm)

Von Mises Stress:
Specimen S24 Specimen S25

(high porosity, shallow (abnormal geometry)
weld)
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(low porosity)

uszik=ip

1
1

Specimen S33 Specimen S26 pi
(low porosity, deep (medium porosity, dee

weld) weld)
7 ni 1
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45 1 A MatCal Success: Sandia Fracture Challenge 3 (SFC3)
Challenge:

Given a novel AM 316 stainless steel specimen geometry, make a blind prediction of

the loading and failure behavior, and provide uncertainty measurements.

01.75 -

B

4

B

Specimen Geometry

9000

8000

ISO VIEW OF
SECT. B-B
acx.e13:11

7000

6000

5000
-0
C604000

3000

2000

1000

0
0 0 0 5 1.0 1 5

Average Gage Displacement (mm)

2.0

Needed to predict both local and global responses for

the specimen.
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SFC3: Information Provided
46

Test Sample Geometry Information 700
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47 1 SFC3: MatCal's Role-Model Selection

700

600

'"Z--;
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Relevant material phenomena:
• Nonlinear hardening

• Investigated: Voce, Power-

law, and Voce + pre-strain

due to residual stress

Temperature and rate

dependence

• Plastic anisotropy

• Failure: Void

nucleation/growth
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48 1 SFC3: MatCal's Role-Model Selection

700

600

'"Z--;
7:1
cd

500

400

1_5 300

200

100

0

Rate
Dependence

Anisotropy

Geometric
Variability a Darnd e 

longitudinal EDM slow

0.0

longitudinal EDM fast

longitudinal fast

transverse EDM fast
1 111 1 11 11 1111111 1 1 I 11 1 1 1 1 1 1

0.5 1.0

Displacement (mm)

1.5 2.0

Relevant material phenomena:
• Nonlinear hardening

• Investigated: Voce, Power-

law, and Voce + pre-strain
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• Failure: Void
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SFC3: MatCal's Role-Model Selection
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a Damage
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longitudinal fast

transverse EDM fast
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Displacement (mm)

Final material model form chosen: 16 unknown parameters

fg f = Yo 1 + sinh-1 + A(EP)b

Power-law hardening with
rate dependent yield

192 (a-ij) = F(8-22 — 8-33)2 +• G(6-33 8-11)2

▪ H(8-11 — 6-22)2 • 2L8-23
▪ 2M8-41 2N8q2

Hill yield surface
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Relevant material phenomena:
• Nonlinear hardening

• Investigated: Voce, Power-

law, and Voce + pre-strain

due to residual stress

Temperature and rate

dependence

• Plastic anisotropy

• Failure: Void

nucleation/growth

Propose
Changes

Select Model
Form

I
Assess Model 

Calibrate

Performance 
Model to

*is Data

v, 2 1

ijP-77 (1 + rivv) [(i TIVv)In +1 — I]

.sinh
 
2(2m - 1) (01

[ 2m + 1 af

[ 4 41

71cP [27 J3 + N3

(vv - vo)

Void nucleation ec growth

1.5



50 1 MatCal Enabled Prediction Deemed Most Accurate
Qualitative
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Advanced Calibration with
Full-Field Data

-

Elizabeth Jones, Sandia National Laboratories
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52 I There are two main classes of calibration techniques.

Traditional Advanced

ik t
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53I There are two main classes of calibration techniques.

Traditional

• Simple geometries
• Global data (i.e. engineering stress and

extensometer strain)
• Uniaxial (i.e. tension only; shear only)

Advantages
• Simple experiments
• Data easy to interpret

Disadvantages
• Uniaxial stress state does not reflect real-

world loading coneitions j

v Multiple experiments required to fit a
complex material model

Advanced

• Arbitrary geometries
• Full-field data (i.e. DIC displacements)
• Multiaxial stress state

Advantages
• Loading conditions of calibration specimen

reflect real-world
• Reduced number of experiments

Disadvantages
• Experiments and data analysis more

complicated
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Method I: The BCJ model was calibrated using traditional
54 I techniques and global, uniaxial tensile data.

1 [1 — exp(—Rdp)]f Thii, 0 = ay 1 + asinh 12 ilm 
H

a ( + 
Rdb

700

--cii- 600
o_
2....- 500

Strain rate dependence Isotropic (%)
of initial yield hardening 92 400

c.7)

= al — 0-29
Temperature

11(9) = H1 — H20 . g) 300
45

{637(9)

dependence
__dl ___pRd(60 = R ex

—Rd2 1 D
+ Rd3

2 200

S.)
( 0 )

LU 100

Experiment
Material: 304L stainless steel rolled sheet, 1.5 mm thick

Dog bone gauge section: 50.8 mm x 12.7 mm

Three nominal strain rates (s-1):

, to • io-4
, 3.2 • 10'
to • 10-1

• Virtual extensometer from DIC (22 mm)

0

Fast

Medium

Slow

0 0.2 0.4 0.6 0.8

Extensometer Strain (m/m)

Material Identification
Finite-element model updating (FEMU)
with MatCal

Cost function built from simulated and
experimental stress/strain curves
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Method I: The BCJ model was calibrated using traditional
55 techniques and global, uniaxial tensile data.

Traditional Calibration 

1. Only global load/extensometer
data is used.

2. Many tests are required to
capture strain-rate dependence.

1
1
I
1.
1
1
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Method 2: The BCJ model was calibrated using the Virtual
56  Fields Method and full-field DIC data.
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Raw data includes images of a patterned specimen for DIC, IR
57 for temperature measurements, and resultant force.
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Derived data includes strain, strain rate, temperature, and
58 reconstructed stress

Deformation Gradient, F22
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Complex specimen geometry induces strain rate heterogeneity
591 in the sample.
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Virtual Fields Method is a powerful inverse technique that
60  capitalizes on full-field data.

•Principle of virtual power

of17 II: P* dV = f • v*,
111111y1111, ‘11,1111N401111

Internal External
Power, Power,

Pint Pext

•Cost function

0w Etime [Pint Pext] 2

f1-1 Resultant Load 
First Piola-Kirchoff Stress 

V Sample Volume

[v Virtual Velocity
F. * Virtual Velocity Gradient 

Stress is a function of:
.

•

Strain, strain rate, temperaturel
Material model

Measured experimentally

Kinematically admissible
Selected judiciously

Pierron and Grédiac (2012) The Virtual Fields Method. Springer. NSE CROSS-SITE MEETING ON CALIBRATED MATERIAL MODELS



Method 2: The BCJ model was calibrated using the Virtual
Fields Method and full-field DIC data.

Advanced Calibration 

1. Full-field data is used.

2. A single test is used to capture
strain-rate dependence.

...1i
1
1

1
1
1
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The two calibration methods identify similar, but different,
621 model parameters.

(If 03, 15, = 11 + asinh 1(91 + Kd [1 — exp(—Rdp)]

Traditional Advanced
Parameter A. Symbol Units

Calibration Calibration

Quasi-static yield
stress

Hardening

Dynamic recovery

Rate-dependent
coefficient

Rate-dependent
exponent

H

Rd

b

MPa

MPa

5-1

253.8

2538

2.110

4.728

9.229

163.9

2682

3.845

2.372.10-4

7.306
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Traditional Calibration
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63 1
Summary

• Model calibration is a difficult but critical component of engineering analysis

• Complex material behavior requires complex models.

• MatCal provides a verified and validated tool for model calibration
o -MatCal wraps existing Sandia and external tools, with the aim to reduce the

time analysts spend performing material calibration by providing a
standardized and verified tool specifically tailored to this purpose.

o MatCal aims to improve the visibility and traceability of calibration work
through a GRANTA interface.

o MatCal aims to be a future catalyst for more advanced calibration methods.

• Advanced methods of calibration are required to increase data richness, reduce
cases of "under-resolved" data or "non-unique" solutions, and improve
experimental efficiency.
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