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SNL Objectives

Overall objective: Improve the ability to predict timing and
location of potential canister penetration by SCC cracks

• Improve understanding of electrolyte (deliquescent brine) physical and
chemical characteristics

afects of brine/atmosphere reactions

Effects of corrosion

• Understand the relationship between surface environment and damage
(pitting/SCC) distributions and rates

• Temperature and RH

• Salt surface load and spatial distribution

• Develop quantitative understanding of the effects of variability in material
properties and mechanical environment on corrosion.

• Weld/HAZ/base metal material properties (sensitization, texture, mineralogy)

• Tensile stress intensity and depth profile
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SNL Stress Corrosion Cracking Studies
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COLLABORATIVE EFFORT

• Determine electrolyte (deliquescent brine) compositions and
evolution with time

• Determine the relationship between surface environment (T, RH,
salt load/distribution) and damage (pitting/SCC) distributions/rates

• Determine the effects of material properties (microstructure) and
mechanical environment (residual stress intensity and depth
profile) on corrosion distributions and rates
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INTEGRATED MECHANISTIC/PROBABILISTIC MODEL FOR CANISTER SCC

Goal: Improve the ability to predict timing and location of
potential canister penetration by SCC cracks
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Canister SCC: Corrosion Testing
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Crack Growth

• What are the composition and
properties of deposited salts
and deliquescent brines?

• How do brines evolve both
before and after initiation of
corrosion

Crack
Initiation

Penetration

CSM/SNL Pitting Initiation and Growth (Effect of Stress)

SNL/OSU Pitting Initiation and Growth, Pit-to-Crack Transition

SNL/UVA - Pitting Initiation and Growth

CSM Pit-to-Crack Transition (Modeling)

SRNL (SNL) - Crack Growth Rates

NCSU (SNL) - Crack Growth Rates

SNL/OSU/UVA- Crack Growth Rates

PNNL/SNL - Crack Growth Rates
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Canister Surface Environment: Evaluation of Sea-Salt Brine Stabilities
Focus on Mg-Cl2 brine, that strongly control deliquescence RH and potentially brine corrosiveness

Previous Experiments: 

80°C, 35% RH test:

• Chloride loss

• Conversion to Mg-hydroxychloride

48°C, 40% RH test:

• Chloride loss

• Reaction with atmospheric CO2;
conversion to Mg-carbonate

• Degree of reaction limited by
low air flow, limited duration

Current Experiment (in progress) 

48°C, 40% RH test:

• High air flow, longer duration

Future work: Reactions with other
atmospheric gases 

• S0x, NOx

Experimental Evaluation of Magnesium Chloride Brine Stability

SEM image of MgCl2 droplets on wafer surface

CI

EDS element maps showing depletion
of chloride in small droplets of MgCl2.
due to chloride degassing.

Characterization of Mg-hydroxychloride Hydrates:

• Observed in several experiments

• Controls on deliquescence RH, brine composition and

properties
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Canister Surface Environment: Dust Sampling and Analysis
Maine Yankee Sampling

r
MAINE YANKEE SAMPLING, OCTOBER, 2019

• Samples placed in inlet and outlet vents of four
storage systems (SNF canisters) by CSM in 2017;
transferred to SNL ownership with end of CSM
I RP.

• Locations (8 total): high and low heat flow,
sheltered and exposed inlet and outlet vent
locations

• At each location:

— 1 large 4-pt bend specimen, with attached dust collection

coupons.

— 3 small 4-pt bend specimens (varying surface finishes and

stress levels)

Specimens examined, all 8 dust collection coupons
collected and replaced, two small 4-pt bend samples
collected.

Samples characterized by SEM/EDS and chemical
analysis.

Sampling at Maine

Yankee ISFSI,

October, 2017
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Maine Yankee Sampling

General Impressions 
• Samples tethered to vent screens, close to the

screens

• Samples dirty with wind-blown dust and plant
debris, and spider webs and other insect
debris; inlet samples much dirtier (in general)
than outlet samples

• Much lower deposition on vertical surfaces
(tension surface of large 4-point bend)

• Many samples show evidence of wetting—rain
spatter, condensation(?), or accumulation of
wet fog(?) (rings or droplet patterns in the
dust; rust under dust collector)

Important to note that these samples are not representative of the canister surface environment (exposure
to wetting, ambient T and RH, horizontal orientation leads to heavy dust loads). But they do provide some
information on salt compositions, and potentially, on salt corrosiveness.
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Maine Yankee Sampling
SEM/EDS Analysis

Dust analyzed as deposited, on silica
wafer dust collectors:

• Organic materials

— Pollen

— Stellate trichomes, plant fibers

— Cobwebs, insect parts

• Mineral Phases

— Dominantly silicate minerals
mica, quartz, feldspars (Si-Al-

silicates)

— Salt phases
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Maine Yankee Sampling
SEM/EDS Analysis

Salt phases: Composition and 
distribution 

• Individual salt aerosols
generally tiny particles of NaCI,
associated with mineral, pollen
grains

• Sea-salts? Dried sea-fog
droplets?

• Salts associated with pollen and
plant matter

• Redistributed salts due to
wafer wetting
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Maine Yankee Sampling
SEM/EDS Analysis

Chemical Analyses: Soluble Salts 

Salts consist of a mixture of marine (Na, CI, Mg, SO4) and continental (Ca, K, NO3, SO4) salts

Salts are somewhat more chloride-rich than salts previously recovered from the Maine Yankee canister surfaces

Sample # Na+ NH4+ K+ Mg+2 Ca+2 F CI" NO2" NO3" P043" S042"

VCC-18 inlet 1.853 0.021 0.500 0.190 0.478 - 0.675 0.027 0.273 0.020 0.120

VCC-18 outlet 0.350 0.026 0.080 0.041 0.120 - 0.969 0.033 0.879 0.007 0.221

VCC-37 inlet 2.368 0.016 0.398 0.232 0.494 0.019 0.989 - 0.364 0.033 0.208

VCC-37 outlet 0.152 0.019 0.029 0.012 0.039 - 0.178 0.017 0.168 - 0.065

VCC-42 inlet 0.963 0.016 0.479 0.089 0.263 - 0.373 0.017 0.128 - 0.085

VCC-42 outlet 2.339 0.018 1.109 0.183 0.981 - 0.872 0.033 1.528 - 0.292

VCC-56 inlet 0.669 0.012 0.500 0.063 0.285 - 0.272 0.017 0.111 - 0.077

VCC-56 outlet 0.373 0.018 0.358 0.045 0.334 - 0.139 - 0.053 - 0.027
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Maine Yankee Summary

Sampled 4 storage systems (inlets & outlets), -2 years exposure. Corrosion test samples
examined, dust coupons collected and replaced.

Results 

- Samples were close to vent screens, had heavy dust loads

- Dust primarily silicate minerals and biologicals

- Soluble salts a mixture of sea salts and continental salts

• Sea-salt (sea fog?) particles observed

• Soluble salts relatively chloride-rich; more chloride observed than in dust previously collected from
canister surfaces

- Salts occurred as tiny aerosol particles, frequently attached to pollen or mineral grains. Salt
redistribution on coupons wetted by rain.

• Chloride wicked into organic materials during drying.

• Recrystallized as coarser salt crystals or as more extensive, finely crystalline surface coatings.

impact: 

- Wetting results in salt redistribution and recrystallization coarser crystals or coatings over
larger areas. Relevance to cleaning canisters for inspection?
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Canister SCC: Corrosion Testing
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Prediction of Maximum Pit Size from Brine Characteristics and Electrochemical
Kinetics

Challenge: Information on electrochemical parameters lacking  for expected canister brine conditions (W L and chemistry)
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Maximum Pit Size Predictions: Canister Relevant Conditions
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Current Status: 

. Predicted max pit size includes the following
assumptions:

Continuous brine layer

Hemispherical pit

Kinetics independent of t (fixed electrolyte)

• JECS 2019 paper

• Journal article in progress.

Important results

. Kinetic parameters determined for canister
relevant conditions to implement maximum
pit size model
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Role of Surface Environment on Pitting Damage and Pit-to-Crack
Transition

Samples

SS304H

2"
1"

Mirror, Ra= 0.05 pm
Ground, Ra= 2.83 pm

, Sea salt constituents

Salt g/L DRH
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Exposure Conditions

%RH Temperature (°C)
76 35.41

70 35

65 35

60 35

55 35 40

50 35 40

45 35 40 45

40 35 40 45

35 35 40 45 50

30 35 40 45 50

Time 

I week to 2 years

Sandia
National
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Effect of Humidity on Pitting and Cracking

ENVIRONMENT, F(t)
RH,T, seasalt, 10 pecm2
and 300 pecm2
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Crack

y
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Current Status: 

• Similar depth
distribution, but
diameters and shape
RH dependent

• Maximum pit size
model validated by
atmospheric
exposure with
critical assumptions

• JECS 2019 paper

Important results 

• Maximum pit size
model bounds
results at 76% RH,
but when/where is it
valid?
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Humidity Controls Pit Morphology and Cracking

HIGH RH: NaCI RICH BRINE Low RH: MgCl2 RICH BRINE

40% RH UMW

lOprrl

.0S-S7S

CURRENT MODEL ASSUMPTION: HEMISPHERICAL PITS

• DEFORMATION FROM GRINDING  MAY BE

RESPONSIBLE FOR MORPHOLOGY AT LOW

RH AND SUSCEPTIBILITY TO CRACKING 

Crack

5pm 
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Cathodic Kinetics Controlling Pit Morphology
f (T, RH, Salt Load, Chemistry)

RH EFFECTS BRINE CHARACTERISTICS AND

PIT MORPHOLOGIES

1) The available area surrounding a pit
that can serve as a cathode.

2) Ohmic drop between the corroding pit
areas and the surrounding cathode.

3) Electrolyte properties control cathodic
kinetics (diffusion controlled and charge
transfer controlled)
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Brine Interaction with Corrosive Environment
f (T, RH, Salt Load, Chemistry) ?

Dual Electrode Exposure
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Cathode

Stainless Steel

Current Status:

• Brine evolution during
corrosion

• Correlate extent of corrosion
with brine conditions?
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Brine Interaction with Corrosive Environment
f (T, RH, Salt Load, Chemistry) ?

Dual Electrode Exposure

100 p.m
4— EDS maps Post-corrosion

Cathode

Stainless Steel

Current Status:

• Brine evolution during
corrosion

• Correlate extent of corrosion
with brine conditions?
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Brine Interaction with Corrosive Environment
f (T, RH, Salt Load, Chemistry) ?
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Current Status:

• Brine evolution during
corrosion

• Correlate extent of corrosion
with brine conditions?
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Characterization of SCC in Canister-Relevant Weld Regions

"Big Plate" Sandia Mockup Exposure Samples

• 8 g/m2 MgCl2
• Exposure: 80°C, 35 % RH, 12 months

• 3 % Potassium Tetrathionate, pH =1, 6 mo. (3 mo. 40°C)

• Analysis
• Composition of brine and corrosion products

• NDE inspections for SCC

• Fluorescent Dye Penetrant

• UT Phased Array & Eddy Current Array

• Goals

• Determine orientation and location of SCC around

canister welds

• Evaluate brine evolution under corrosion

80°C, 35 % RH

Circumferential
Weld

80°C, 35 % RH

4-point bend specimen

80°C, 35 % RH

Longitudinal Weld

Potassium
Tetrathionate

Circumferential Weld
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Characterization of SCC in Canister-Relevant Weld Regions

"Big Plate" Sandia Mockup Exposure Samples

• 8 g/m2 MgCl2
• Exposure: 80°C, 35 % RH, 12 months

• 3 % Potassium Tetrathionate, pH =1, 6 mo. (3 mo. 40°C)

• Analysis
• Composition of brine and corrosion products

• NDE inspections for SCC

• Fluorescent Dye Penetrant

• UT Phased Array & Eddy Current Array

• Goals

• Determine orientation and location of SCC around

canister welds

• Evaluate brine evolution under corrosion

Ar
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. - - . . 4-rie

.01wmaxj:11 nick urd.3,519 ..7.1.1

SEM/EDS and XRD of
Corrosion products

Eddy Current
Array

Fluorescent Dye
Penetrant

UT Phased Array
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Chemical Composition of Brine and Corrosion Products

• Corrosion Products
— Iron containing corrosion products were

largely amorphous

• Akageneite was identified by XRD

Ft
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Selected Area. 2
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• Brine Evolution
— Distinct Mg containing phases were found

• 0-rich/Cl-depleted: Likely mg-
hydroxychloride (2-1-4 phase)

• Cl-rich: Likely bischofite

0.r:rh, C.
deciletecI phase

Mg-ncti Cl-rIch, 0-
aepleted prase

Mg

4
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Dye Penetrant Analysis

• Presence of cracks on the edge of the 4-point bend specimen

• No crack indications found in mock up welded plates

—> Mockup plate samples were subsequently analyzed by Eddy current & Phased Array

4-point bend specimen
Part Inspected Exposure Crack Notes

Indications
Circumferential 80 C, 35% RH

Weld
No

Longitudinal 80 C, 35% RH No High
Weld background

due to
corroded
surface

Circumferential Potassium No
Weld Tetrathionate

4 Point Bend 80 C, 35% RH Yes
Specimen
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Eddy Current and Phased Array

— Flaws were identified
• Most likely caused from

manufacturing

— No crack indications detected in
any mockup plate sample

Current Status:

• Further analysis through
SEM/EBSD to inspect
corrosion damage/ identify if
microcracks formed

Circumferential weld, 80 C, 35 % RH

Eddy Current Phased Array
6EL.r. .i7an fillr)).•• - .01/71•1

4.20 • .• — • •
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Car: le Of!. ifILLI.O.. .091.11151 .9.1:01:

12.242 1! "•,.."' 234 8 ..... ' "

.15 i
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Top scan of weld: No flaw
indications.

Indication seen

Indication marked on surface of plate to
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Characterization of corrosion under field conditions

Maine Yankee ISFSI Sampling, Aug. 2017 - Oct. 2019

DJ}

Small 4-pt bend I PA •-41V r 4 ,

Small 4 Pt Bend: Outlet Location

'
• k

13

EDS of Corrosion Product

35

Fe

LLy

Small 4 Pt Bend: Outlet Location

Sample from VCC 42 High heat load, outlet in prevailing wind
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Characterization of corrosion under field conditions

Maine Yankee ISFSI Sampling, Aug. 2017 - Oct. 2019 Small 4 Pt Bend: Outlet Location

Current Status:
• Corrosion damage observed under field

exposure after 2 years
• Continued exposure of large 4 pt bends,

small 4 pt bends, and dust collectors for
another 2 year time period
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Initial SCC Testing for Canister Relevant Conditions

KNOWLEDGE GAPS
CGR data for austenitic

SS in relevant
atmospheric

environments is lacking

GOALS
1) Quantify SCC behavior

of SS via CGR vs. K in

atmospheric conditions

2) Validation and
development of SCC
models

it 1.1-10

1.1-12

May 2018 Model: 
log(6) = 3.8444 — 4444.444 

(1
—

116°C

15.1C

Data show a relatively•

iconsistent trend, despite
vanations in environmental
condition (e.g., bnne
composition). Slope
—consistent with hydrogen
diffusion in steel being the
limiting process?
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CRIEPI deep crack data—
crack growth slows with
increasing depth?
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Preliminary Data from SRNL test on 304L canister materials from SNL

0 Preliminary Data from Korea University Stainless Steel 304 [20]

226E

.

0 0031 0 0033 0 0035

Current Status: 

Pit to crack-

• With OSU, developed a method for
periodic loading

FY19, generated data for sample
under atmospheric salt load

Characterization of features
controlling pit-to-crack transition
underway.

SCC-

• 4 new load frames procured

Load frame and sample development
for atmospheric SCC testing
underway: SENT vs. CT sample, pre-
cracked and ground
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Initial SCC Testing for Canister Relevant Conditions

KNOWLEDGE GAPS
CGR data for austenitic

SS in relevant

atmospheric

environments is lacking

GOALS
1) Quantify SCC behavior

of SS via CGR vs. K in

atmospheric conditions

2) Validation and
development of SCC
models

Initial Exposure:

• 40% RH, 35 °C, 300 pg/cm2 sea salt

• 6 mo. no stress, 6 mo. 1.2 x 15y load
IV' '14.1k• irL

A •

4.:,1! ••

t.k:f.

m4;ir •

1 41!" •
-.1f440"44..—

f

4.1 ft 
•

.1 53 •g
'

.

A;--N
.

L* 
,

*1.:

:

ha

k.4.

••• .
a ip

pi • 
,•.k,!it • a'

•

Cracks observed associated with pits

• Unclear if cracks formed during exposure or while under load
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Summary and Next Steps

• Experimental Results:

— Large scale atmospheric exposures displayed dependence of pitting and morphology as a
f(Environment)

— SCC atmospheric weld exposures displayed very few detectable cracks

— Corrosion field exposures displayed small amounts of corrosion after two year exposures

• Implications: SCC Model Assumptions may be challenged by:

— f(environment)

— Material microstructure

— Brine evolution during corrosion processes

• Next steps:
— Determine validity of SCC model assumptions with respect to pitting, pit-to-crack, and crack growth as a

f(Environment and material)

• What is the primary factor that governs pit morphology?

• Is pit-crack transition influenced by f(Environment) and pit morphology?

• Is crack growth rate a f(Environment)?
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Questions?
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