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* Peridynamics background
e Dynamic fracture
* Crack branching
* Fragmentation
e Spall
* Fatigue
* Nucleation phase
 Growth phase

* Heterogeneity




How does a crack nucleate and grow? (@i,

How does a continuous deformation become discontinuous?
* To study this, we need a model that seamlessly transitions from one to the other within a
consistent mathematical system.
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Crack process zone idealization**

Peridynamic simulation

Metallic glass crack tip*

*Hofmann et al, Nature (2008)
**Abhimanew, https://commons.wikimedia.org/wiki/File:Fracture_Process_Zone.gif




Peridynamic answers to some simple
guestions
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 Why is fracture different from other kinds of deformation?
e Jtisn'’t.
 Why are special modeling techniques needed for fracture?
 Theyaren't.
* Why does nearly everybody think they are?
* Because nearly everybody uses partial differential equations (PDEs).
* What might work better?
* Integral equations.

Typical damage progression in a notched composite panel
(photo courtesy Boeing)



Peridynamic* momentum balance

* Peri (near) + dyne (force)

h
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e Any point x interacts directly with other points within a distance o called the “horizon.”

e The material within a distance 0 of x is called the “family” of x, Hx.

Peridynamic equilibrium equation

/ f(q,x) dVq+b(x) =0

X

f = bond force density (from the material
model, which includes damage)

Hy= family of x

« If f satisfies f(x, q) = —f(q, x) for all X, q then linear momentum is conserved.

. SS, JMPS (2000)



The nature of internal forces i

Standard theory Peridynamics
Stress tensor field Bond forces between neighboring points
(assumes continuity of forces) (allowing discontinuity)
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Stress tensor maps surface
normal vectors onto
surface forces

gpﬁ(x, t)y=V-o(x,t)+ b(x,t) . pii(x, t) = j f(q,x)dVy + b(x,t)
Hy

Differentiation of surface forces

Summation over bond forces
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Force state maps bonds
onto bond forces




Simplest material model: Microelastic ) s

* Each bond acts like a linear spring.
f =csM
ly(@-y&x)| 1
lq—x|
 M-=deformed bond direction
e &=bond vector
* f=bond force density
* ¢ =spring constant
e Spring constant and horizon determine the wave
speeds.
* Bond force is parallel to the deformed bond
direction (ensures balance of angular
momentum).

e s =bond strain =

Laboratories

Bond 4
force f
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Bond strain=s

. SS, JMPS (2000)




Simple particle discretization h) i,

= |Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

0§ (%, ) = / F(x,x, 1) dVe + b(x,t)  ——> pyr = f(xpx:,1) AV; +b!
H keH

=  Good:
= Simple.
= Linear and angular momentum conserved exactly.
= Why: the discretized system is itself a peridynamic body.
= Bad:
= |f Ax/J§ is held constant, fails to converge to PDEs as § — 0.
= Fails patch test for irregular grids.

* Discontinuous Galerkin is another viable method (used in LS-DYNA).

* SS & Askari, Computers and Structures (2005)

* Bobaru, Yang, Alves, SS, Askari, & Xu, IJNME (2009)

* Chen & Gunzburger, CMAME (2011)

* Du, Tian, & Zhao, SIAM J Numerical Analysis (2013)

* Tian & Du, SIAM J Numerical Analysis. (2014)

* Ganzenmdiiller, Hiermaier, May, in Meshfree methods for partial differential equations VII, Springer (2015)
* Seleson & Littlewood, Computers & Mathematics with Applications (2016)

* Du, in Handbook of peridynamic modeling (2016)



Bond based material models T
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* If each bond response is independent of the others, the resulting material model is

called bond-based.
* The material model is then simply a graph of bond force density vs. bond strain.
 Damage can be modeled through bond breakage.
* Bond response is calibrated to:
e Bulk elastic properties.
e Critical energy release rate.

Bond force densityA Bond
breakage

>
Bond strain




Damage due to bond breakage

Recall: each bond carries a force.
Damage is implemented at the bond level.

Bonds break irreversibly according to some criterion.
Broken bonds carry no force.

Examples of criteria:

Critical bond strain (brittle).
Hashin failure criterion (composites).
Gurson (ductile metals).

h

Bond force density 1
Bond breakage

/ Bond stra'in

Critical bond strain damage model
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Autonomous crack growth )

................................ — Broken bond

Crack path

e When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.




Critical bond strain: )
Relation to critical energy release rate

If the work required to break the bond & is wy(&), then the energy
release rate is found by summing this work per unit crack area (J.

Foster):
)
G:/ / wo(&) dVe ds
0o JR.

Wo

N

Bond strain

« Can then get the critical strain for bond breakage s* in terms of G.
* Could also use the peridynamic J-integral as a bond breakage criterion.




Constant bond failure strain reproduces @migs
the Griffith crack growth criterion

>

Total work — total strain energy

Slope =0.013
Hag From bond
W N properties, energy
3 | release rate . — >
alll should be Crack tip position

« This confirms that the energy consumed per unit crack growth area equals the expected
value from bond breakage properties.




Brittle microelastic model reproduces
measured dynamic crack velocity
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* Fracture in soda-lime glass using 3 different grid spacings*.

2500 ‘ —
x
-§- e Experimental maximum fracture speed
T (1580 m/s) (Bowden 1967) 4
@ § - ey - By
& 1500 Vo e
e -
L 10 f
’
g. ;/ ——-&—— Crack speed byptridyrlnmlcs (horizon= 2 mm)
| '
T sw J === = Crack speed by peridynamics (horizon= 1 mm)
g
P ——— Crack speed by peridynamics (horizen= 0.5 mm)
0 v i I i 1 i
0 1E-05 2E-05 3E-05 4AE-05
*  Ha & Bobaru, Int J Fracture (2010) Time (second)

*  *Agwai, Guven, & Madenci, Int J Fracture (2011)

*  Ha & Bobaru, Engin Fracture Mech (2011)

. Dipasquale, Zaccariotto, & Galvanetto, Int J Fracture (2014)
*  Bobaru & Zhang, Int. J Fracture (2015)

*  Zhou, Wang, & Qian, European J Mechanics-A/Solids. (2016)
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Fragmentation of an expanding cylinder

driven by explosive

Explosive is modeled by CTH, loads are applied to a peridynamic grid for the cylinder.




Fragmentation of an expanding =,
cylinder: Convergence

* Figure shows a CDF of fragment mass for three different grid spacings (1, 1.5, 2mm).
e The1land 1.5mm curves are essentially identical for fragments larger than 5

grams.
* This indicates the results are converging as the grid is refined.

COF of Fragment Mass
[ E T B ETET T LSS N RO

Cumulative probability

Fragment mass (kg)




Spall: Microstructure affects the kinetics = ...
of fracture
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* Peridynamic simulation of spall in steel (impact at 317m/s)
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Spall video

Colors show velocity
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Accumulation of damage: ) e,
Hammering on a block
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VIDEO
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Penetration depth vs. time
Each peak is a strike.
Break through at 24 strikes.

Colors show damage
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Accumulation of damage: () s,
Hammering on a block

1 strike 5 strikes 24 strikes

Colors show damage
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Peridynamic vs. local equations

e The structures of the theories are similar, but peridynamics uses nonlocal operators.

Relation Peridynamic theory Standard theory

Kinematics Y{(q—x)=y(q) —y(x) E(x) = %ZE(X)

Linear momentum | () — / (t(q,x)—t(x,q)) AV, +b(x) | p¥(x) =V o(x)+b(x)

balance
Constitutive model t(q,x) = T(q — x), T =T(Y) o =o(F)
Angular momentum / Y(q—x) x T(q—x) dVq =0 o=o7f
balance H
Elasticity T = Wy (Fréchet derivative) o = Wr (tensor gradient)
First law ézloi\—l—q—l—r c=ag-F+q+r

T(E) - XY (§) dVe

N rer [0




Microballistics: Perforation of a
graphene laminate
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* 600m/s 3.7um sphere onto 50nm thick graphene laminate.

Experiment
J-H Lee et al, Science (2014)

Video: Colors show initial position

22




Ductile materials: Correspondence
material models

* This is a type of state-based material model that uses a stress tensor

as an intermediate quantity in computing bond forces.

Y{&) = F - ¢ > T(%)

* This is the most convenient way to implement /, flow theory.

 Some overlap with SPH.

SS, Epton, Weckner, Xu, & Askari, J Elasticity (2007)

Warren, SS, Askari, Weckner, Epton, Xu, Int J Solids & Structures (2009)
Tupek & Radovitzky, JMPS (2014)

Bessa, Foster, Belytschko, & Liu, Computational Mechanics (2014)
*SS, CMAME (2017)

Du & Tian, SIAM J Applied Math (2018)

Foster & Xu, Int J Solids & Structures (2018)

Li, Hao, & Zhen, CMAME (2018)

* Nicely, Tang, & Qian, CMAME (2018)

* Chowdhury, P. Roy, D. Roy, & Reddy, CMAME (2019)

* Ganzenmdiller, Hiermaier, May, Computers & Structures (2015)
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Ductile failure model implementation )

* ltis essential to incorporate the effect of hydrostatic stress
on ductile failure nucleation. How to map this effect onto
bond breakage?

* One way: Wellman tearing parameter model.

» Start breaking bonds at X when

4
20'1 d P P
3(0-1 —a) &5 =&5F Johnson-Cook plasticity with
Wellman tearing model*
where

04 = maximum principal stress,

o= hydrostatic stress,

eP= equivalent plastic strain,

£pf = failure strain in uniaxial tension.

Convergence

Total z—force through plane
T T T T

Force

0 0.1 0.2
Nominal strain

* G.W. Wellman, SAND2012-1343 (2012).




Fatigue: Cyclic strain in a bond ) .

e For a given bond &, the bond elongation is the change in bond length:
e=|Y (& &l =ly(x+§&) —yx)|

e The bond strain is the change in length over initial length:

e

S

e Let s and s be the two extremes under cyclic loading of &.

e The cyclic bond strain is defined by

/‘x+‘g'

e=|st —s7|.




Structure of a crack tip field 7 s
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o Let c.oe(d) be the largest cyclic strain in any bond.

e Can show by a dimensional argument 9 £.5;c such that

Ecore (5) — écore g

ENG

where AK = cyclic stress intensity factor and £ = modulus.

Strain
\ LEFM: 1/4/z
v
Y P K
score(8;)
\
Core bond ' PD:§ = 6,
S (65)
/ corel0z PD: 6 = 4,
Crack T ©
\ T ? ’ ? ? score(03)
l l ‘ ‘ ‘ - i
| 4 )
// Crack tip & ) 8 Position z
Broken bonds
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Remaining life of a bond ) i,

e Each bond in the body has a remaining life A(IN) where IV is the cycle
number.

e [he remaining life is monotonically decreasing over time.

A0)=1, A<0.

e [he bond fails at the first cycle N when

A(N) < 0.

A A

Bond failure

> N




Fatigue model h) s,

e [he fatigue model specifies how the remaining life of each bond depends
on the loading.

dA (
dN

where A and m are constants and ¢ is the cyclic bond strain.

N)=—Ae™

e The constants are calibrated separately for phases | and Il (nucleation and
growth).




Phase | calibration from S-N data

e Run many cyclic loading tests at different values of € (constant for each
test).

e For each test, compute when damage starts:

d) 1
“Y(N) = — Ae™ N =
dN( ) £ —

e Compare this to data on an e-NN plot, fit A and m.

log e

log N

Experimental data
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Fatigue nucleation in aluminum alloy ) i,

10'1 F LB BRI 22 T 220 R R 2L LS L) R AL L 2 R L) B R
: < / Test data
8102 " _
= Peridynamic, |
C—El '“;»\::_h with fatigue limit ]
® -:-ﬂ;ﬁ=-a f
£ L
© gy
=103 ]
& 10 / E
Peridynamic,
no fatigue limit
10'4 FENRTTTT BN TR BRI B SR TITT B SN TR T S AT BECETRETTT EECERE T EETIRR T
100 102 104 106 108
Load cycle

e Model with a fatigue limit:

d\
(;N(N) = —A(max([), £ — s‘x))

m

Test data: T. Zhao and Y. Jiang. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30 (2008)834-849.



Growth: Bonds interact with the strain )
field near an approaching crack

Bond remaining life A(N)

Growth rate L

— I Bond & ahead of crack tip

o)
@ Bond ¢ interacts with crack tip
‘ Bond ¢ about to break

T Broken bond ¢

|

Loading cycle N




Relate crack growth to remaining life h) i,

e Evolution of remaining life:

o d\ dN

e Recall

d

SR ™

dN -
e Denote by da/dN the crack growth rate.

1-0=

A [
da,/dN/U e™(z) dz

Cyclic strain ahead of a crack:

) = ceonf (3) = 5757 ()

e Thus, for some ¢,

da
Y CAAK™
AN~ ©




Phase Il calibration from Paris Law data (@)=,

e Now have

da "
W = CAAK

where ¢ and m are as yet unknown.

e Assume the Paris Law holds:

da M
N = CAK

where C and M are constants that can be found from test data.

e Conclude
m = M.

e Need to do one computational simulation with an assumed value C =1
to evaluate A.




Summary so far ) i,

e Each bond has a remaining life A(N):

dA

A(0)=1 —
o=1, =

(N) = —Ae™, A < 0 means failure.

e In Phase |, use A and m from S-NN data.

e In Phase Il, use a different calibration from Paris law data.




Time mapping permits very large N ) i,

e We can avoid modeling each cycle explicitly.

e Define the loading ratio by
R=— — e=|st —s7|=|(1 - R)sT|.
e Maptto N:
N = et/’?‘
where 7 is a constant chosen according to convenience.

e Fatigue model in terms of ¢ instead of IV:

N A dA\  dAdN —|1—R|AN

_ |S+|m‘

dt ~ dN di T




Fatigue crack growth in aluminum ) i,

Crack length Paris law plot
45 T T T T T T T T T "5-4 T T T T T T : ! T T
| -5.6 . / |
Experiment —/
-5.8 1 -
£ -6.0 .
\E/ - LN
© £ -6.2 .
g SN—r
s 1 B ssa :
@ 5
©
§ 1 T -6.6 .
) l| & =68 5
=4 S
= -7.0 -
5
O =7 2 4 7
5T 7 -7.4 ! ]
4] 1 1 1 1 1 1 1 1 L -7.6 1 1 L 1’1 L 1 1 L 1
0 20 40 60 80 100 6.0 6.4 6.8 7.2 7.6 8.0
Load cycle (N x 1000) logyo AK (Paym)

Test data: T. Zhao, J. Zhang, and Y. Jiang. A study of fatigue crack growth of 7075-T651
aluminum alloy. International Journal of Fatigue, 30 (2008) 1169-1180.
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Spiral crack in a rod under torsion W=

\ Initial

cavity

Front view Rear view
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Mesoscale: =
Fatigue cracks at grain boundaries
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* Recall the peridynamic fatigue
model: For a given bond,

A(0) =1 a1 _
=1, .

—Ae™

e Set:

A =5 for bonds within a grain
A = 50 for bonds between grains

17,000 cycles 30,000 cycles

Fatigue crack growth between grains
represented as Voronoi cells
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* Peridynamic simulation of corrosion pits and lacy covers*™
* Can use a peridynamic diffusion model for transport.

Experiment Simulation

2
g
L\‘? ;-%Y\k

40 pm

e Chen & Bobaru, JMPS (2015)

* Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)

* De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddiqg, Int J Hydrogen Energy (2016)
* De Meo & E. Oterkus, Ocean Engineering. (2017)

* Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)

« *Jafarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)
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Discussion Wi

« Method treats continuous and discontinuous deformations according to the
same equations.
e Cracks nucleate according to the local conditions
e Autonomous crack growth
e Fatigue model uses cyclic bond strain instead of actual bond strain.
* Actual loading cycles are not computed.




