

Peridynamic Modeling of Fatigue and Fracture

Stewart Silling

Computational Multiscale Department, 1444
Sandia National Laboratories
Albuquerque, New Mexico

**Sandia
National
Laboratories**

*Exceptional
service
in the
national
interest*

Seminar at Los Alamos National Laboratory
November 5, 2019

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

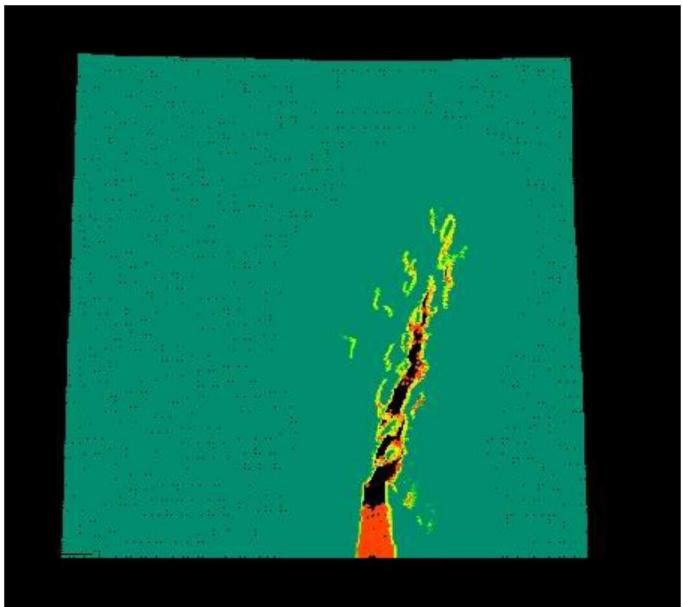
Outline

- Peridynamics background
- Dynamic fracture
 - Crack branching
 - Fragmentation
 - Spall
- Fatigue
 - Nucleation phase
 - Growth phase
 - Heterogeneity

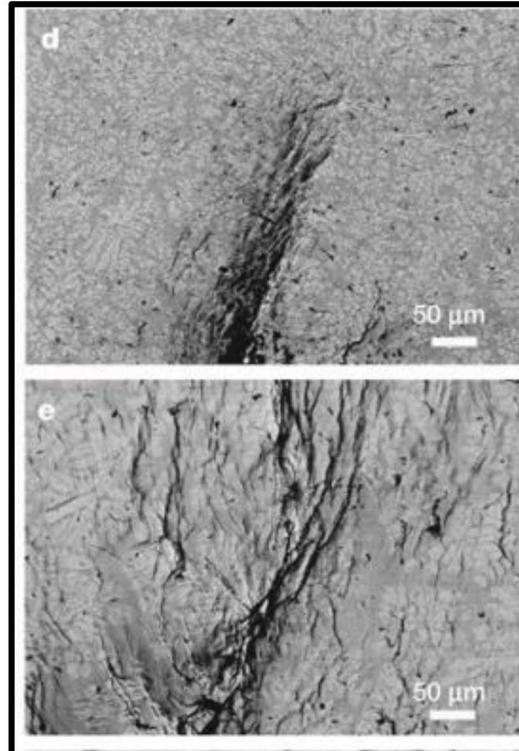
How does a crack nucleate and grow?

How does a continuous deformation become discontinuous?

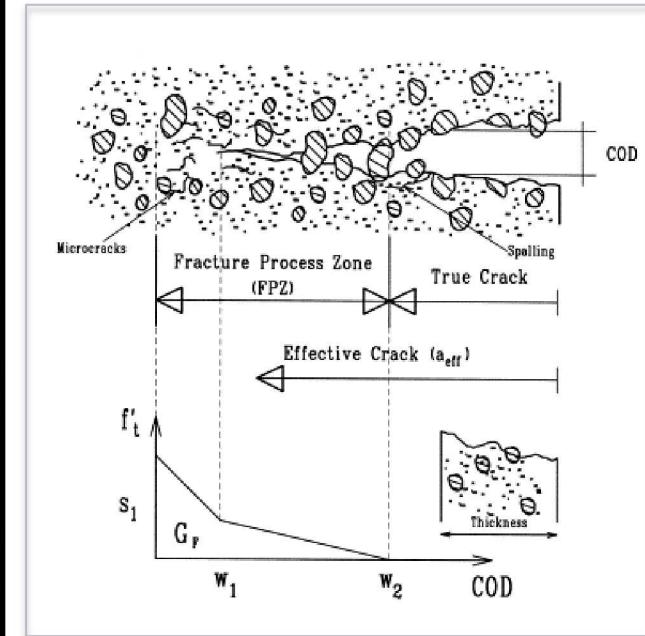
- To study this, we need a model that seamlessly transitions from one to the other within a consistent mathematical system.



Peridynamic simulation



Metallic glass crack tip*



Crack process zone idealization**

*Hofmann et al, Nature (2008)

**Abhimanew, https://commons.wikimedia.org/wiki/File:Fracture_Process_Zone.gif

Peridynamic answers to some simple questions

- Why is fracture different from other kinds of deformation?
 - *It isn't.*
- Why are special modeling techniques needed for fracture?
 - *They aren't.*
- Why does nearly everybody think they are?
 - *Because nearly everybody uses partial differential equations (PDEs).*
 - What might work better?
 - *Integral equations.*

Typical damage progression in a notched composite panel
(photo courtesy Boeing)

Peridynamic* momentum balance

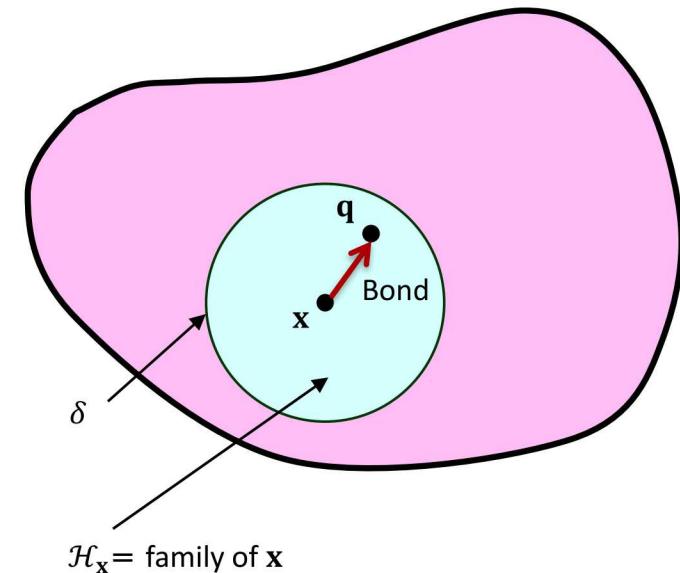
* Peri (near) + dyne (force)

- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .

Peridynamic equilibrium equation

$$\int_{\mathcal{H}_x} \mathbf{f}(\mathbf{q}, \mathbf{x}) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

\mathbf{f} = bond force density (from the material model, which includes damage)

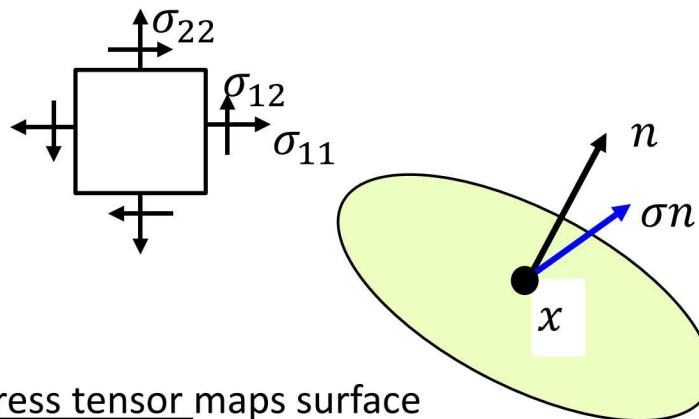


- If \mathbf{f} satisfies $\mathbf{f}(\mathbf{x}, \mathbf{q}) = -\mathbf{f}(\mathbf{q}, \mathbf{x})$ for all \mathbf{x}, \mathbf{q} then linear momentum is conserved.
- SS, JMPS (2000)

The nature of internal forces

Standard theory

Stress tensor field
(assumes continuity of forces)



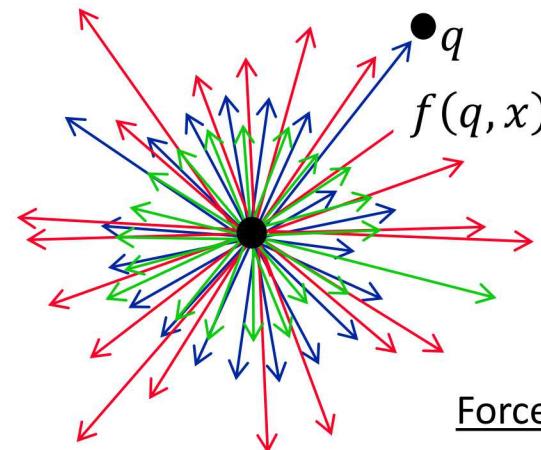
Stress tensor maps surface
normal vectors onto
surface forces

$$\rho \ddot{u}(x, t) = \nabla \cdot \sigma(x, t) + b(x, t)$$

Differentiation of surface forces

Peridynamics

Bond forces between neighboring points
(allowing discontinuity)



Force state maps bonds
onto bond forces

$$\rho \ddot{u}(x, t) = \int_{H_x} f(q, x) dV_q + b(x, t)$$

Summation over bond forces

Simplest material model: Microelastic

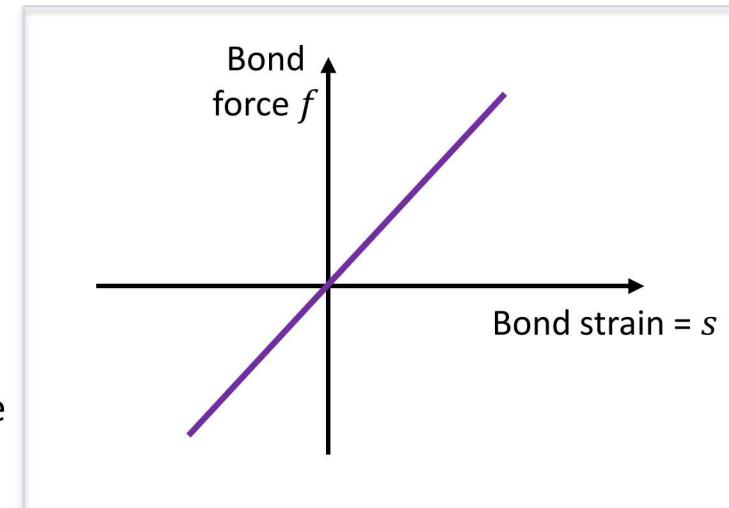
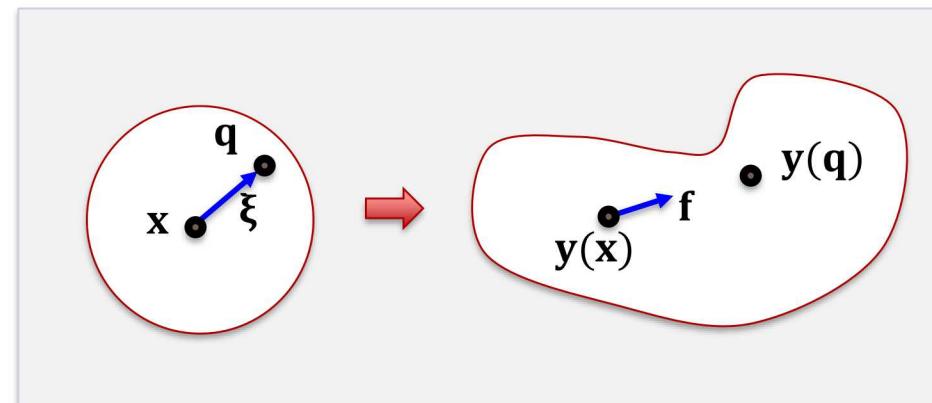
- Each bond acts like a linear spring.

$$\mathbf{f} = c s \mathbf{M}$$

- $s = \text{bond strain} = \frac{|\mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})|}{|\mathbf{q} - \mathbf{x}|} - 1$.

- \mathbf{M} = deformed bond direction
 - ξ = bond vector
 - \mathbf{f} = bond force density
 - c = spring constant

- Spring constant and horizon determine the wave speeds.
- Bond force is parallel to the deformed bond direction (ensures balance of angular momentum).



- SS, Jmps (2000)

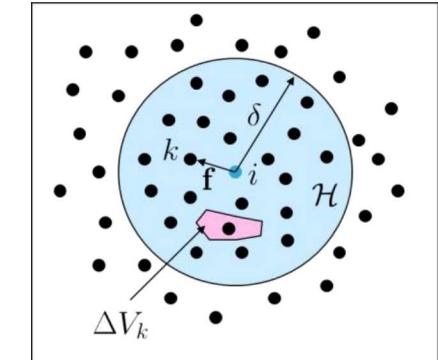
Simple particle discretization

- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \, dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t) \quad \longrightarrow \quad \rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \, \Delta V_k + \mathbf{b}_i^n$$

- Good:
 - Simple.
 - Linear and angular momentum conserved exactly.
 - Why: the discretized system is itself a peridynamic body.

- Bad:
 - If $\Delta x/\delta$ is held constant, fails to converge to PDEs as $\delta \rightarrow 0$.
 - Fails patch test for irregular grids.

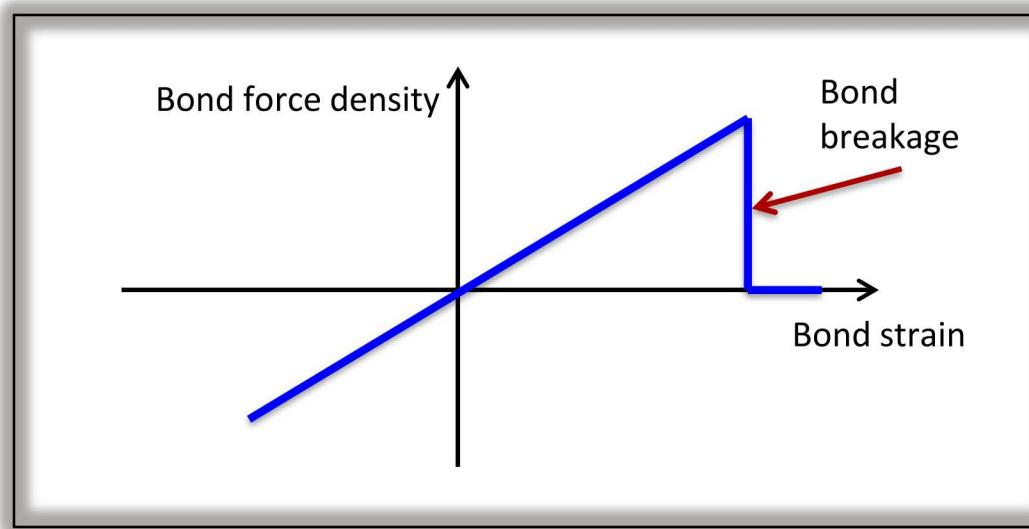


- Discontinuous Galerkin is another viable method (used in LS-DYNA).

- SS & Askari, *Computers and Structures* (2005)
- Bobaru, Yang, Alves, SS, Askari, & Xu, *IJNME* (2009)
- Chen & Gunzburger, *CMAME* (2011)
- Du, Tian, & Zhao, *SIAM J Numerical Analysis* (2013)
- Tian & Du, *SIAM J Numerical Analysis*. (2014)
- Ganzenmüller, Hiermaier, May, in *Meshfree methods for partial differential equations VII*, Springer (2015)
- Seleson & Littlewood, *Computers & Mathematics with Applications* (2016)
- Du, in *Handbook of peridynamic modeling* (2016)

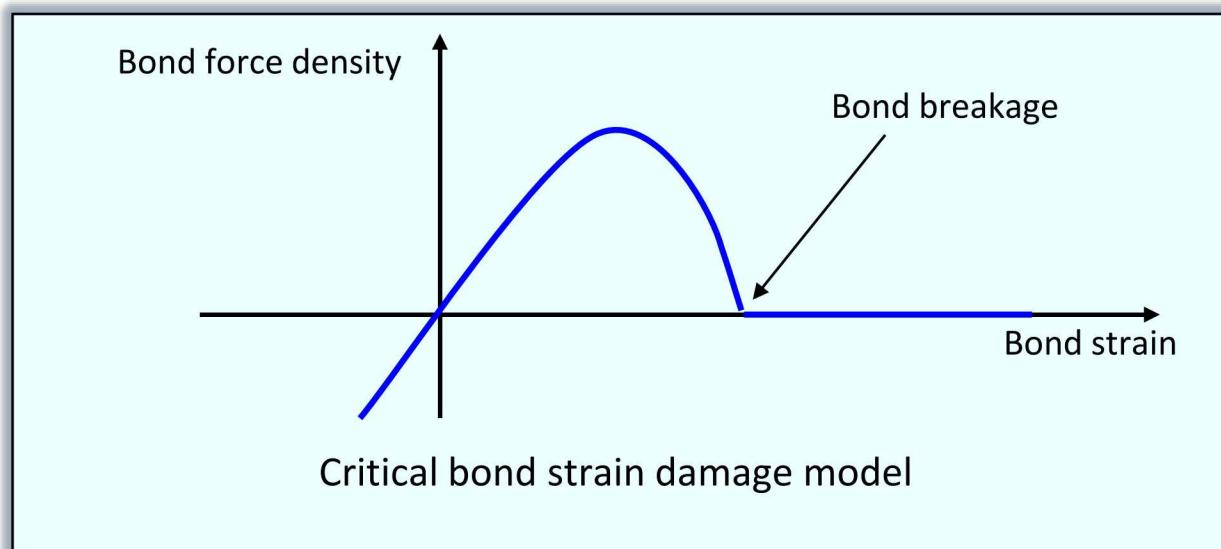
Bond based material models

- If each bond response is independent of the others, the resulting material model is called bond-based.
- The material model is then simply a graph of bond force density vs. bond strain.
- Damage can be modeled through bond breakage.
- Bond response is calibrated to:
 - Bulk elastic properties.
 - Critical energy release rate.

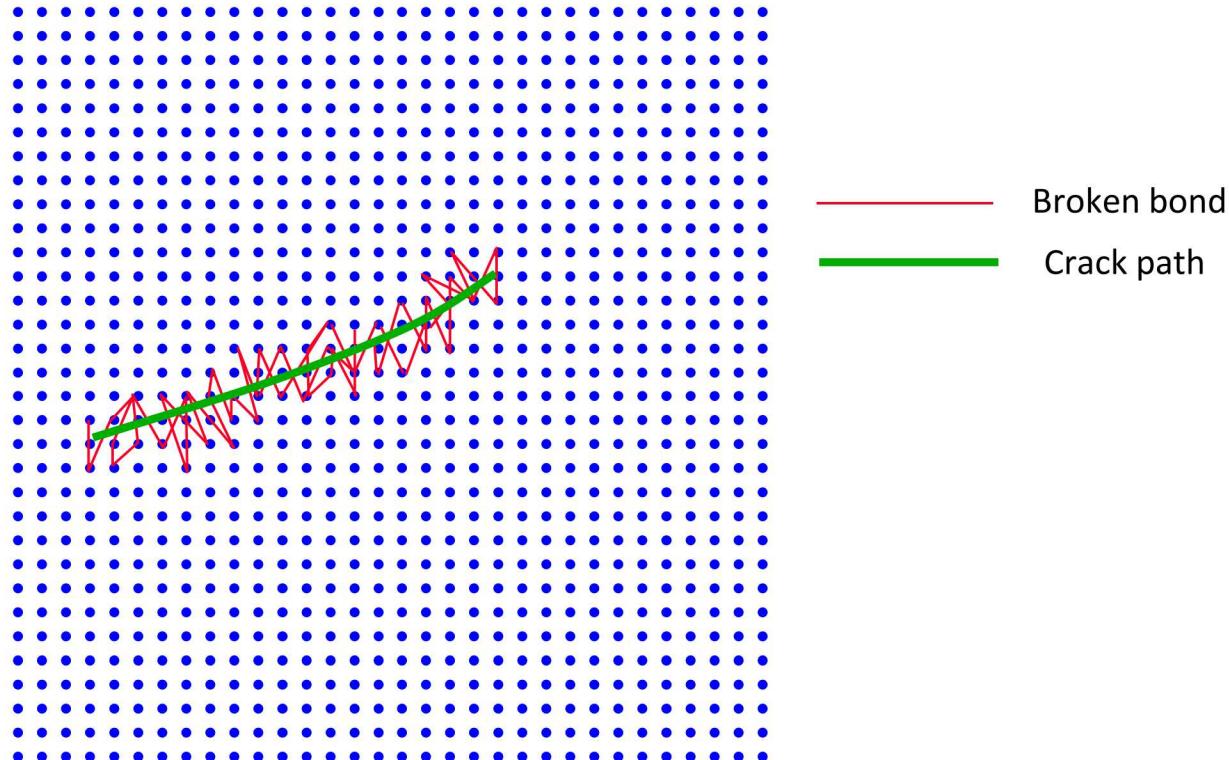


Damage due to bond breakage

- Recall: each bond carries a force.
- Damage is implemented at the bond level.
 - Bonds break irreversibly according to some criterion.
 - Broken bonds carry no force.
- Examples of criteria:
 - Critical bond strain (brittle).
 - Hashin failure criterion (composites).
 - Gurson (ductile metals).



Autonomous crack growth



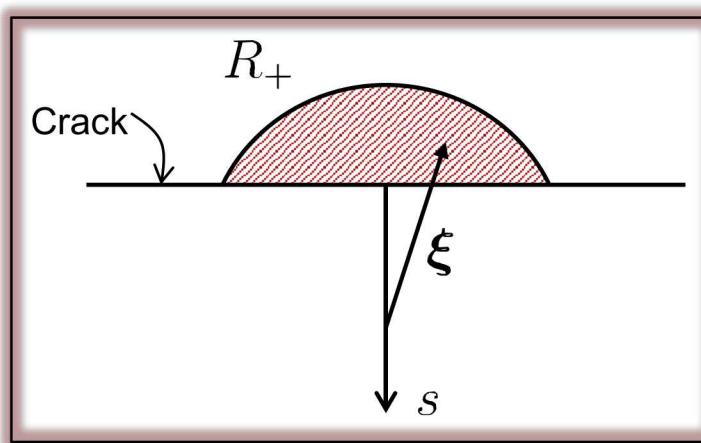
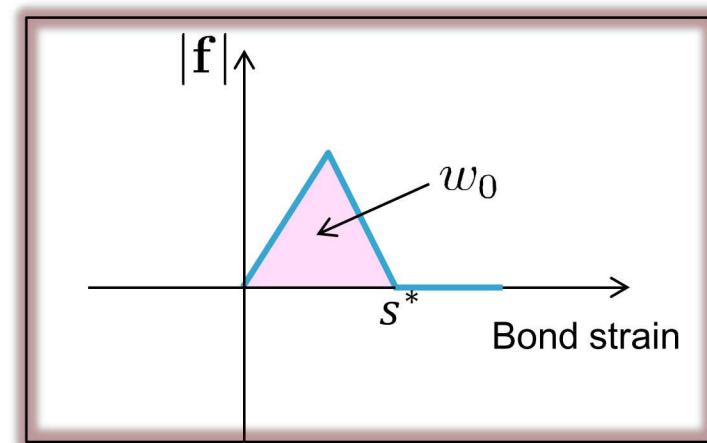
- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Critical bond strain:

Relation to critical energy release rate

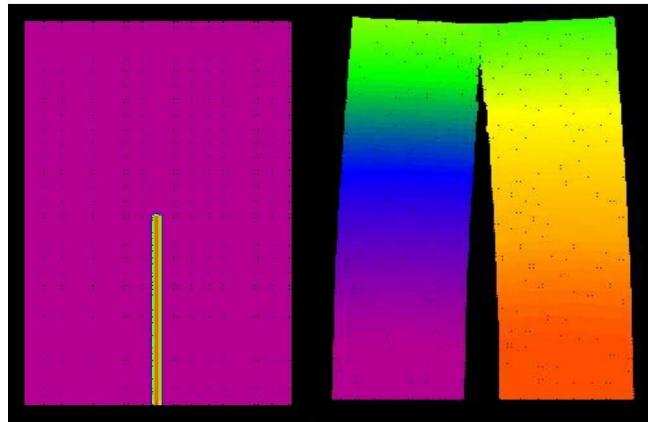
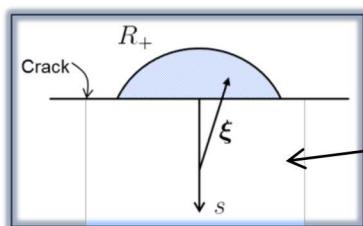
If the work required to break the bond ξ is $w_0(\xi)$, then the energy release rate is found by summing this work per unit crack area (J. Foster):

$$G = \int_0^\delta \int_{R_+} w_0(\xi) dV_\xi ds$$



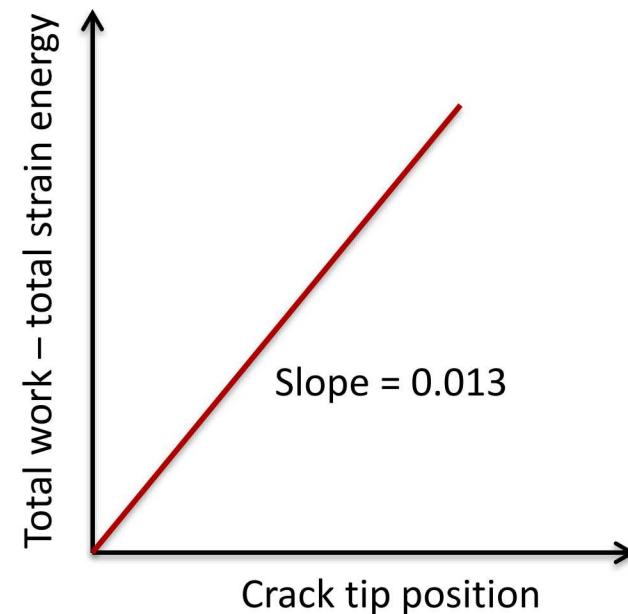
- Can then get the critical strain for bond breakage s^* in terms of G .
- Could also use the peridynamic J-integral as a bond breakage criterion.

Constant bond failure strain reproduces the Griffith crack growth criterion



From bond properties, energy release rate should be

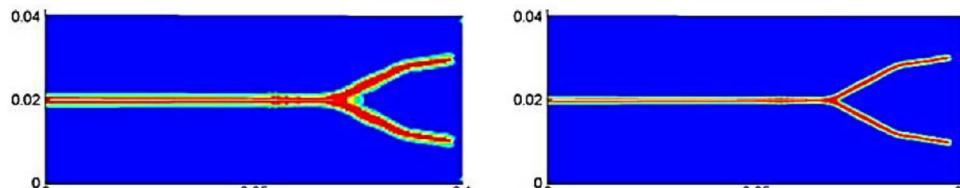
$$G = 0.013$$



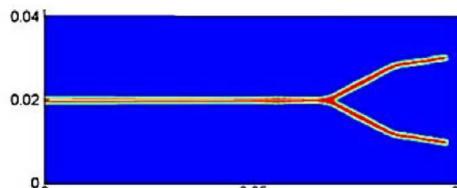
- This confirms that the energy consumed per unit crack growth area equals the expected value from bond breakage properties.

Brittle microelastic model reproduces measured dynamic crack velocity

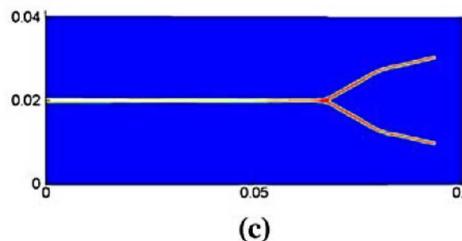
- Fracture in soda-lime glass using 3 different grid spacings*.



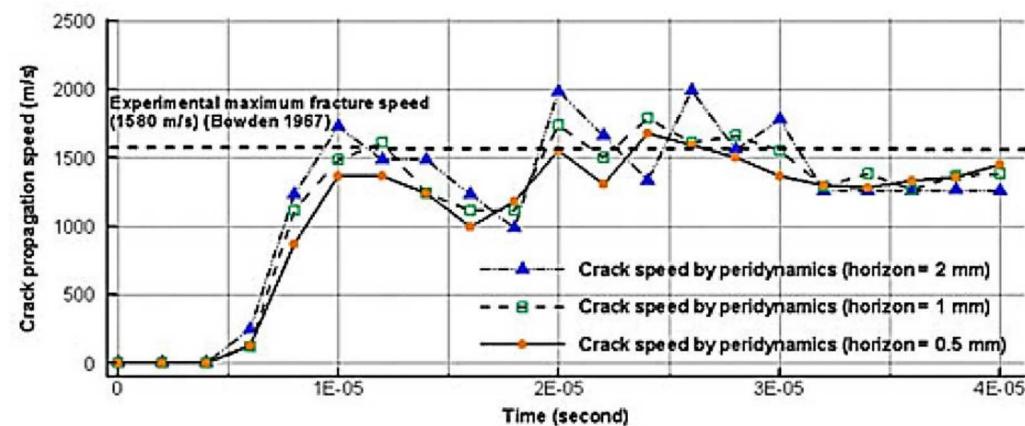
(a)



(b)



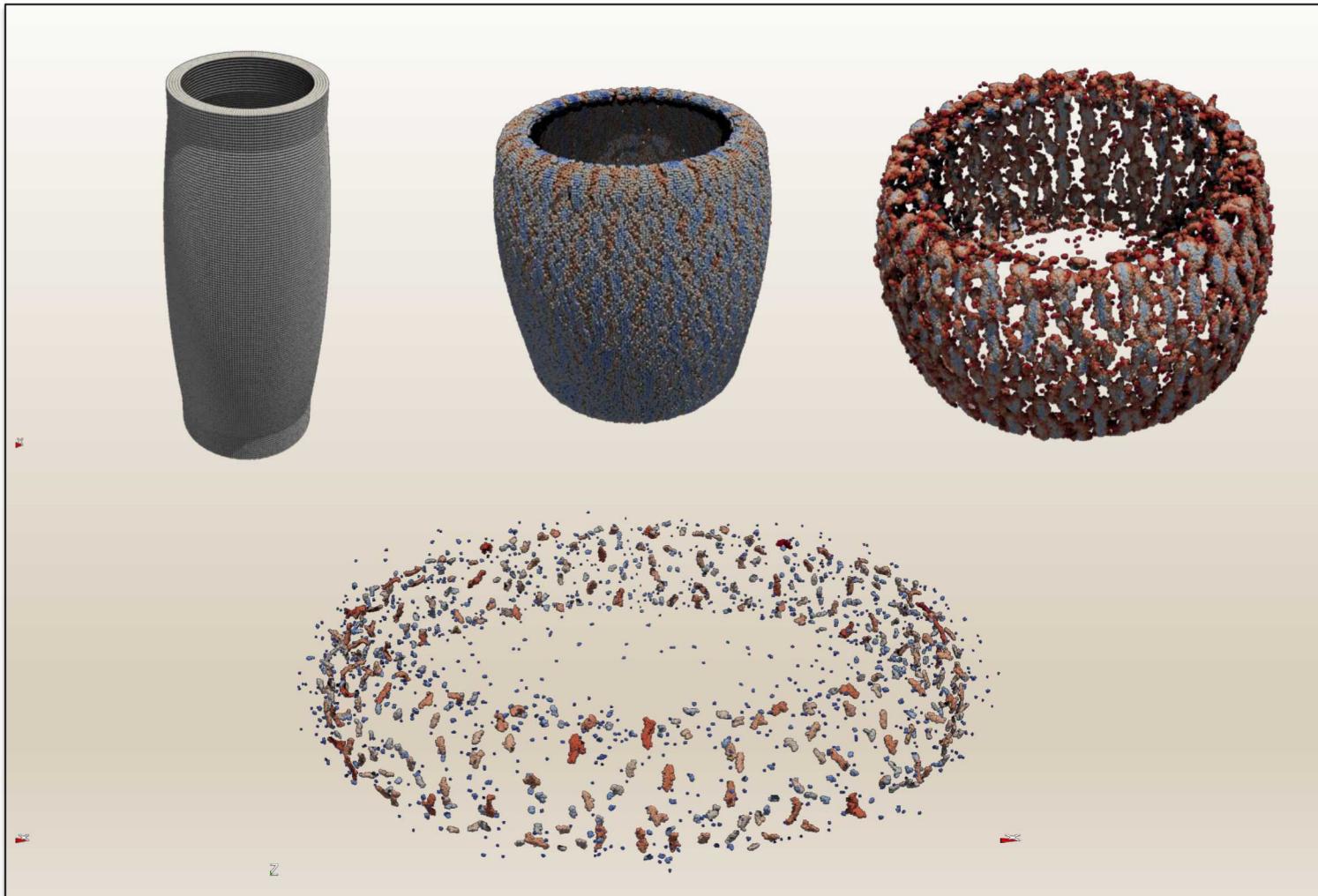
(c)



- Ha & Bobaru, *Int J Fracture* (2010)
- *Agwai, Guven, & Madenci, *Int J Fracture* (2011)
- Ha & Bobaru, *Engin Fracture Mech* (2011)
- Dipasquale, Zaccariotto, & Galvanetto, *Int J Fracture* (2014)
- Bobaru & Zhang, *Int. J Fracture* (2015)
- Zhou, Wang, & Qian, *European J Mechanics-A/Solids*. (2016)

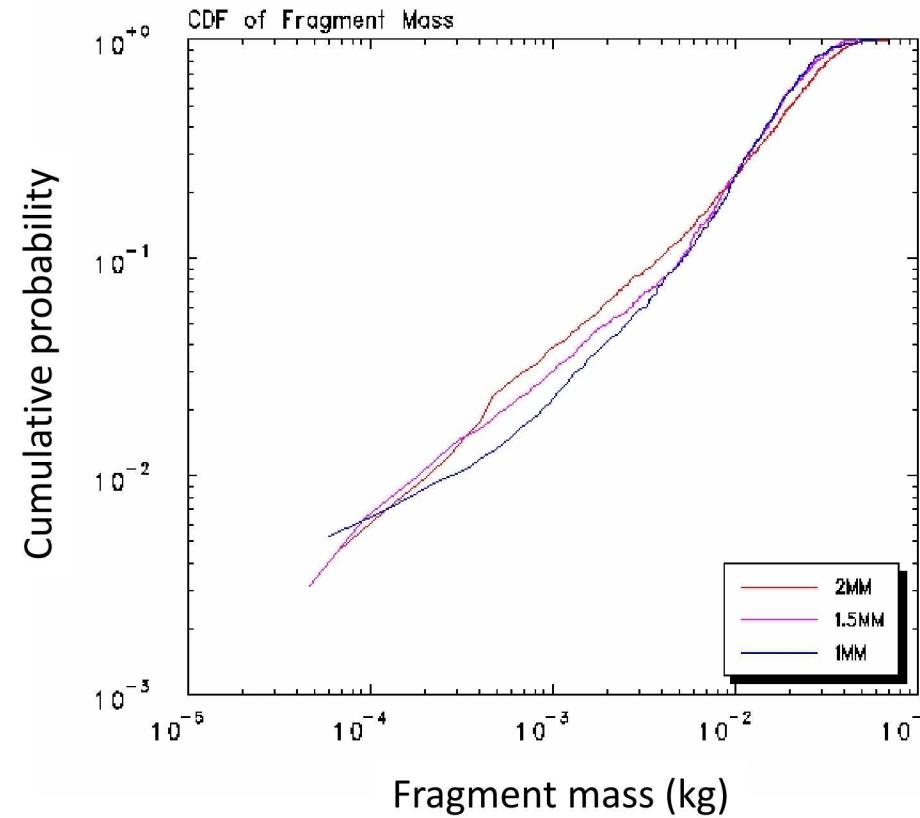
Fragmentation of an expanding cylinder driven by explosive

- Explosive is modeled by CTH, loads are applied to a peridynamic grid for the cylinder.



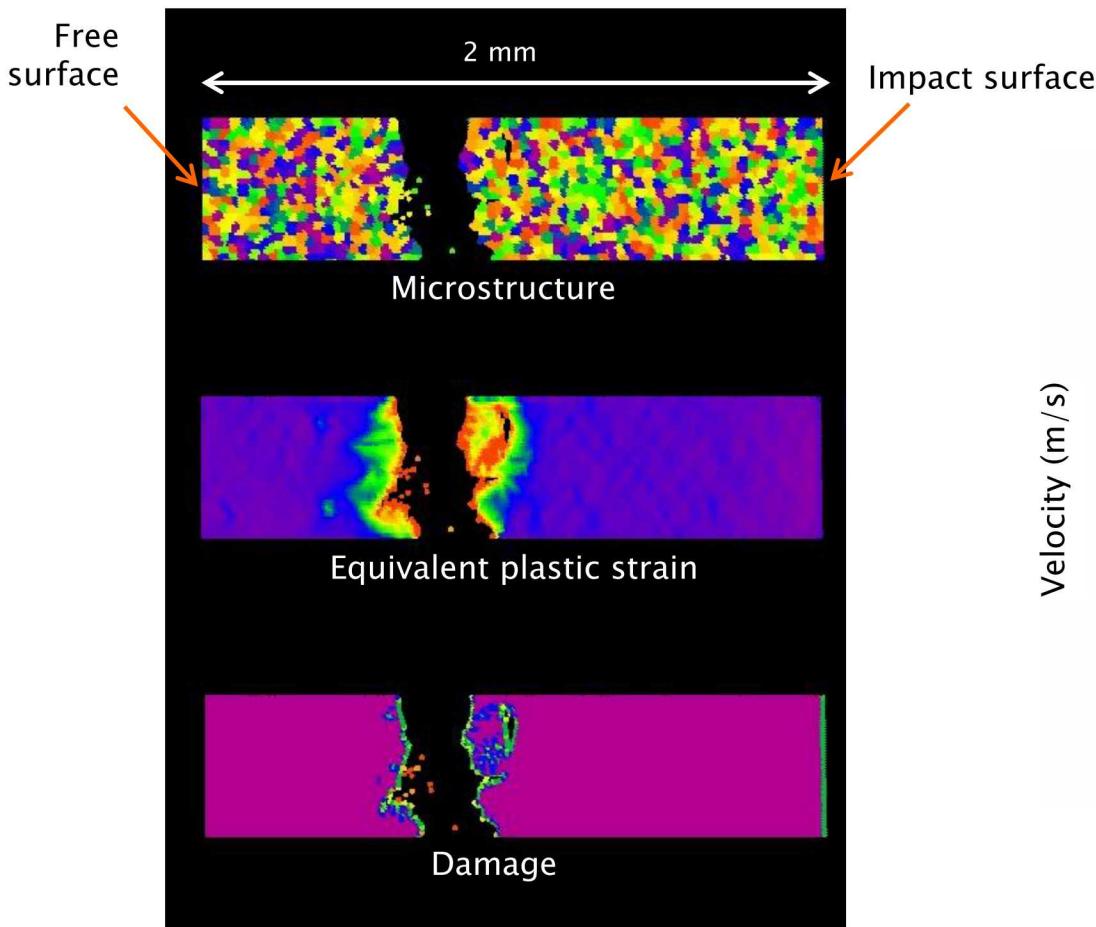
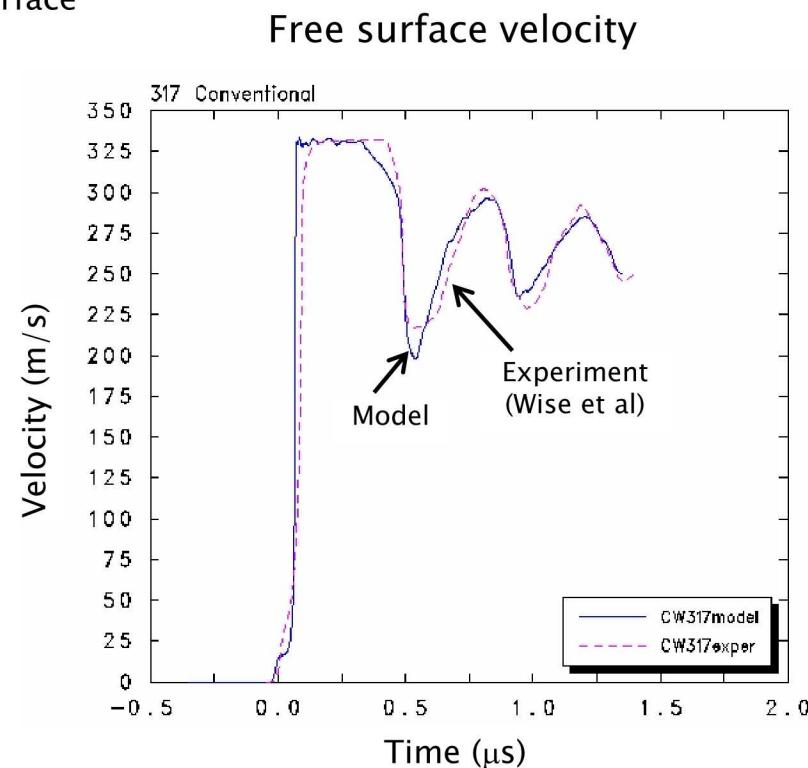
Fragmentation of an expanding cylinder: Convergence

- Figure shows a CDF of fragment mass for three different grid spacings (1, 1.5, 2mm).
 - The 1 and 1.5mm curves are essentially identical for fragments larger than 5 grams.
 - This indicates the results are converging as the grid is refined.

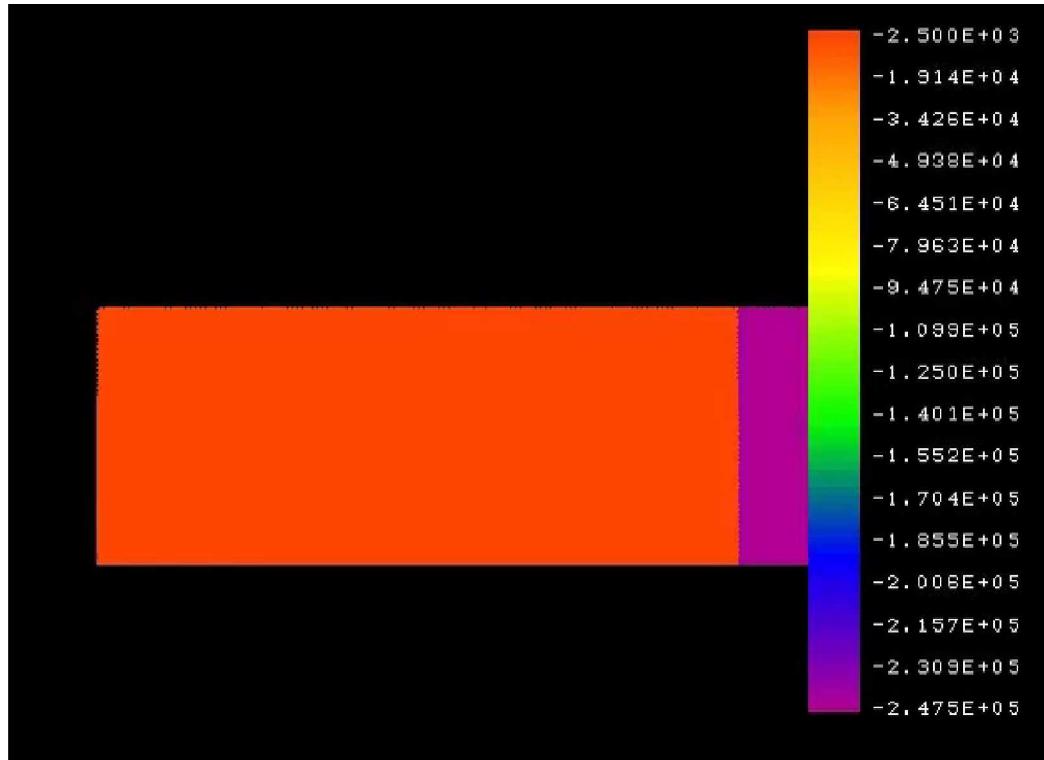


Spall: Microstructure affects the kinetics of fracture

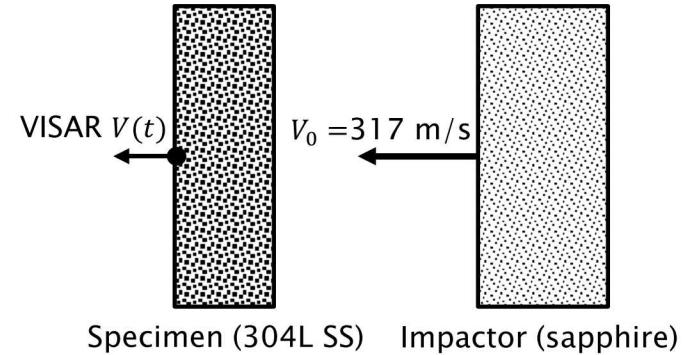
- Peridynamic simulation of spall in steel (impact at 317m/s)



Spall video

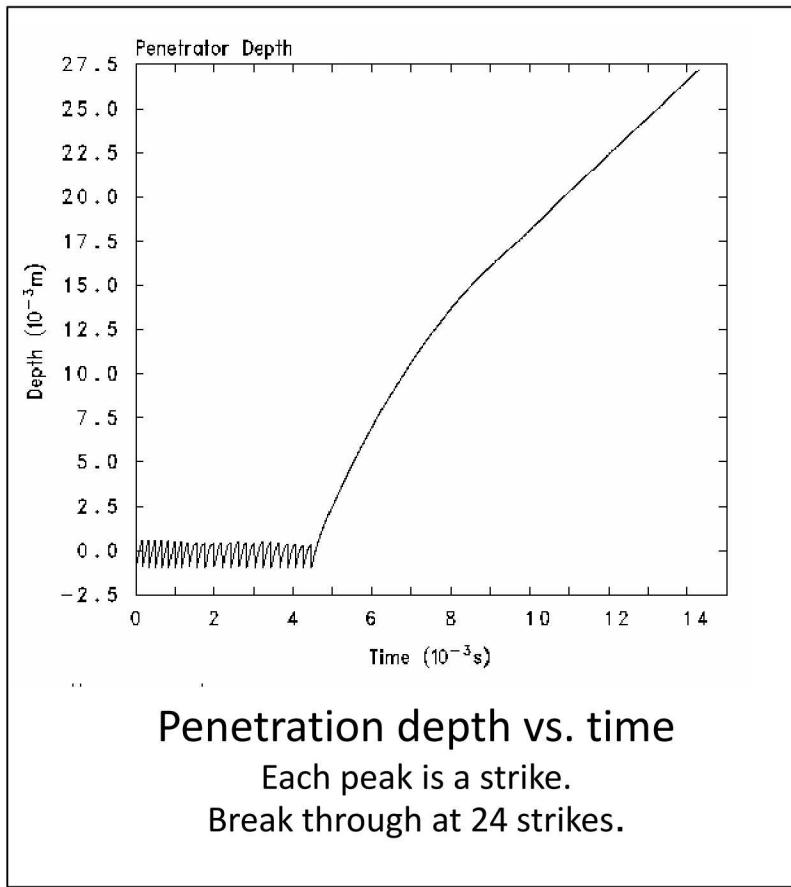
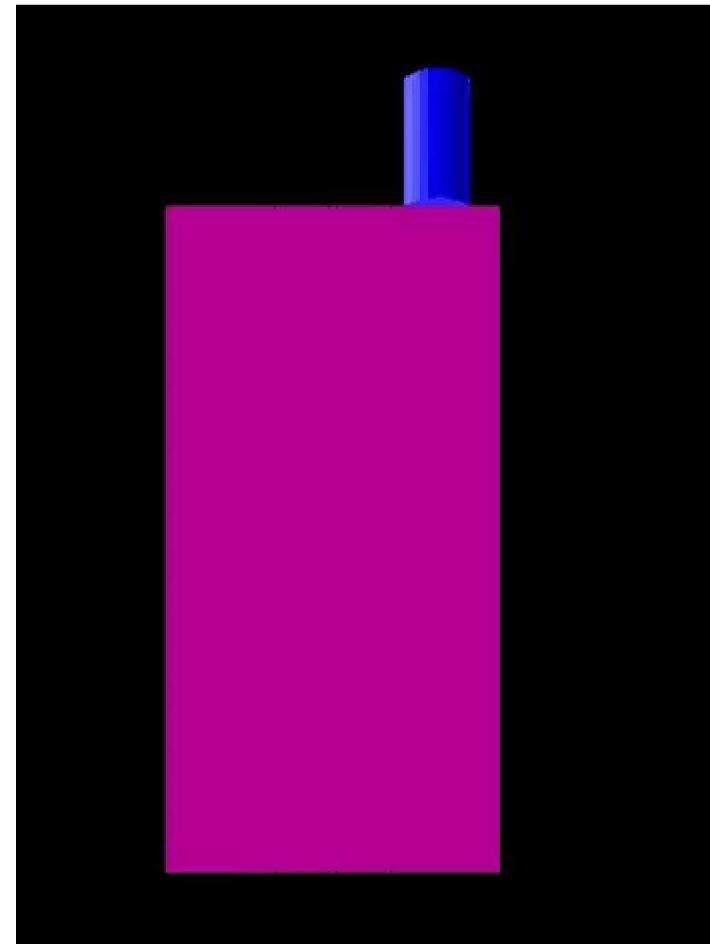


Colors show velocity

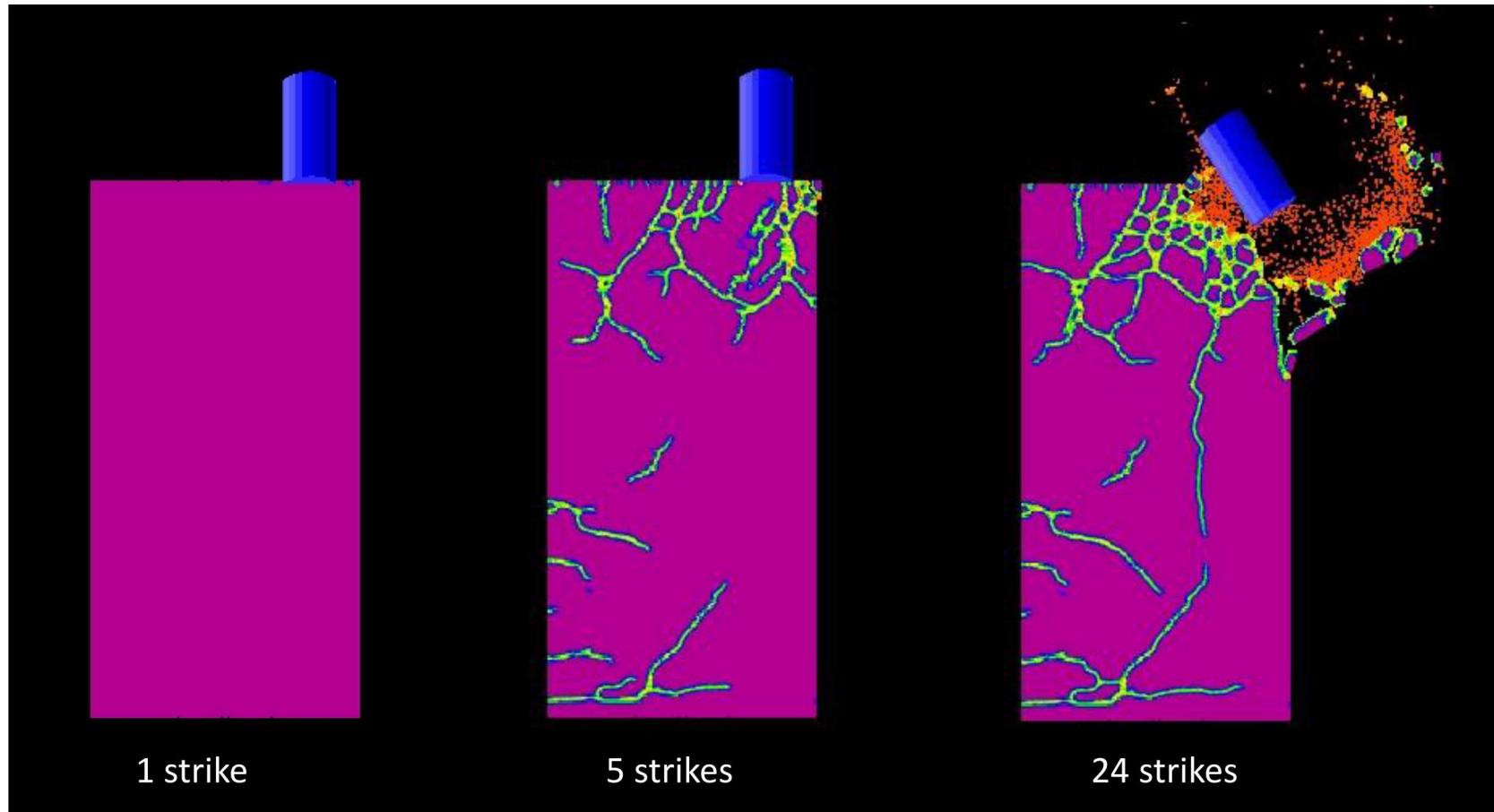


Accumulation of damage: Hammering on a block

VIDEO



Accumulation of damage: Hammering on a block



Colors show damage

Peridynamic vs. local equations

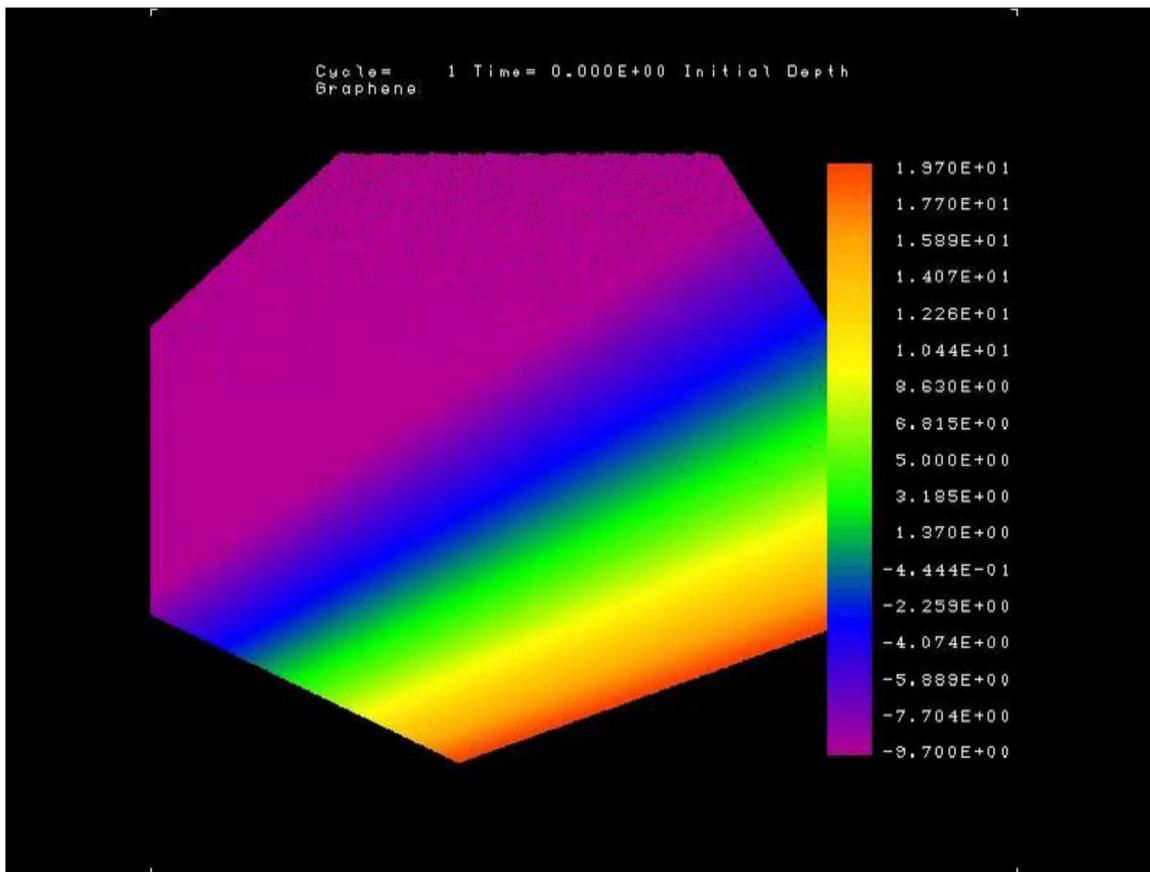
- The structures of the theories are similar, but peridynamics uses nonlocal operators.

Relation	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}} \text{ (Fréchet derivative)}$	$\boldsymbol{\sigma} = W_{\mathbf{F}} \text{ (tensor gradient)}$
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

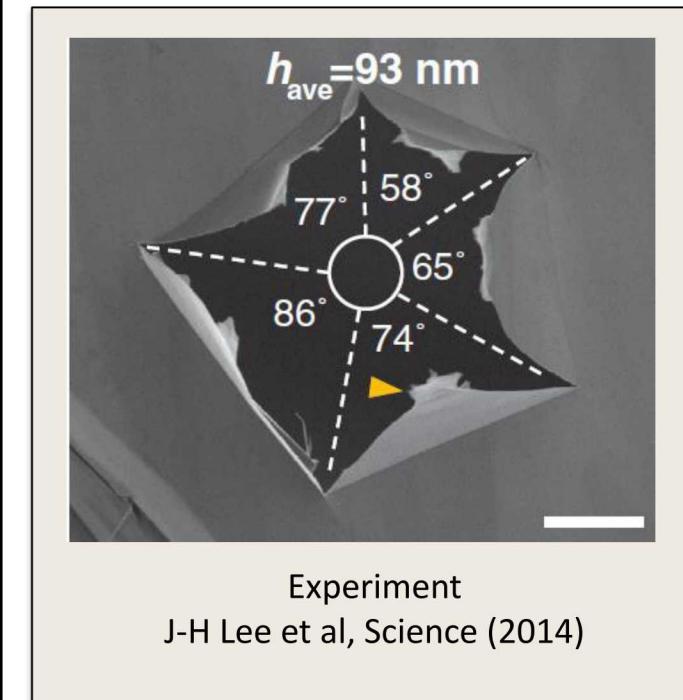
$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \cdot \dot{\underline{\mathbf{Y}}} \langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}}$$

Microballistics: Perforation of a graphene laminate

- 600m/s $3.7\mu\text{m}$ sphere onto 50nm thick graphene laminate.



Video: Colors show initial position



Ductile materials: Correspondence material models

- This is a type of state-based material model that uses a stress tensor as an intermediate quantity in computing bond forces.

$$\underline{\mathbf{Y}}\langle\xi\rangle \rightarrow \mathbf{F} \rightarrow \boldsymbol{\sigma} \rightarrow \underline{\mathbf{T}}\langle\xi\rangle$$

- This is the most convenient way to implement J_2 flow theory.
- Some overlap with SPH.

- SS, Epton, Weckner, Xu, & Askari, *J Elasticity* (2007)
- Warren, SS, Askari, Weckner, Epton, Xu, *Int J Solids & Structures* (2009)
- Tupek & Radovitzky, *JMPS* (2014)
- Bessa, Foster, Belytschko, & Liu, *Computational Mechanics* (2014)
- *SS, *CMAME* (2017)
- Du & Tian, *SIAM J Applied Math* (2018)
- Foster & Xu, *Int J Solids & Structures* (2018)
- Li, Hao, & Zhen, *CMAME* (2018)
- Nicely, Tang, & Qian, *CMAME* (2018)
- Chowdhury, P. Roy, D. Roy, & Reddy, *CMAME* (2019)
 - Ganzenmüller, Hiermaier, May, *Computers & Structures* (2015)

Ductile failure model implementation

- It is essential to incorporate the effect of hydrostatic stress on ductile failure nucleation. How to map this effect onto bond breakage?
- One way: Wellman tearing parameter model.
- Start breaking bonds at \mathbf{x} when

$$\int \left[\frac{2\sigma_1}{3(\sigma_1 - \bar{\sigma})} \right]^4 d\varepsilon^p = \varepsilon_f^p$$

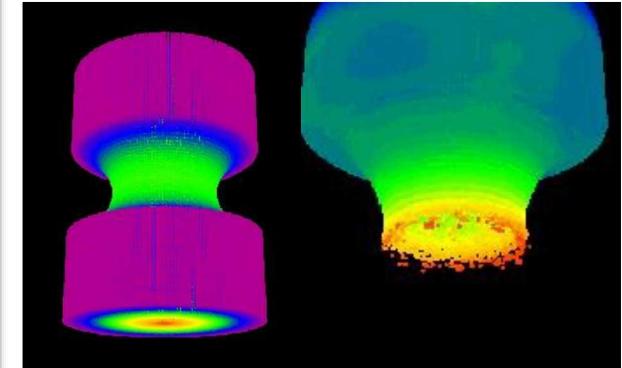
where

σ_1 = maximum principal stress,

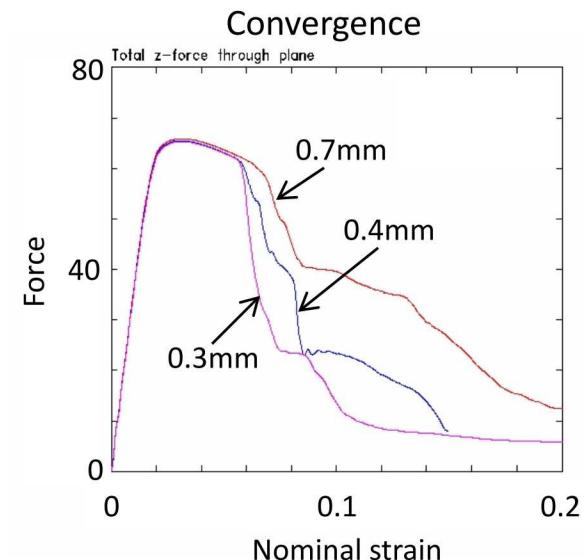
$\bar{\sigma}$ = hydrostatic stress,

ε^p = equivalent plastic strain,

ε_f^p = failure strain in uniaxial tension.



Johnson-Cook plasticity with
Wellman tearing model*



- G. W. Wellman, SAND2012-1343 (2012).

Fatigue: Cyclic strain in a bond

- For a given bond ξ , the *bond elongation* is the change in bond length:

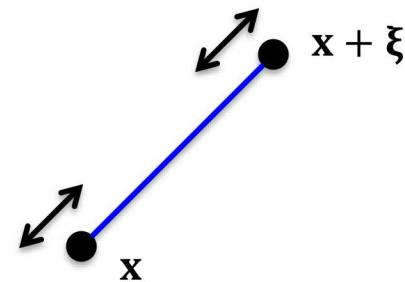
$$e = |\mathbf{Y}(\xi)| - |\xi| = |\mathbf{y}(x + \xi) - \mathbf{y}(x)|.$$

- The *bond strain* is the change in length over initial length:

$$s = \frac{e}{|\xi|}.$$

- Let s^+ and s^- be the two extremes under cyclic loading of ξ .
- The *cyclic bond strain* is defined by

$$\varepsilon = |s^+ - s^-|.$$

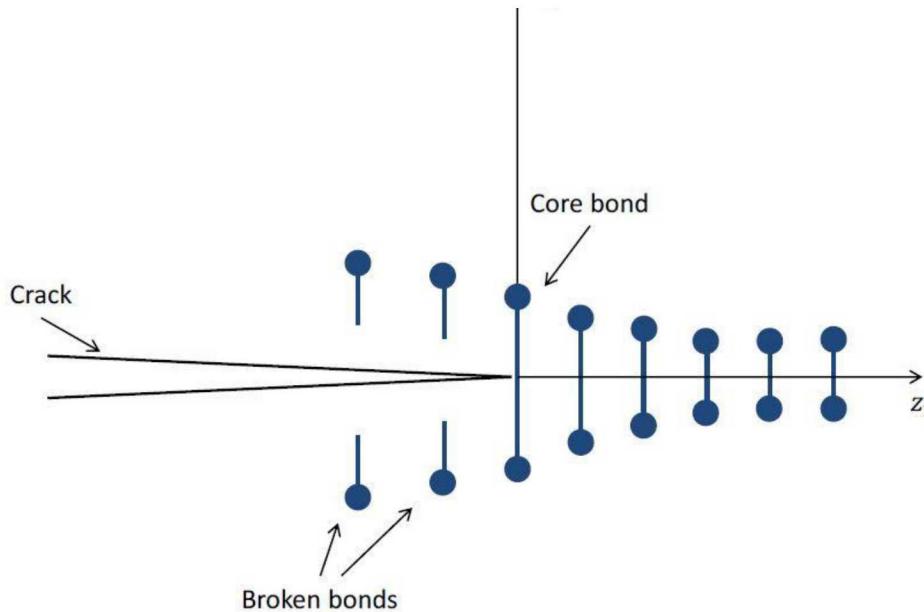
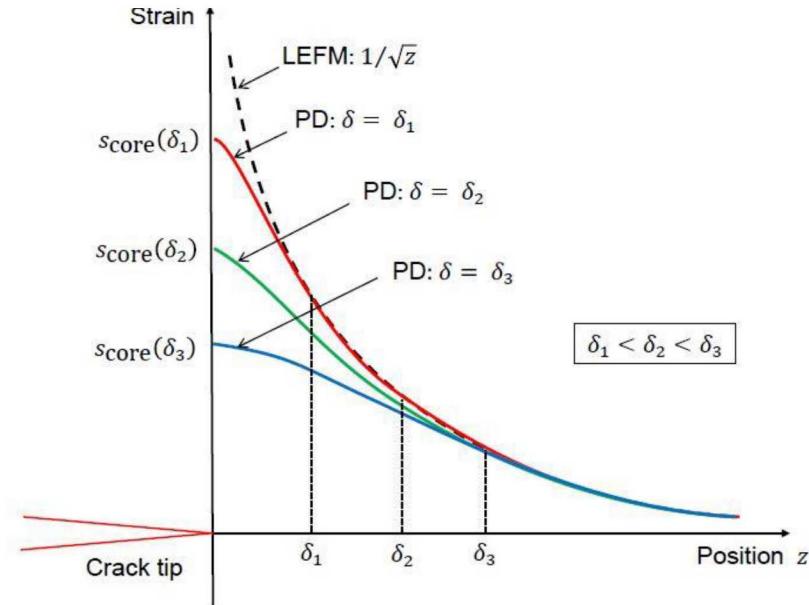


Structure of a crack tip field

- Let $\varepsilon_{\text{core}}(\delta)$ be the largest cyclic strain in any bond.
- Can show by a dimensional argument $\exists \hat{\varepsilon}_{\text{core}}$ such that

$$\varepsilon_{\text{core}}(\delta) = \hat{\varepsilon}_{\text{core}} \frac{\Delta K}{E\sqrt{\delta}}$$

where ΔK = cyclic stress intensity factor and E = modulus.



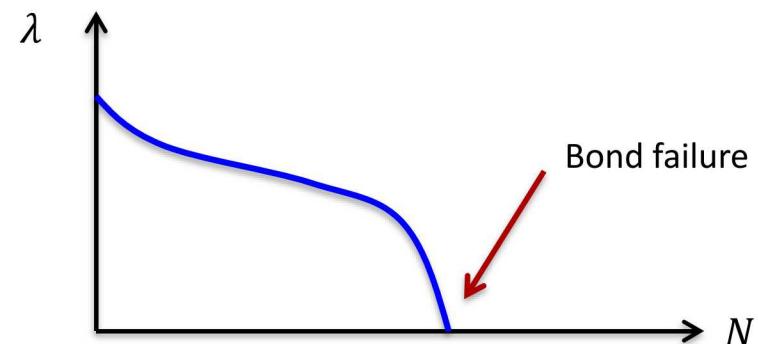
Remaining life of a bond

- Each bond in the body has a *remaining life* $\lambda(N)$ where N is the cycle number.
- The remaining life is monotonically decreasing over time.

$$\lambda(0) = 1, \quad \dot{\lambda} \leq 0.$$

- The bond fails at the first cycle N when

$$\lambda(N) \leq 0.$$



Fatigue model

- The fatigue model specifies how the remaining life of each bond depends on the loading.

$$\frac{d\lambda}{dN}(N) = -A\varepsilon^m$$

where A and m are constants and ε is the cyclic bond strain.

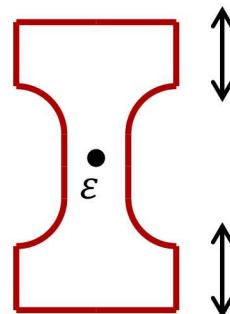
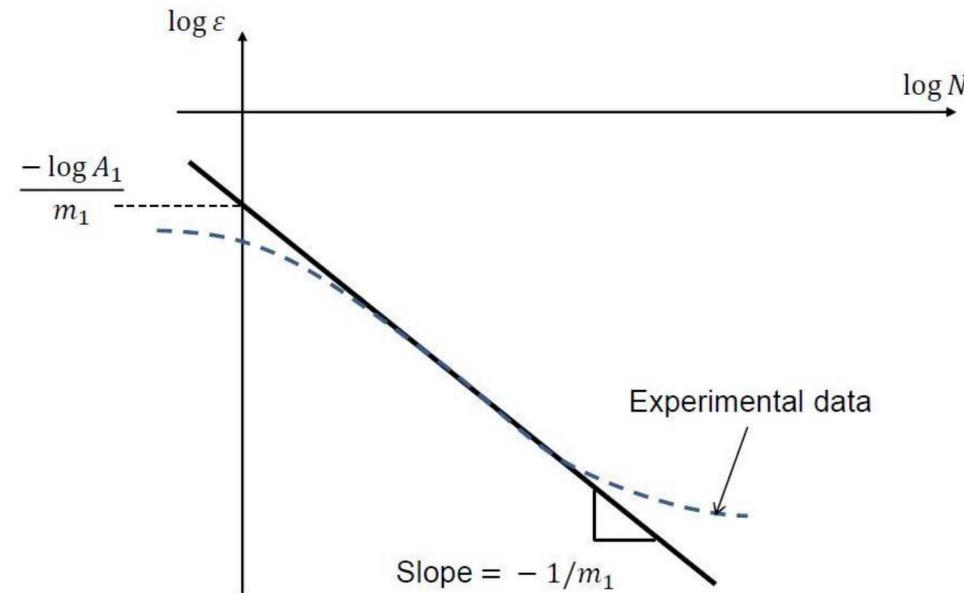
- The constants are calibrated separately for phases I and II (nucleation and growth).

Phase I calibration from S - N data

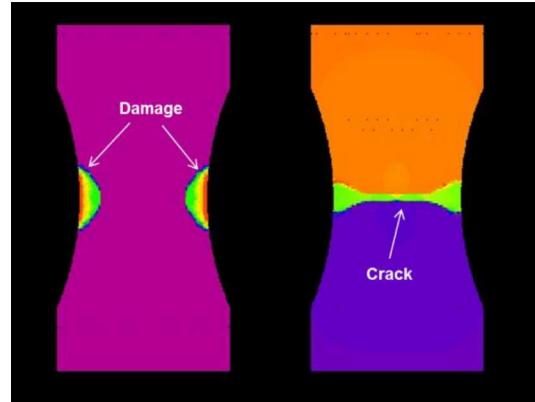
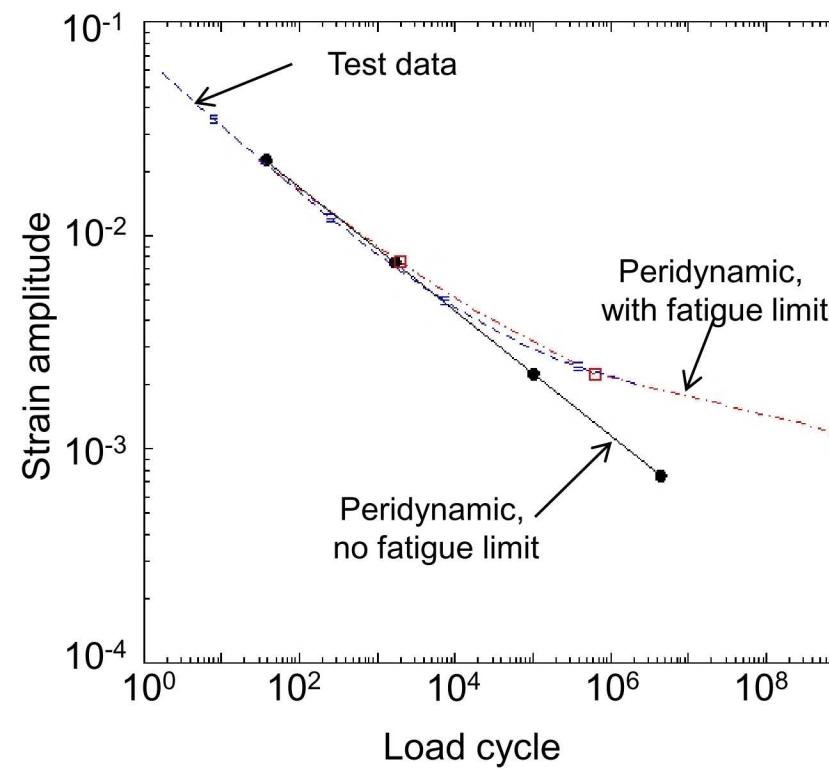
- Run many cyclic loading tests at different values of ε (constant for each test).
- For each test, compute when damage starts:

$$\frac{d\lambda}{dN}(N) = -A\varepsilon^m \implies N = \frac{1}{A\varepsilon^m}.$$

- Compare this to data on an ε - N plot, fit A and m .



Fatigue nucleation in aluminum alloy

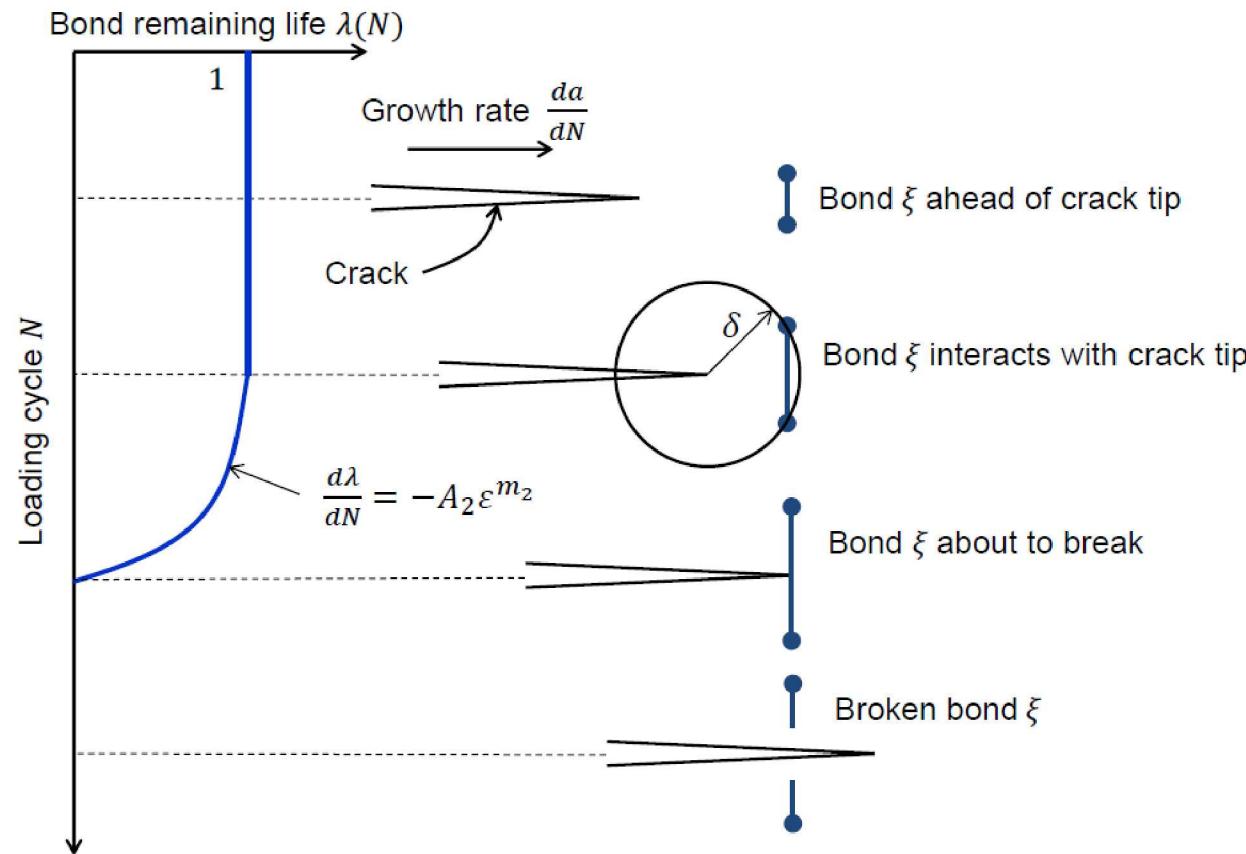


- Model with a fatigue limit:

$$\frac{d\lambda}{dN}(N) = -A \left(\max(0, \varepsilon - \varepsilon_\infty) \right)^m$$

Test data: T. Zhao and Y. Jiang. Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 30 (2008)834-849.

Growth: Bonds interact with the strain field near an approaching crack



Relate crack growth to remaining life

- Evolution of remaining life:

$$\lambda(\delta) - \lambda(0) = \int_0^\delta \frac{d\lambda}{dz} dz = \int_0^\delta \frac{d\lambda}{dN} \frac{dN}{dz} dz.$$

- Recall

$$\frac{d\lambda}{dN} = -A\varepsilon^m.$$

- Denote by da/dN the crack growth rate.

$$1 - 0 = \frac{A}{da/dN} \int_0^\delta \varepsilon^m(z) dz$$

- Cyclic strain ahead of a crack:

$$\varepsilon(z) = \varepsilon_{\text{core}} f\left(\frac{z}{\delta}\right) = \frac{\Delta K}{E\sqrt{\delta}} f\left(\frac{z}{\delta}\right).$$

- Thus, for some c ,

$$\frac{da}{dN} = cA\Delta K^m$$

Phase II calibration from Paris Law data

- Now have

$$\frac{da}{dN} = cA\Delta K^m$$

where c and m are as yet unknown.

- Assume the Paris Law holds:

$$\frac{da}{dN} = C\Delta K^M$$

where C and M are constants that can be found from test data.

- Conclude

$$m = M.$$

- Need to do one computational simulation with an assumed value $C = 1$ to evaluate A .

Summary so far

- Each bond has a remaining life $\lambda(N)$:

$$\lambda(0) = 1, \quad \frac{d\lambda}{dN}(N) = -A\varepsilon^m, \quad \lambda \leq 0 \text{ means failure.}$$

- In Phase I, use A and m from $S-N$ data.
- In Phase II, use a different calibration from Paris law data.

Time mapping permits very large N

- We can avoid modeling each cycle explicitly.
- Define the *loading ratio* by

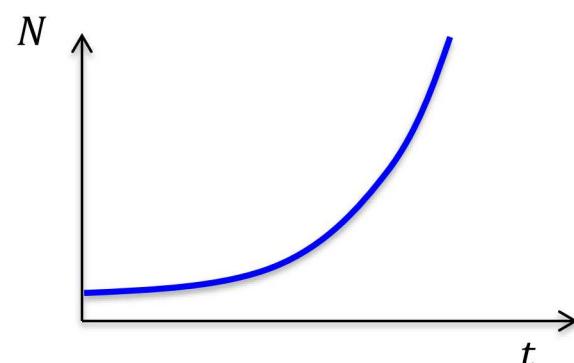
$$R = \frac{s^-}{s^+} \quad \Rightarrow \quad \varepsilon = |s^+ - s^-| = |(1 - R)s^+|.$$

- Map t to N :

$$N = e^{t/\tau}$$

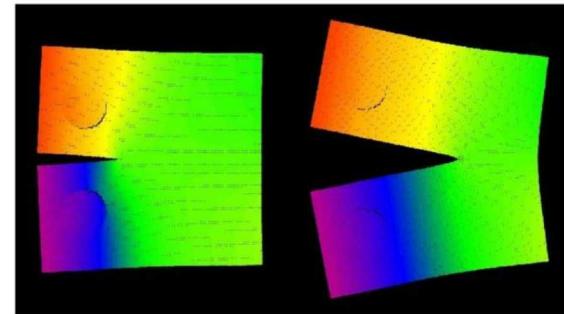
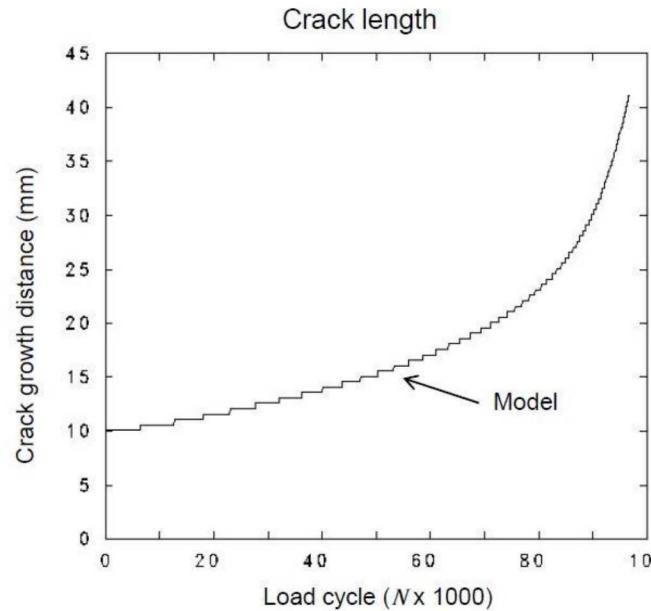
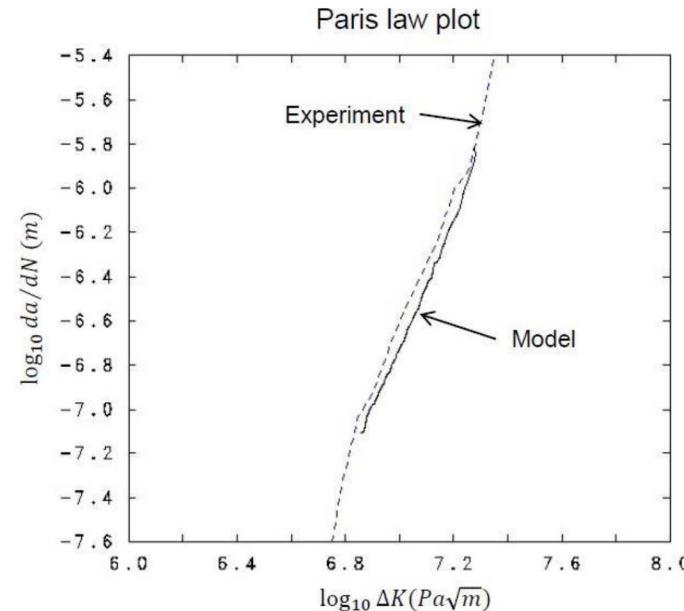
where τ is a constant chosen according to convenience.

- Fatigue model in terms of t instead of N :



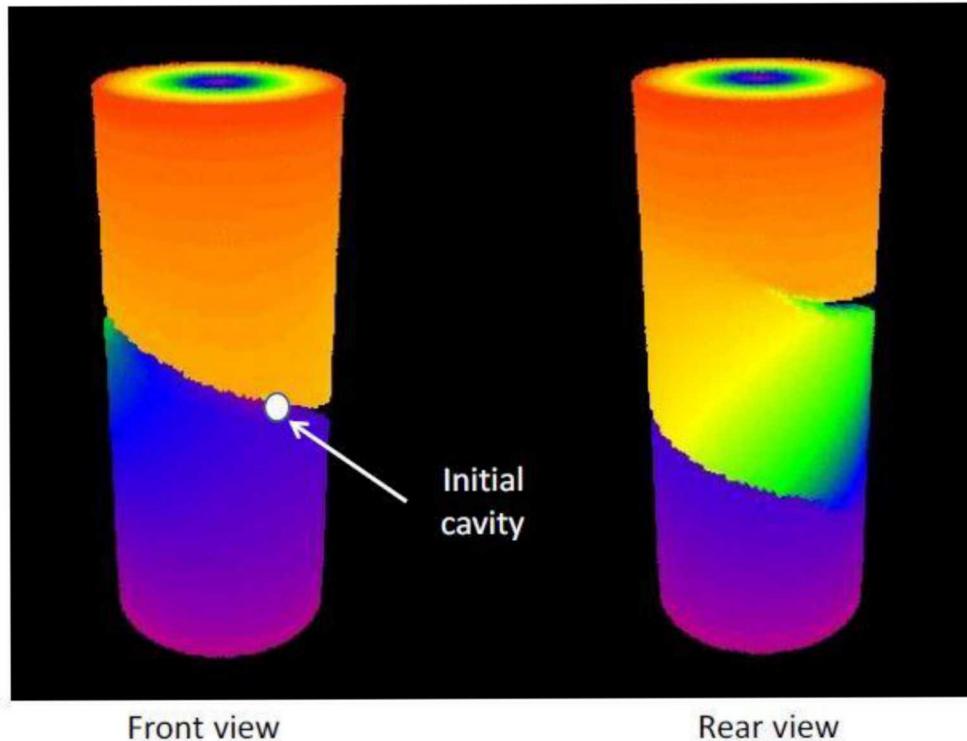
$$\frac{d\lambda}{dt} = \frac{d\lambda}{dN} \frac{dN}{dt} = \frac{-|1 - R|AN}{\tau} |s^+|^m.$$

Fatigue crack growth in aluminum



Test data: T. Zhao, J. Zhang, and Y. Jiang. A study of fatigue crack growth of 7075-T651 aluminum alloy. International Journal of Fatigue, 30 (2008) 1169–1180.

Spiral crack in a rod under torsion



Mesoscale:

Fatigue cracks at grain boundaries

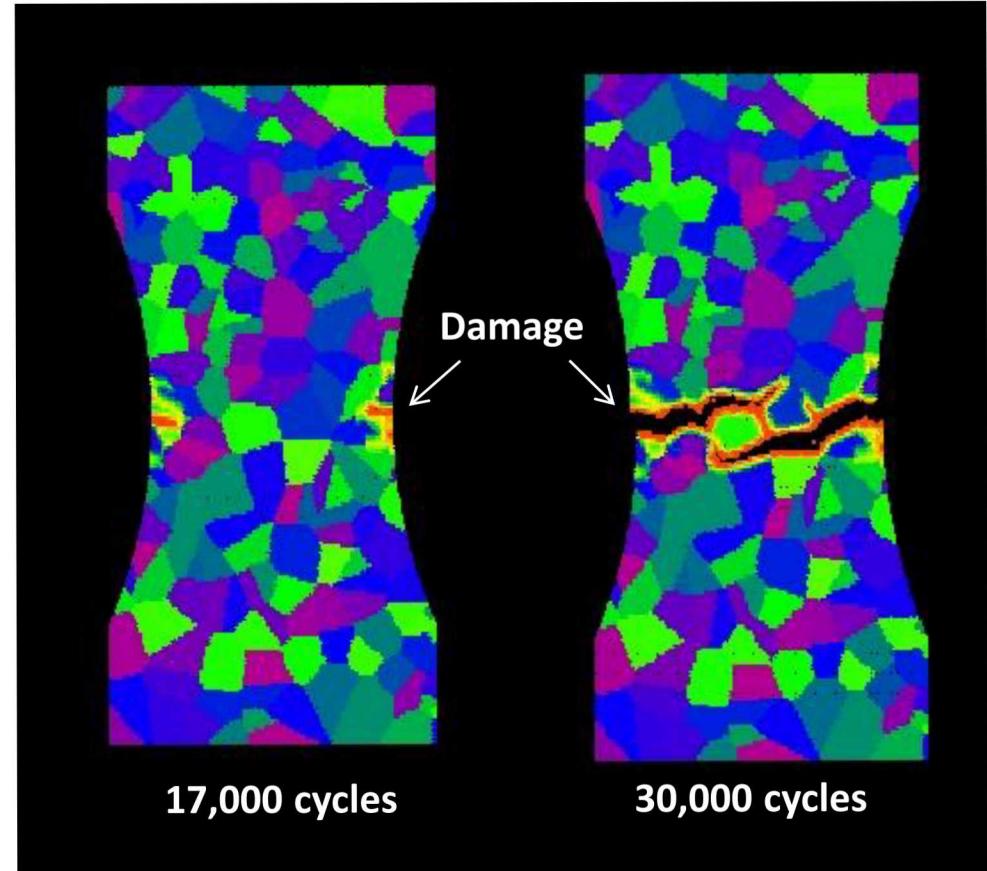
- Recall the peridynamic fatigue model: For a given bond,

$$\lambda(0) = 1, \quad \frac{d\lambda}{dN} = -A\varepsilon^m$$

- Set:

$A = 5$ for bonds within a grain

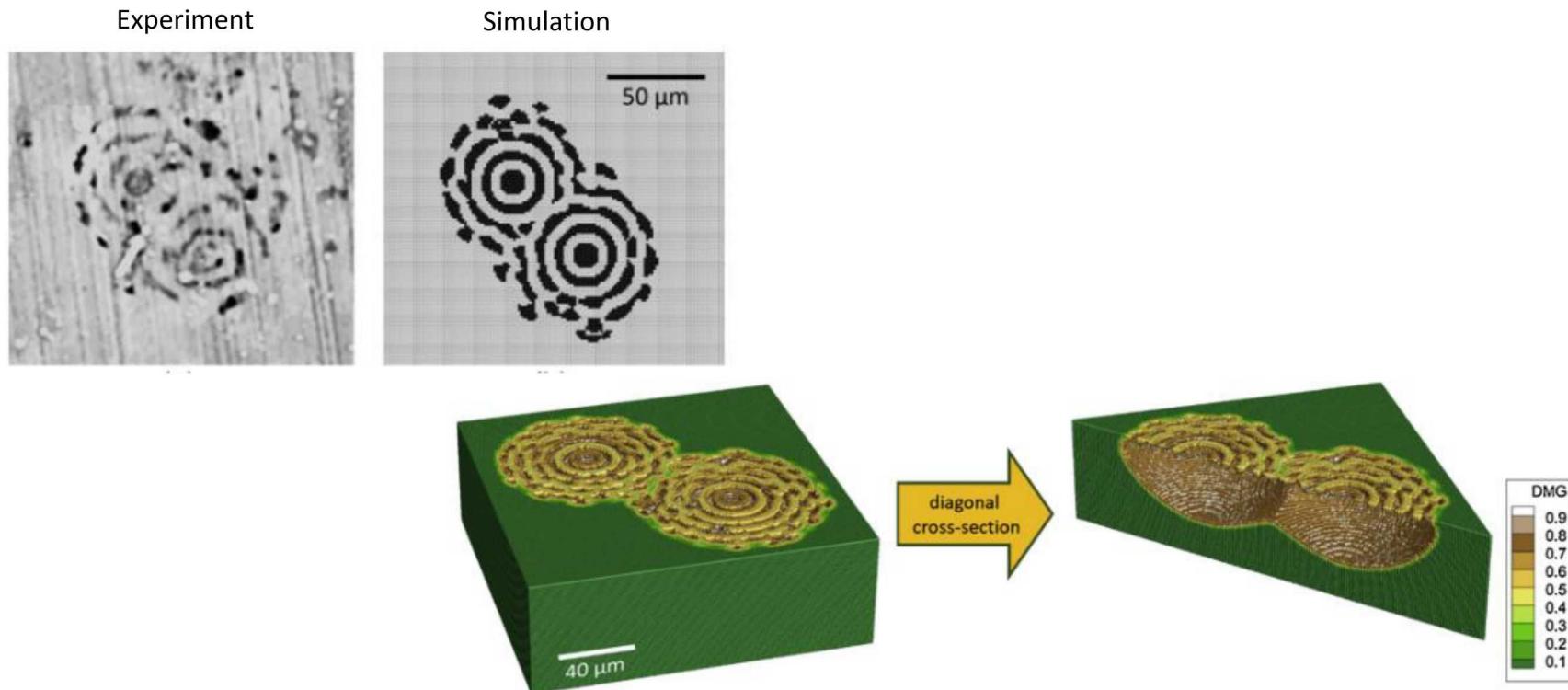
$A = 50$ for bonds between grains



Fatigue crack growth between grains
represented as Voronoi cells

Corrosion

- Peridynamic simulation of corrosion pits and lacy covers*
- Can use a peridynamic diffusion model for transport.



- Chen & Bobaru, JMPS (2015)
- Chen, Zhang, & Bobaru, J Electrochemical Society. (2016)
- De Meo, Diyaroglu, Zhu, E. Oterkus, & Siddiq, Int J Hydrogen Energy (2016)
- De Meo & E. Oterkus, Ocean Engineering. (2017)
- Li, Chen, Tan, & Bobaru, Materials Science and Engineering: A. (2018)
- *Jafarzadeh, Chen, Zhao, & Bobaru, Corrosion Science (2019)

Discussion

- Method treats continuous and discontinuous deformations according to the same equations.
 - Cracks nucleate according to the local conditions
 - Autonomous crack growth
- Fatigue model uses cyclic bond strain instead of actual bond strain.
 - Actual loading cycles are not computed.